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Abstract—In this letter, an application of energy balance method is
applied to solve the nonlinear oscillators with un force. Comparison
is made between the modification of harmonic balance method and
energy balance method. The results reveal that the energy balance
method is very effective and simple. Energy balance method is very
effective and convenient and quite accurate to both linear and nonlinear
physics and engineering problems.

1. INTRODUCTION

This paper considers the following general nonlinear oscillators [2]:

u′′ + ω2
0u + εf(u) = 0 (1)

With the initial condition

u(0) = A, u′(0) = 0 (2)

where f is a nonlinear function of u′′, u′, u, in this preliminary report,
we limit ourselves to the simplest case, i.e., f depends upon only the
function of u.

If there is no small parameter in the equation, the traditional
perturbation methods cannot be applied directly. Recently, consider-
able attention has been directed towards the analytical solutions for
nonlinear equations without possible small parameters. The tradi-
tional perturbation methods have many shortcomings, and they are not
valid for strongly nonlinear equations. To overcome the shortcomings,
many new techniques have appeared in open literature, for example,
† Corresponding author: ddg davood@yahoo.com
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d-perturbation method [3, 4], variational iteration method (VIM) [5–
10], homotopy perturbation method [11–18], bookkeeping parameter
Perturbation method [19], just to name a few, a review on some re-
cently developed nonlinear analytical methods can be found in detail
in Refs. [20–24].

In energy balance method, a variational principle for the nonlinear
oscillation is established, then a Hamiltonian is constructed, from
which the angular frequency can be readily obtained by collocation
method. The results are valid not only for weakly nonlinear systems,
but also for strongly nonlinear ones. Some examples reveal that even
the lowest order approximations are of high accuracy.

2. BASIC IDEA

First we consider the Duffing equation [2]:

u′′ + u + εu3 = 0, u(0) = A, u′(0) = 0 (3)

Its variational principle can be easily obtained:

J(u) =
∫ t

0

{
−1

2
u′2 +

1
2
u2 +

1
4
εu4

}
dτ (4)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 +

1
2
u2 +

1
4
εu4 =

1
2
A2 +

1
4
εA4 (5)

Or:
H =

1
2
u′2 +

1
2
u2 +

1
4
εu4 − 1

2
A2 − 1

4
εA4 = 0 (6)

In Eqs. (5) and (6) the kinetic energy (E) and potential energy (T )
can be respectively expressed as u′2/2, u2/2 + εu4/4 throughout the
oscillation, it holds that H = E + T constant.

We use the following trial function to determine the angular
frequency ω.

u = A cos ωt (7)

Substituting (7) into (6), we obtain the following residual equation:

R(t) = ω2 sin2 ωt + cos2 ωt +
1
2
εA2 cos4 ωt − 1 − 1

2
εA2 (8)

If, by chance, the exact solution had been chosen as the trial function,
then it would be possible to make R zero for all values of t by
appropriate choice of ω. Since Eq. (7) is only an approximation to
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the exact solution, R cannot be made zero everywhere. Collocation at
ωt = π/4 gives:

ω =
√

1 +
3
4
εA2 (9)

We can apply various other techniques, for examples, least square
method, Galerkin method, to identify the constant ω.

Its period can be written in the form:

T =
2π√

1 + 3
4εA2

(10)

The approximate period obtained by the traditional perturbation
method reads (Nayfeh, 1985).

Tpert = 2π

(
1 − 3

8
εA2

)
(11)

So our theory, in case ε � 1, gives exactly the same result with those
obtained by perturbation method.

What is rather surprising about the remarkable range of validity
of (10) is that the actual asymptotic period as ε → ∞ is also of high
accuracy.

lim
ε→∞

Tex

T
=

2
√

3/4
π

∫ π/2

0

dx√
1 − 0.5 sin2 x

= 0.9294 (12)

The lowest order approximation given by (10) is actually within 7.6%
of the exact frequency regardless of the magnitude of εA2.

If there is no small parameter in the equation, the traditional
perturbation methods cannot be applied directly [2].

3. APPLICATIONS

We consider the following nonlinear oscillator [1]:

u′′ + f(u) = 0 (13)

We will study the properties of the periodic solutions to certain
nonlinear oscillators by applying He’s energy balance method for
which the elastic restoring forces are non-polynomial functions of the
displacement. In particular, this term is chosen to be [2]:

f(u) = kun, n ∈ R (14)
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when k designates the stiffness of system.
With the boundary condition of:

u(0) = A, u′(0) = 0 (15)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 + k

un+1

n + 1
− k

An+1

n + 1
= 0 (16)

Choosing the trial function u = A cos ωt, we obtain the following
residual equation:

R(t) =
1
2
A2ω2 sin2 ωt + k

(A cos ωt)n+1

n + 1
− k

An+1

n + 1
= 0 (17)

we obtain:

ω =

√
2k

An−1

n + 1

{
1 − cosn+1 ωt

sin2 ωt

}
(18)

Its period can be written in the form:

Table 1. Comparison of energy balance frequency with harmonic
balance frequency [1]. (k = 1) example 1.

A Energy balance frequency harmonic balance frequency
0.1 3.2879 3.5191
0.2 2.3249 2.4884
0.3 1.8983 2.0318
0.4 1.6440 1.7595
0.5 1.4704 1.5738
0.6 1.3423 1.4367
0.7 1.2427 1.3301
0.8 1.1625 1.2442
0.9 1.0960 1.1730
1.0 1.0397 1.1128
5.0 0.4650 0.4977
10.0 0.3288 0.3519
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T =
2π√√√√2k
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n + 1

{
1 − cosn+1 ωt

sin2 ωt

} (19)

If we collocate at ωt = π/4, we obtain:
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2

2
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 (20)

In order to compare, we write harmonic balance solution [1]:

ω =

√√√√√√√2k
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√
π




Γ
(
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(n + 2)

)

Γ
(

1
2
(n + 3)

)

 (21)

Γ is gamma function.

Table 2. Comparison of energy balance frequency with harmonic
balance frequency [1]. (k = 1) example 2.

A Energy balance frequency harmonic balance frequency
0.1 1.6096 1.6498
0.2 1.4012 1.4363
0.3 1.2921 1.3244
0.4 1.2198 1.2503
0.5 1.1666 1.1958
0.6 1.1248 1.1529
0.7 1.0907 1.1179
0.8 1.0619 1.0885
0.9 1.0372 1.0631
1.0 1.0156 1.0410
5.0 0.7361 0.7545
10.0 0.6408 0.6568
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Table 3. Comparison of energy balance frequency with harmonic
balance frequency [1]. (k = 1) example 3.

A Energy balance frequency harmonic balance frequency
0.1 1.0000 1.0000
0.2 1.0000 1.0000
0.3 1.0000 1.0000
0.4 1.0000 1.0000
0.5 1.0000 1.0000
0.6 1.0000 1.0000
0.7 1.0000 1.0000
0.8 1.0000 1.0000
0.9 1.0000 1.0000
1.0 1.0000 1.0000
5.0 1.0000 1.0000
10.0 1.0000 1.0000

3.1. Example 1

We consider a one-dimensional, nonlinear oscillator governed by:

u′′ + kun = 0, n = 0.5 (22)

With the boundary condition of:

u(0) = A, u′(0) = 0 (23)

3.2. Example 2

We consider a one-dimensional, nonlinear oscillator governed by:

u′′ + kun = 0, n = 0.8 (24)

With the boundary condition of:

u(0) = A, u′(0) = 0 (25)

3.3. Example 3

For special case n = 1, oscillator is linear and:

u′′ + kun = 0, n = 1.0 (26)
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With the boundary condition of:

u(0) = A, u′(0) = 0 (27)

3.4. Example 4

We consider a one-dimensional, nonlinear oscillator governed by:

u′′ + kun = 0, n = 1.4 (28)

With the boundary condition of:

u(0) = A, u′(0) = 0 (29)

Table 4. Comparison of energy balance frequency with harmonic
balance frequency [1]. (k = 1) example 4.

A Energy balance frequency harmonic balance frequency
0.1 0.3862 0.3705
0.2 0.5096 0.4888
0.3 0.5994 0.5749
0.4 0.6725 0.6450
0.5 0.7352 0.7052
0.6 0.7909 0.7586
0.7 0.8412 0.8068
0.8 0.8873 0.8511
0.9 0.9301 0.8922
1.0 0.9702 0.9306
5.0 1.8468 1.7715
10.0 2.4369 2.3375

3.5. Example 5

We consider a one-dimensional, nonlinear oscillator governed by:

u′′ + kun = 0, n = 2.0 (30)

With the boundary condition of:

u(0) = A, u′(0) = 0 (31)
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Table 5. Comparison of energy balance frequency with harmonic
balance frequency [1]. (k = 1) example 5.

A Energy balance frequency harmonic balance frequency
0.1 0.0928 0.0849
0.2 0.1857 0.1698
0.3 0.2785 0.2546
0.4 0.3714 0.3395
0.5 0.4642 0.4244
0.6 0.5570 0.5093
0.7 0.6099 0.5942
0.8 0.7427 0.6791
0.9 0.8356 0.7639
1.0 0.9284 0.8488
5.0 4.6420 4.2441
10.0 9.2840 8.8483

4. CONCLUSIONS

In this work, we use an application of energy balance method for solving
the nonlinear oscillators with un force. The solution obtained by energy
balance method is valid for not only weakly nonlinear equations, but
also strong ones. Moreover, we showed that the obtained solutions are
valid for the whole domain. The examples show that even the lowest
order approximations obtained by the present theory are actually of
high accuracy.
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