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Abstract—Point source scattering by two rectangular dielectric
obstacles on a perfectly conducting screen is studied by solving
approximately the integral equations resulting from the scattering
theorem. The configuration can be used as a model describing
antenna radiation over the sea in the presence of two islands, one
of which is much larger than the other. The approach is scalar
and two-dimensional, while a linear system, produced via analytical
integrations, is derived to evaluate the field inside the scatterers. The
received power on the two islands is presented in several diagrams as
function of the material and distance parameters to estimate the signal
coverage across the two regions.

1. INTRODUCTION

The correct operation of different equipment which use electromagnetic
phenomena and the avoidance of interference effects from the
surrounding area are commonly investigated using electromagnetic
scattering techniques. Thus, electromagnetic compatibility naturally
focuses on wave scattering by various structures. In [1], the FDTD
method is implemented to develop a general technique in treating
various field scattering problems. The derived near-field equivalent
currents are used to determine the far-field features of the formations.
Also in [2], a study concerning the electromagnetic scattering by
obstacles above a lossy half space is presented. Through the moment
solution, one can observe the shield effects and estimate the echo widths
for several scatterers. Wait has additionally examined a laterally
anisotropic surface excited by a vertical electric dipole [3]. The waves
get trapped just above the surface when specific impedance condition
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is in effect. Furthermore, an improved formulation for the electric-
type integral equation has been developed to increase the efficiency
of the solution to three-dimensional problems of electromagnetic
scattering [4]. The method is suitable for conducting targets with
sharp surfaces.

Propagation of electromagnetic waves over sea or ground is a
classical problem that has attracted the interest of both theoretical
researchers and experimental scientists. Except for its obvious
practical significance in wireless terrestrial communications, this topic
can be intriguing from the aspect of electromagnetic compatibility as
the propagation features and the radiator characteristics are affected by
the surrounding environment. In [5], Schlessinger studies the induced
currents on an infinite wire above a penetrable earth under plane wave
excitation. The phase coherence between the incident and the wire field
is noted, while the dependence of the system propagation constants
on the operating wavelength and the permittivity of the ground are
highlighted. Furthermore, a thorough analysis of the cross polarization
in radar return from a rough sea surface is given in [6]. The authors
obtain explicit forms for the elements of the polarization matrix and
discuss their variations with respect to the geometrical parameters.
Finally, the radiation of a vertical dipole above a lossy spherical earth
has been extensively developed in [7]. Analytical formulas for the
ground wave amplitude are extracted and their behavior with varying
the observing distance is investigated.

In this work, we examine point source scattering by two
rectangular dielectric volumes on a perfectly conducting half space.
This configuration can be considered as an overwater propagation
model for two neighboring islands. A study with similar motivation is
provided in [8]. The excitation is an infinite dipole and the shape of
the geometry is two-dimensional; as a result, the scattering problem
is reduced to a scalar one. The Green’s function of the radiation area
in the absence of the two dielectric formations is straightforwardly
computed via image theory. We formulate an integral equation whose
unknown functions are the fields inside the volumes of the two islands.
The shape of the scatterers is not canonical (e.g., circle) and therefore
their cross sections are discretized and a stepwise approximation is
adopted for the unknown fields. The field values are computed
by inverting a well-defined linear system whose matrix elements are
analytically evaluated [9]. The scope of this work is to study the
average field on the main island in the presence on the neighboring one
and to examine the possibility to have field coverage of the neighboring
island’s area by an antenna located above the main one. Several
diagrams of the related signal quantities with respect to the materials
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and the magnitudes of the supersea volumes, the operating frequency,
the height of the source, and the inter-island distance are shown and
discussed.

2. PROBLEM STATEMENT AND MATHEMATICAL
FORMULATION

Consider a perfectly conducting (PEC) planar half space on which
are located two separate rectangular obstacles (regions 1 and 2) of
lossy and magnetically inert materials. Their lengths are denoted by
L1, L2 with L1 > L2 and their heights by h1, h2 respectively. The
symbols ε1, ε2 are used for the complex relative dielectric constants of
the corresponding materials with conductivities σ1, σ2. The distance
between the two volumes equals D, while the background medium
is vacuum (region 0) with wavenumber k0. The wavenumbers inside
regions 1 and 2 are referred to as k1 and k2 respectively. The
investigated physical configuration is depicted in Fig. 1 where the
cartesian coordinate system (x, y, z) used, is also defined. The PEC
surface coincides with the x-z plane and the y axis is positioned in the
middle of the first formation. The structure is excited by an electric

Figure 1. The geometry of the investigated model. Two rectangular
volumes (representing islands) exist on a perfectly conducting half
space (representing sea). The structure is excited by a two-dimensional
dipole located above the first island.
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dipole of constant current −I (opposite axial direction, expressed in A),
infinite towards the z axis, placed on y axis above the first rectangular
volume at height S > h1.

Both the shape and the excitation of the system are invariant
across the z axis. Therefore, the only nonzero electric component
is the axial one Ez = E, while the problem is reduced to a scalar
and two-dimensional one. It should be stressed that the PEC half
space represents the sea which possesses high conductivity. The two
lossy rectangular volumes, supposed to be homogeneous, correspond
to islands of different surface types and sizes. The antenna source
is located above the first island which is the larger one. Each field
quantity is written with a subscript indicating the region to which it
is referred. Our analysis is harmonic and a time dependence of the
form exp(+j2πft) is adopted and suppressed throughout, where f is
the operating frequency.

The two islands are considered as scatterers placed on the
surrounding environment of the PEC half space. Consequently, both
the Green’s function G and the incident axial electric field E0,inc are
computed in the absence of the rectangular dielectric volumes. The
electric-type Green’s function for such a two-dimensional configuration
is defined as the axial electric field developed by an elementary dipole
of magnitude j/(k0ζ0) (expressed in A) located along the axis (x =
X, y = Y ) belonging in the upper (vacuum) half space. The notation
ζ0 is used for the free space intrinsic impedance. A closed form for the
Green’s function is available with use of the image theory [10, p. 90]:

G(x, y,X, Y )=− j

4
H

(2)
0
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√
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4
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, (1)

where H(2)
u is the Hankel function of u-th order and second type. The

observation point (x, y) lies also at the vacuum region 0. As far as the
related incident electric field is concerned, a similar formula is obtained:

E0, inc(x, y)=−k0ζ0I
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By exploiting the reciprocity of the Green’s function, the magnetic
inertia of the participating materials and the second Green’s integral
formula [10, p. 791], one can prove the validity of the scattering
theorem, extensively used in previous works [11–17] which in our case
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is particularized to give:

E(x, y)=E0, inc(x, y) +
(
k2

1 − k2
0

) h1∫
0

L1/2∫
−L1/2

G(x, y,X, Y )E(X,Y )dXdY

+
(
k2

2 − k2
0

) h2∫
0

L1/2+D+L2∫
L1/2+D

G(x, y,X, Y )E(X,Y )dXdY (3)

where x ∈ R and y > 0, as the electric field is identically zero across
the lower half space. It is apparent that the field of the entire area can
be computed via the (unknown) values of the total field E(x, y) into
the dielectric scatterers. Hence, formula (3) is applied for the internal
points of these penetrable objects to yield a pair of integral equations
for the unknown functions E1(x, y) and E2(x, y). The first one stands
for x ∈ [−L1/2, L1/2] and y ∈ [0, h1] (first island, region 1) and is
written as:

E1(x, y)=E0, inc(x, y)+
(
k2

1 − k2
0

) h1∫
0

L1/2∫
−L1/2

G(x, y,X, Y )E1(X,Y )dXdY

+
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0
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0

L1/2+D+L2∫
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G(x, y,X, Y )E2(X,Y )dXdY . (4a)

The second one is valid for x ∈ [L1/2 +D, L1/2 +D + L2] and
y ∈ [0, h2] (second island, region 2) and takes the form:

E2(x, y)=E0, inc(x, y) +
(
k2

1 − k2
0

) h1∫
0

L1/2∫
−L1/2

G(x, y,X, Y )E1(X,Y )dXdY

+
(
k2

2 − k2
0

) h2∫
0

L1/2+D+L2∫
L1/2+D

G(x, y,X, Y )E2(X,Y )dXdY . (4b)

3. APPROXIMATE SOLUTION OF THE INTEGRAL
EQUATIONS

With a slight loss of generality, it is assumed that the islands
dimensions are integer multiples of an electrically small distance a.
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In particular, we suppose that:

L1 = 2Nx1a h1 = Ny1a (5a)
L2 = Nx2a h2 = Ny2a (5b)

where Nx1, Ny1, Nx2 and Ny2 are integer numbers. In order to
manipulate the integral equations (4a) and (4b), the penetrable
scatterers are divided into many identical square pixels of area a2 [9].
The electric field is assumed to not vary within the limits of a single
square and to equal to its value at the center of the pixel. Therefore,
the unknowns for the field in the first island are the quantities
E1(x1(nx1), y1(ny1)) with nx1 = 1, . . . , 2Nx1 and ny1 = 1, . . . , Ny1.
The unknowns for the field in the second island are the quantities
E2(x2(nx2), y2(ny2)) with nx2 = 1, . . . , Nx2 and ny2 = 1, . . . , Ny2,
where the coordinates of the centers for each small square are given
by:

x1(nx1) =
(
nx1 −Nx1 −

1
2

)
a y1(ny1) =

(
ny1 −

1
2

)
a (6a)

x2(nx2) =
L1

2
+D +

(
nx2 −

1
2

)
a y2(ny2) =

(
ny2 −

1
2

)
a. (6b)

In this way, a (2Nx1Ny1+Nx2Ny2)×(2Nx1Ny1+Nx2Ny2) linear system
is formed with respect to the discrete values of the total electric field
across the volume of the scatterers. More specifically:
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2
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2

G (x1 (mx1) , y1 (my1) , X, Y ) dXdY − E1 (x1 (mx1) , y1 (my1))
= −E0, inc (x1 (mx1) , y1 (my1)) (7a)
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= −E0,inc (x2 (mx2) , y2 (my2)) (7b)

for mx1 = 1, . . . , 2Nx1, my1 = 1, . . . , Ny1 and mx2 = 1, . . . , Nx2,
my2 = 1, . . . , Ny2. The double integrals of the Green’s function
constituting the elements of the system matrix cannot be analytically
evaluated unless an approximation for the integration domain is made.
In particular, each rectangular pixel to which the integrals in (7a) and
(7b) are referred, will be replaced by a circular disk of equal area,
namely of radius a/

√
π. The difference is insignificant due to the

small value of a. The representative integral of (7a), (7b) is written,
by adopting the alternative cylindrical version of Green’s function
G(ρ, φ, P, Φ), as follows:

M(χ, ψ, x, y) =
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2∫
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2
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2∫
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2
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=
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2π∫
0

α/
√
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0

G(µ(χ, ψ, x, y), γ(χ, ψ, x, y), P,Φ)PdPdΦ,(8)

where the functions of the line inclination passing through the points
(χ, ψ), (x, y) and the distance between them are defined below:

γ(χ, ψ, x, y) = arctan(χ− x, ψ − y) (9a)

µ(χ, ψ, x, y) =
√

(χ− x)2 + (ψ − y)2. (9b)
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It is noted that arctan(α, β) ∈ [0, 2π).
The analytical integrations are assisted by the following

expansion of the Hankel function originating from the addition
theorem [18, p. 363]:

H
(2)
0

(
k0

√
µ2 + P 2 − 2µP cos(γ − Φ)

)

=
+∞∑

u=−∞
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u (k0 max(µ, P ))eju(γ−Φ), (10)

where Ju is the Hankel function of u-th order. In our approach µ
denotes the distance between the centers of two different pixels and
therefore µ > a/

√
π ≥ P . If one takes into account common integrals

of Bessel functions [18, p. 480] and (10), one obtains the formula below:
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In case µ = 0, the relation is not functional and a special treatment
should be applied instead:
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By combining (1), (8) and (11), (12) the following closed form
expression is derived:
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As a result, the (2Nx1Ny1 +Nx2Ny2)× (2Nx1Ny1 +Nx2Ny2) linear
system (7a), (7b) takes the form:[(
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M12(
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[
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where Ur is the r × r unitary matrix. The vectors of the unknown
quantities are given below:

e1 = [ E1(x1(1), y1(1)) . . . E1(x1(2Nx1), y1(Ny1)) ]T (15a)

e2 = [ E2(x2(1), y2(1)) . . . E2(x2(Nx2), y2(Ny2)) ]T . (15b)

The constant vectors of the incident quantities are given by:

e1,inc=[E0,inc(x1(1), y1(1)) . . . E0,inc(x1(2Nx1), y1(Ny1)) ]T (15c)

e2,inc=[E0,inc(x2(1), y2(1)) . . . E0,inc(x2(Nx2), y2(Ny2)) ]T. (15d)

It should be noted that in the above sequence of vector elements, the
increment of the x-related index n/mx1/2 has priority over the y-related
index n/my1/2. The same quoting rule is applied for the matrices
below:

M11 =
M(x1(1), y1(1), x1(1), y1(1)) . . . M(x1(1), y1(1), x1(2Nx1), y1(Ny1))

...
. . .

...
M(x1(2Nx1), y1(Ny1), x1(1), y1(1)). . .M(x1(2Nx1), y1(Ny1), x1(2Nx1), y1(Ny1))


(16a)

M12 =
 M(x1(1), y1(1), x2(1), y2(1)) . . . M(x1(1), y1(1), x2(Nx2), y2(Ny2))

...
. . .

...
M(x1(2Nx1), y1(Ny1), x2(1), y2(1)). . .M(x1(2Nx1), y1(Ny1), x2(Nx2), y2(Ny2))


 (16b)

M21 =
 M(x2(1), y2(1), x1(1), y1(1)) . . . M(x2(1), y2(1), x1(2Nx1), y1(Ny1))

...
. . .

...
M(x2(Nx2), y2(Ny2), x1(1), y1(1)). . .M(x2(Nx2), y2(Ny2), x1(2Nx1), y1(Ny1))


(16c)

M22 =
 M(x2(1), y2(1), x2(1), y2(1)) . . . M(x2(1), y2(1), x2(Nx2), y2(Ny2))

...
. . .

...
M(x2(Nx2), y2(Ny2), x2(1), y2(1)). . .M(x2(Nx2), y2(Ny2), x2(Nx2), y2(Ny2))


. (16d)

4. NUMERICAL RESULTS AND DISCUSSION

A set of computer programs has been developed to evaluate the electric
field by solving the linear system (14) and by using (3). We are mainly
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interested in measuring two field quantities whose variation is shown
in the graphs of this section. The first quantity is the average field on
the surface of the main island indicating the magnitude of the received
signal across the larger region, namely, how well the area is covered in
terms of wireless communication. Due to the tiny size of the second
island we prefer to observe the maximum electric field on its surface,
which is the second measured quantity and indicates if a single antenna
is sufficient for the signal coverage of two neighboring supersea volumes.

Because of the large number of input parameters, some of them
should be kept fixed throughout the numerical simulations (like the
unitary excitation current I = 1 A). The real permittivities of the
scatterers materials are taken close to those possessed by several
natural claddings, such as sand and vegetation: Re[ε1] = Re[ε2] =
10 [19, 20]. Also, the characteristics of the second island (dimensions,
material) are kept constant, L2 = 200 m, h2 = 10 m, σ2 = 0.5 S/m, as
they do not significantly affect the calculated quantities.

The operating frequency is chosen low, 1 kHz< f < 20 kHz with
a typical value f = 10 kHz, so that the rectangular scatterers are not
electrically large. The dimensions of the first island can vary within
the intervals 1000 m< L1 < 2000 m and 5 m< h1 < 15 m with average
values L1 = 1500 m and h1 = 10 m. The inter-island distance satisfies
the double inequality 5 m< D < 500 m and usually equals D = 250 m,
while the height of the source belongs to the set 15 m< S < 45 m
with an average value S = 30 m. The conductivity of the first island
can change from zero to a substantial magnitude 0 < σ1 < 1 S/m
but is typically kept constant σ1 = 0.5 S/m. The dimension of each
square pixel is taken on the order of a ∼= |0.2/√ε| (ε denotes the
respective complex relative permittivity) according to Richmond’s rule
of thumb [9]. As a result, the waveforms are converging and the results
obtained are reliable.

In Fig. 2(a) we present the variation of the average electric field
on the first island with respect to the length L1 for various heights h1.
It is observed that for increasing length the received signal is reduced,
which makes sense since we use the same source for covering a larger
area. Also, the curve for h1 = 15 m possesses the most substantial
magnitudes as the dipole is not distant from the island’s surface. In
Fig. 2(b) the maximum field on the second volume is represented with
respect to the same variables and parameters. The decaying behavior
of the quantity with respect to L1 is again natural as the investigated
region gets farther from the excitation source. Furthermore, the effect
of the dipole is reduced for large h1 due to the opposite image developed
(the rectangular volume is conducting). The same happens for low
h1 as the first scatterer does not significantly support the primary
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(a)

(b)

Figure 2. (a) The average electric field on the surface of the first
island. (b) The maximum electric field on the surface of the second
island, as function of the length of the first island for various first
island heights. Plot parameters: Re[ε1] = Re[ε2] = 10, σ2 = 0.5 S/m,
L2 = 200 m, h2 = 10 m, I = 1 A, D = 250 m, f = 10 kHz, S = 30 m,
σ1 = 0.5 S/m.

radiation because of its small size. That is why the curve for h1 = 10 m
shows the most significant values.

In Fig. 3(a) we present the variation of the average |E1(x, h1)|
as function of the source height S for several conductivities σ1 of the
first island. As the operating frequency is low, the imaginary parts
of the complex permittivity are very large for σ1 = 0.5, 1 S/m and
therefore the corresponding curves almost coincide with each other.
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(a)

(b)

Figure 3. (a) The average electric field on the surface of the first
island. (b) The maximum electric field on the surface of the second
island as function of the source position for various conductivities of
the first material. Plot parameters: Re[ε1] = Re[ε2] = 10, σ2 = 0.5 S/m,
L2 = 200 m, h2 = 10 m, I = 1 A, D = 250 m, f = 10 kHz, L1 = 1500 m,
h1 = 10 m.

Also, the values of the surface electric field are reduced for increasing
S and σ1, namely, the excitation force gets diminished because of the
substantial distance and the powerful image, respectively. In Fig. 3(b)
the curves representing the maximum signal on the second island are
slope linearly upward with respect to S. The negative influence of
the opposite image created internally to the first rectangular volume
is decreased when the antenna is located higher. Again the curves
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(a)

(b)

Figure 4. (a) The average electric field on the surface of the
first island. (b) The maximum electric field on the surface of the
second island, as function of inter-island distance for various operating
frequencies. Plot parameters: Re[ε1] = Re[ε2] = 10, σ2 = 0.5 S/m,
L2 = 200 m, h2 = 10 m, I = 1 A, S = 30 m, σ1 = 0.5 S/m,
L1 = 1500 m, h1 = 10 m.

for σ1 = 0.5, 1 S/m concur and when the conductivity is zero, more
significant magnitudes are recorded. It is also noteworthy that the
field values in Fig. 3(b) are much smaller than those of the curves
in Fig. 3(a). A similar observation can be made for Fig. 2 and it is
attributed to the fact that the antenna is located above the first island
for benefit of its own region; only in a supplementary sense can the
source cover the second one.

In Fig. 4(a) we depict the average field on the main island
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as function of the inter-island distance D for various operating
frequencies f . It should be noted that the computed quantity is almost
independent of the distance between the two supersea volumes. Such
a conclusion could be anticipated as the presence of the second island
has a rather insignificant influence on the first one. Moreover, for
decreasing frequency (within a certain range), the field is reduced,
probably because the electrical size and implicitly the reinforcing effect
of the scatterer has been decreased. In Fig. 4(b) we present the
maximum value of |E2(x, h2)| with respect to the same variables and
parameters. With increasing D the signal decays as the observer on
the second island is removed from the main structure. Finally, for
lower frequencies the fall is less rapid as the electrical distance from
the excitation source is diminished.

5. CONCLUSIONS

In this work, a model of the signal coverage of two neighboring islands
is analyzed. A single source is located above the main island and
the scattering of the produced waves by the perfectly conducting sea
surface and the two rectangular volumes is studied. The scattering
integral is manipulated by dividing the two dielectric scatterers into a
large number of tiny square pixels and by assuming a constant field on
each of these pixels. In this way, the total field on the island surfaces
is approximately determined and observations about its dependencies
are made.

The same technique can be applied to treat the case of non
rectangular island shapes or inhomogeneous materials. Also, the
metallic sea surface could be replaced by an imperfectly conducting
half space in order to examine the electromagnetic penetration depth.
Another interesting case could be the maximization of the received
signal on both islands with respect to the position of the source for
fixed material parameters. The extracted results can prove useful in
real-world applications.
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