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Abstract—A magnetized thin layer mounted on a PEC surface is
considered as an alternative for an absorbing layer. The magnetic
material is modeled with the Landau-Lifshitz-Gilbert equation, with
a lateral static magnetization having a periodic variation along one
lateral direction. The scattering problem is solved by means of an
expansion into Floquet-modes, a propagator formalism and wave-
splitting. Numerical results are presented, and for parameter values
close to the typical values for ferro- or ferrimagnetic media, reflection
coefficients below −20 dB can be achieved for the fundamental mode
over the frequency range 1–4 GHz, for both polarizations. It is found
that the periodicity of the medium makes the reflection properties for
the fundamental mode almost independent of the azimuthal direction
of incidence, for both normally and obliquely incident waves.

1. INTRODUCTION

For absorption of electromagnetic waves, magnetic media have
some features making them more appropriate than their electric
counterparts. For example, when reducing the reflection from a PEC
surface, a thin magnetically lossy sheet can be placed directly onto
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the surface whereas the corresponding electrically lossy sheet must be
suspended a quarter of a wavelength from the surface by using an
additional dielectric layer. Hence, magnetic media has the possibility
to offer designs with larger bandwidth and less space occupancy than
electric media.

Using a medium with a scalar permeability, efficient absorption
can be obtained if the permeability is large and its imaginary (lossy)
part dominates over its real part [1]. The larger the lossy permeability
is the thinner one can make the absorbing layer. For that purpose,
composite media realized as laminated structures of ferromagnetic thin
films is a very promising alternative, since such media have among the
highest possible permeabilities in the microwave region reported up to
date. Quite recent experimental investigations [2, 3] report loss parts
of the permeability in the order 200 or more in the lower microwave
band, for frequencies ranging approximately from 1 to 10 GHz.

A suitable phenomenological model for ferromagnetic media is
the Landau-Lifshitz-Gilbert (LLG) equation [4], which for small-signal
analysis of microwave fields is linearized around a static equilibrium
solution for the magnetization. Due to surface effects the static
magnetization in ferromagnetic thin films is predominantly oriented
in the lateral directions. By spontaneous arrangements, subject to
geometrical constraints, or by externally enforced magnetic fields [5, 6]
the magnetization assumes certain patterns, varying in both the lateral
and normal directions [7–9]. Such magnetizations result in a small-
signal permeability that is both anisotropic and heterogeneous.

Engineered thin film magnetic layers with the magnetization
vector organized in certain patterns is a way to utilize the ubiquitous
anisotropy in order to obtain desired reflection properties, when the
layer is exposed to fields of different polarizations. From the point of
view of radar cross section reduction (RCSR) it is usually desired to
reduce the reflection for both polarizations of the incident wave, but in
other applications it may be desired that the layer absorbs efficiently
for only one polarization, like e.g., the suppression of surface waves in
array antennas and other periodic structures [10].

In this paper we investigate theoretically the possibility of
achieving efficient RCSR using a magnetized layer (presumably
realized as a laminate of ferromagnetic thin films) having a lateral
magnetization that varies periodically along one of the lateral
directions. First the conditions on a magnetic Salisbury screen,
the LLG-equation and the small-signal model for the gyrotropic
permeability are reviewed. Then, the absorption efficiencies, under
illumination in the normal direction, using two special directions of
magnetization are discussed, viz. a normally directed magnetization
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and a laterally directed homogeneous magnetization, and conclude
that the laterally magnetized layer is potentially more advantageous.
From that, we turn to a periodically varying lateral magnetization and
derive the resulting heterogeneous permeability tensor, with parameter
values mimicking a magnetic conductivity model. Next, the method for
solving the scattering problem is presented: a spectral representation
in terms of Floquet-modes for the lateral dependencies, a propagator
method for mapping the fields in the normal direction and a wave-
splitting technique for extracting the reflection coefficients for the
Floquet-modes. Numerical results are presented, for the dependencies
of the reflection coefficients on the polar and azimuthal angles of
incidence, the saturation magnetization and the loss parameter. The
sensitivity of an RCSR design for deviations from the magnetic
conductivity model is also investigated.

2. THE MAGNETIC SALISBURY SCREEN

We define an absorbing layer to be thin if d � λ, where d is the
thickness of the layer and λ is the wavelength in the exterior region.
The backscattered field from normally impinging waves on an isotropic
thin lossy sheet above a PEC surface can be completely extinct
provided [1, p. 337]

σmd = η0 (1)
µ′′ � µ′ (2)

where σm ≡ ωµ0µ
′′, η0 is the vacuum wave impedance, ω the angular

frequency and µ′′ the imaginary part of the relative permeability.
The operation of this design is based on interaction inside the layer

rather than matching of the impedance at the front surface. Thus, the
layer must be penetrable, i.e., d � δ, where δ is the penetration depth
of the layer. Therefore, the conditions above must be supplemented
with another condition. Assume that the relative permittivity, ε, is
real valued and that the conditions above are fulfilled, whereby the
wave number becomes

k = k0
√
εµ ≈ k0

√
εµ′′

2
(1 + i) ⇒ δ = k−1

0

√
2

εµ′′ ,

where k0 = ω
√
ε0µ0 is the free space wave number.

Using (1) and d � δ finally gives us a third condition√
ε

2µ′′ � 1 ⇒ µ′′ � ε (3)
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In order to obtain extinction over a broad frequency range, we see from
condition (1) that a frequency dependent permeability with µ′′ ∝ 1/ω
is desirable. This means, analogous to the electric conductivity model,
that the material exhibits a magnetic conductivity σm. A material
with the above characteristics can provide efficient absorption of
electromagnetic energy over a very wide frequency range. Such a design
is sometimes referred to as a magnetic Salisbury screen.

However, magnetic media are often anisotropic, and the
magnetization depends on the magnetic field in a complicated way.
This anisotropy may be an undesired effect since good absorption
for both polarization of the wave is often wanted. Hence, accurate
modeling of magnetic media requires methods that handles anisotropy.

3. EQUATION OF MOTION

In ferromagnetic media, the magnetic moments of the atoms tend to be
aligned with each other in certain directions. This alignment is due to a
strong coupling between the magnetic moments in neighboring atoms.
The precise mechanism of this coupling is not easy to understand,
but may be modeled in a phenomenological way. The dynamics of
the magnetic moment per unit volume, i.e., the magnetization M , is
described by the Landau-Lifshitz-Gilbert (LLG) equation [4, 11, 12]

∂M

∂t
= −γµ0M × Heff + α

M

MS
× ∂M

∂t
(4)

where γ = 1.759 · 1011 C/kg is the gyromagnetic ratio and µ0 is the
permeability of vacuum. The dimensionless factor α is related to
the losses and is typically of the order of α ≈ 0.1. The right hand
side is orthogonal to M , which results in that the magnitude of the
magnetization is preserved, |M | = MS, where MS is the saturation
magnetization. The magnitude of MS is typically in the interval
105 − 2 · 106 A/m [13].

The effective field Heff has several contributions, of which some
are of quite different origin than that of the classical magnetic field
described by the Maxwell equations [4, 6]. Besides from the classical
magnetic field, the effective field takes effects like exchange interactions
and magnetocrystalline anisotropy into account. Since we in this
paper mainly investigate the effect of the large scale periodicity of
the medium, the equation of motion is kept simple by only taking into
account the classical magnetic field.
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4. THE SMALL-SIGNAL PERMEABILITY DYADIC

When the magnetic specimen is subjected to a weak time-varying
magnetic field, Equation (4) may be linearized around the static
solution M0. For this purpose we assume that the classical magnetic
field has one static bias part and one signal part (time convention
e−iωt), with the resulting splitting of the magnetization

H = H0 + H1e−iωt, M = M0 + M1e−iωt (5)

where index 0 corresponds to fields constant in time, and time
harmonic fields are indexed by 1. The magnetization M0 is the static
solution of (4) to an applied static magnetic field H0. The small-
signal magnetic field M1 then represents small deviations from the
static magnetization due to the small-signal field H1. The static
magnetic field also consists of two part: H0 = He

0 + HM0 , where He
0

is an external applied static magnetic field and HM0 is the magnetic
field due to the static magnetization M0. For the special case of a
spheroidal particle immersed in a static homogeneous external field
He

0, the particle is uniformly magnetized, and the total static field
within the particle can be shown to be

H0 = He
0 + HM0 = He

0 − NdM0 (6)

where Nd is the demagnetization tensor for the particle. Letting
M0 = MSm0, where the unit vector m0 is the direction of the static
magnetization, and following the procedure in [6] we obtain a small
signal permeability

µ = µmm0m0 + µt(I − m0m0) + iµgm0 × I (7)

where I is the identity dyadic and the coefficients are

µm(ω) = 1 (8)

µt(ω) = 1 +
β − iαω/ωS

(β − iαω/ωS)2 − (ω/ωS)2
(9)

µg(ω) =
ω/ωS

(β − iαω/ωS)2 − (ω/ωS)2
(10)

with

ωS = γµ0MS (11)

The constant β depends on the shape of the specimen and on the
external bias field He

0. For a thin layer biased in the normal direction
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β = |He
0|/MS − 1 and when biased in the plane β = |He

0|/MS.
Furthermore, from the typical range of values for MS, we see that the
intrinsic precession frequency, fS = ωS/2π, typically is in the range
from 3 to 70 GHz.

5. SPECIAL CASES OF MAGNETIZATION

The approach for achieving a broadband absorber will be to investigate
whether the anisotropic media described by (7) can approximately
mimic the magnetic Salisbury screen. We will review the two special
cases when the static magnetization M0 is either in the normal
direction of the layer surface or in the lateral direction; see Figure 1.
We choose z as the normal direction and (x, y) as lateral directions. It
is also assumed that layer thickness d is much smaller than the lateral
dimensions of the layer.

M0
M0

d

PEC

Figure 1. Two special cases of the static magnetization direction
inside a layer of thickness d. The left figure illustrates the case when
the magnetization is in the normal direction and the right corresponds
to the case of lateral magnetization.

5.1. Normal Magnetization

The reflection properties for this case has been studied in [6] and the
results obtained are briefly summarized here. With a strong enough
bias field He

0 in the normal direction, a static solution M0 = MSẑ
of (4) is obtained. The permeability dyadic (7) then has the following
matrix representation

µ =

(
µt −iµg 0
iµg µt 0
0 0 µm

)
(12)

This small-signal permeability represents a gyrotropic medium and
its invariance under rotations around the z-axis yields the attractive
property that reflection of normally incident plane waves are
unchanged if the layer is rotated around the z-axis. It is well known
that the eigenmodes for propagation along the magnetization direction
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(z-axis) in such a medium correspond to circularly polarized waves.
The eigenvalues of the permeability dyadic corresponding to these
circularly polarized eigenmodes are given by

µ± = µt ± µg (13)

where the different signs correspond to the mode being either right
or left hand circularly polarized. In terms of wave-number and wave-
impedance, each mode experiences an effective permeability given by
its associated eigenvalue. This means, for instance, that left and right
hand circularly polarized waves have different phase velocities.

With the aid of the external bias field He
0, via the parameter

β, the behavior of the material can be altered and it is shown in [6]
that the largest bandwidth is obtained when β → 0, i.e., |He

0| = MS,
whereby the effective permeabilities become

µ± = 1 ± ωS

ω (1 + α2)
+ i

αωS

ω (1 + α2)
(14)

From this we see that the imaginary part of the effective permeabilities
have exactly the frequency dependence required for a broadband
matching using condition (1) and that the losses can be described by
a magnetic conductivity

σm = µ0
α

1 + α2
ωS (15)

Using this expression in (1), we see that in order to obtain a thin
absorber, a large σm is needed. Therefore, large values for the
loss parameter α and the saturation magnetization MS is desirable.
However, for condition (2) to be fulfilled, one can show that the loss
parameter must fulfill

1 � α � ωS

ω
(16)

Hence, for this material to behave approximately as an isotropic
material in a Salisbury screen, unrealistically high values of α are
required and even though they could be realized ω must be exceedingly
smaller than ωS, i.e., well below the microwave region.

Additional disadvantages with this design is that a very strong
external bias field He

0 is needed in order to magnetize the layer in the
normal direction [14, 15]. To obtain a stable static magnetization in
the normal direction a positive β is required, i.e., |He

0| > MS, which
can be difficult to achieve practically. In [6], it is also found that the
reflection properties when β ≈ 0 are very sensitive to changes in β,
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making it difficult to control the material with an external bias field.
Furthermore, only one of the circularly polarized modes will experience
substantial absorption in the material. This is due to the fact that the
LLG equation describes a precessive behavior of the magnetization and
only the mode that works with this precession will be damped in an
efficient way. Hence, when combined into linearly polarized modes, the
co-polarized reflection can be reduced efficiently only by allowing the
cross-polarized reflection to become substantial [6].

5.2. Lateral Magnetization

In the absence of an external bias field it will be energetically favorable
for the magnetization to assume a lateral direction in the layer. The
exact direction of the magnetization can be controlled by a bias field
in the (x, y) plane, forcing the magnetization to align with the bias
field. With a lateral bias field such that M0 = MSx̂ the permeability
dyadic (7) now has the following matrix representation

µ =

(
µm 0 0
0 µt −iµg

0 iµg µt

)
(17)

with β = |He
0|/MS. In this case, the eigenmodes associated with a

normally incident plane wave are linearly polarized. The mode with
the magnetic field in the x-direction is not affected by the parameters
in the LLG-equation, and thus can not be treated for absorption as
described in this paper. The other mode experiences the effective
permeability [16, p. 459]

µeff = µt − µ2
g/µt (18)

We once again examine the case when β → 0, i.e., |He
0| → 0, whereby

µg(ω) = − ωS

(1 + α2)ω
, µt(ω) = 1 +

iαωS

(1 + α2)ω
= 1 − iαµg (19)

Introducing t = − 1
αµg

and assuming t � 1 we obtain

µ′
eff ≈ 1 − 1

α2
, µ′′

eff ≈ 1
t

(
1 +

1
α2

)
=

ωS

αω
� 1 (20)

where µeff = µ′
eff + iµ′′

eff . From this it is seen that if t � 1, then
condition (1), (2) and, quite likely, also condition (3) approximately
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hold, regardless of the value of α. The condition t � 1 is equivalent
with

ω � α

1 + α2
ωS (21)

Thus, for small enough frequencies this material behaves approxi-
mately as the desired material in a Salisbury screen, no matter what
value α assumes. Unfortunately, this only applies for one of the po-
larizations. However, unlike the previous case of magnetization in the
normal direction, no bias field is required in order to obtain β = 0 and
thus fulfilling the Salisbury conditions.

We also note from (20) that for t � 1, the magnetic conductivity
becomes

σm = µ0
ωS

α
(22)

Once again returning to (1), we find that for this case a large saturation
magnetization MS but a small loss parameter α is needed in order to
obtain a thin absorber. However, to obtain good absorption in the high
frequency range a large α is desirable, as seen from (21). Hence, thin
absorbers may have difficulties in performing well in the high frequency
range.

6. PERIODICALLY ROTATING LATERAL
MAGNETIZATION

The results in the previous section implies that for realistic values on
the loss parameter α and the external bias field He

0, an approximation
to the magnetic Salisbury screen that provides good absorption over a
wide frequency range can be obtained only for the laterally magnetized
medium and then only for one of the linearly polarized eigenmodes.
Inspired by that case, we consider using a lateral magnetization that
varies periodically. The hypothesis is to cancel out the anisotropy
associated with the magnetization direction and thus achieving decent
absorption for both polarizations.

We assume that M0 is periodic in the x-direction, with the
following dependence

M0 = MS

[
cos

(
2πx
a

)
x̂ + sin

(
2πx
a

)
ŷ

]
(23)

where a is the periodicity, the width of the unit cell. As before,
|M0| = MS, but the direction now changes along the x-direction; see
Figure 2.
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x

y

a

Figure 2. One period in an approximation to a layer with the
magnetization (23). Thin homogeneously magnetized stripes with
progressively changing magnetization.

The static fields H0 and M0 must simultaneously satisfy the
LLG-equation and the static Maxwell equations with the appropriate
boundary conditions [15, p. 27]. These combined equations are
typically nonlinear and difficult to solve even numerically. Thus in
general one cannot specify M0, but instead has to solve a non-linear
boundary value problem to find stable periodic solutions. To avoid
this, (23) is tacitly considered as a qualified guess, and the resulting
fields will be determined in order to see the deviation from the ideal
case.

Assume that the layer is between 0 < z < d, with a PEC surface
at z = d and air in the region z < 0. With πd/a � 1, i.e., a very thin
layer compared with its periodicity, one can show that to first order in
πd/a the magnetic field inside a layer is given by (see Appendix A)

H0 =MS

[
−πd

a
cos

(
2πx
a

)
x̂ +

2π
a

(
z− d

2

)
sin

(
2πx
a

)
ẑ

]
, 0 <z <d (24)

In the limit d → 0 we obtain H0 = 0 (assuming He
0 = 0). Thus, in

this limit (23) and (24) satisfy both the LLG-equation and the static
Maxwell equations, and for πd/a � 1 this solution will be assumed
to hold approximately. Also, again we obtain the case β = 0 and the
simplified expressions (19) for µg and µt.

Introduce φ = 2πx/a, the direction-angle of M0 measured from
the +x-axis, and a local coordinate system rotated around the z-axis
so that the local x-direction is along M0. In this local system the
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permeability tensor is given by

µ′ =

(
µm 0 0
0 µt −iµg

0 iµg µt

)
(25)

Using a similarity transformation we obtain the following heteroge-
neous permeability tensor in the main coordinate system

µ(φ(x)) = R−1µ′R =
µm cos2 φ + µt sin2 φ (µm − µt) sinφ cosφ iµg sinφ

(µm − µt) sinφ cosφ µm sin2 φ + µt cos2 φ −iµg cosφ
−iµg sinφ iµg cosφ µt


 (26)

where

R =

( cosφ sinφ 0
− sinφ cosφ 0

0 0 1

)
(27)

7. PROPAGATION IN A LATERALLY PERIODIC
ANISOTROPIC LAYER

In [17], this problem is solved in detail for isotropic media, whereas
the case of bianisotropic media is merely outlined. Here we fill in
some details for the magnetically anisotropic case where the relative
permeability µ(x) is periodic in the x-direction. Although it is
reasonable to assume that also the permittivity dyadic is in general
periodic, we restrict this study to magnetic parameters only, wherefore
the relative permittivity is assumed to be isotropic and homogeneous
i.e., ε = εI.

7.1. Fundamental Equation

In cartesian components, the time-harmonic Maxwell’s equations ∇×
E = iωµ0µH and ∇× H = −iωε0εE, become

∂Ez

∂y
− ∂Ey

∂z
= iωµ0(µ11Hx + µ12Hy + µ13Hz) (28)

∂Ex

∂z
− ∂Ez

∂x
= iωµ0(µ21Hx + µ22Hy + µ23Hz) (29)

∂Ey

∂x
− ∂Ex

∂y
= iωµ0(µ31Hx + µ32Hy + µ33Hz) (30)
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and
∂Hz

∂y
− ∂Hy

∂z
= −iωε0εEx (31)

∂Hx

∂z
− ∂Hz

∂x
= −iωε0εEy (32)

∂Hy

∂x
− ∂Hx

∂y
= −iωε0εEz (33)

respectively. Using (30) and (33), the z-components of the fields
become

Ez =
i

ωε0ε

(
∂Hy

∂x
− ∂Hx

∂y

)
(34)

Hz = µ−1
33

[ −i
ωµ0

(
∂Ey

∂x
− ∂Ex

∂y

)
− µ31Hx − µ32Hy

]
(35)

Inserting this into (28), (29), (31) and (32), we obtain

∂Ex

∂z
=iωµ0[(µ21 − µ23µ

−1
33 µ31)Hx + (µ22 − µ23µ

−1
33 µ32)Hy]

+µ23µ
−1
33

(
∂Ey

∂x
− ∂Ex

∂y

)
+

∂

∂x

{
i

ωε0ε

(
∂Hy

∂x
− ∂Hx

∂y

)}
(36)

∂Ey

∂z
=−iωµ0

[
(µ11 − µ13µ

−1
33 µ31)Hx + (µ12 − µ13µ

−1
33 µ32)Hy

]
−µ13µ

−1
33

(
∂Ey

∂x
− ∂Ex

∂y

)
+

∂

∂y

{
i

ωε0ε

(
∂Hy

∂x
− ∂Hx

∂y

)}
(37)

∂Hx

∂z
=−iωε0εEy+

∂

∂x

{
µ−1

33

[ −i
ωµ0

(
∂Ey

∂x
−∂Ex

∂y

)
−µ31Hx−µ32Hy

]}
(38)

∂Hy

∂z
=iωε0εEx+

∂

∂y

{
µ−1

33

[ −i
ωµ0

(
∂Ey

∂x
− ∂Ex

∂y

)
−µ31Hx−µ32Hy

]}
(39)

Assume an incident plane wave with the transversal wave-vector
components

k0x = k0 sin θ cosϕ, k0y = k0 sin θ sinϕ (40)

where θ and ϕ are the polar and azimuthal angles of incidence.
The tangential fields are expanded into the following Fourier-series
(Floquet-modes)

Ei(x, y, z) = ei(k0xx+k0yy)
∞∑

n=−∞
ei,n(z)ein 2π

a
x, i = x, y (41)
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Hi(x, y, z) = ei(k0xx+k0yy)
∞∑

n=−∞
hi,n(z)ein 2π

a
x, i = x, y (42)

The expansions are truncated at n = ±N and the coefficients are
collected into the vectors

ēi(z) =


ei,−N (z)

...
ei,N (z)


 , h̄i(z) =


hi,−N (z)

...
hi,N (z)


 , i = x, y (43)

From this we can rewrite (36)–(39) into a system of ordinary differential
equations for the expansion coefficients (the fundamental equation)

d
dz

(
ē
h̄

)
=

(
W11 W12

W21 W21

) (
ē
h̄

)
, ē =

(
ēx

ēy

)
, h̄ =

(
h̄x

h̄y

)
(44)

The matrices Wij are determined by Fourier-expansions of the
components of µ as well as the tangential derivatives; detailed
expressions are given in Appendix B.

7.2. Reflection

In this case, when the material is homogeneous in the z-direction, the
propagator that maps the fields from the plane z = z1 to the plane
z = z2 becomes [18]

P(z2, z1) = eW(z2−z1) (45)

and the mapping from the rear surface to the front surface thus
becomes (

ē(0)
h̄(0)

)
= P(0, d)

(
ē(d)
h̄(d)

)
≡

(
Pee Pem

Pme Pmm

) (
ē(d)
h̄(d)

)
(46)

With a PEC surface at z = d, we have ē(d) = 0 whereby (46) simplifies
into

ē(0) = Pemh̄(d) (47)

h̄(0) = Pmmh̄(d) (48)

In the region z < 0, a wave-splitting is applied whereby the fields are
divided into ±z-propagating TM- and TE-modes, with respect to the
plane of incidence. Particularly, at the front surface we obtain(

ē+(0)
ē−(0)

)
=

1
2

(
Φ ZΦ
Φ −ZΦ

) (
ē(0)
h̄(0)

)
(49)
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where

ē+ =
(
ē+
TM
ē+
TE

)
, ē− =

(
ē−TM
ē−TE

)
(50)

Here Φ is a rotation matrix in the azimuthal direction and Z is an
impedance matrix, containing the mode impedances for the Floquet-
modes; see Appendix B.

The reflection coefficient matrix, r, which relates the incident and
reflected tangential electric fields, is defined from the relation

ē− ≡ rē+ (51)

and since the tangential fields are continuous across the surface z = 0,
insertion of (47) and (48) into (49) and the usage of (51) yield

ē+ =
1
2
(ΦPem + ZΦPmm)h̄(d) (52)

rē+ =
1
2
(ΦPem − ZΦPmm)h̄(d) (53)

wherefrom elimination of h̄(d) and the arbitrariness of ē+ yield

r = (ΦPem − ZΦPmm)(ΦPem + ZΦPmm)−1 (54)

Since for the TM-modes, only the tangential projections of the electric
field enters (51), the complete reflection coefficients are found by
applying the corresponding back-projections on the components of
r [17].

8. NUMERICAL REFLECTION RESULTS FOR A
PERIODIC LAYER

The incoming plane wave that propagates in the +z-direction, with
transversal wave-number given by (40), appears in the coefficients
e+
TM,0 and e+

TE,0, for the fundamental mode (for n �= 0 we have
e+
TM,n = e+

TE,n = 0). The reflected fundamental modes appear in e−TM,0

and e−TE,0. Extracting the appropriate elements from the reflection
matrix r, we obtain the following 2× 2 reflection coefficient matrix for
the fundamental modes(

ē−TM,0

ē−TE,0

)
=

(
rTMTM,0 rTMTE,0

rTETM,0 rTETE,0

) (
ē+
TM,0

ē+
TE,0

)
(55)
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For the special case of normal incidence (θ = 0), the division into TM-
and TE-modes is ambiguous since both modes become TEM. We then
choose the polarizations of the modes such that their electric fields are
in the x- and y-directions, respectively and denote TM(TE) by X(Y ).

In Figure 3 and Figure 4 we examine the reflection coefficients for
different angles of incidence for a specific choice of material parameters.
Besides from the desired case β = 0, we have in Figure 3 also included
the influence of a small perturbation β = 0.05. For normal incidence we
see from Figure 3(a) that rXX and rYY are quite equal in magnitude
and between 0.8 and 4 GHz they are for β = 0 below −20 dB. The
curves are not completely identical since the structure is periodic in
the x-direction but constant in the y-direction. No cross-polarization
was observed, within the numerical accuracy, i.e., rXY = rYX = 0.

For oblique incidence the reflection coefficients rTMTM and rTETE

are no longer equal but still quite good broad band absorption is
achieved and the cross polarization levels (not shown) remain below
−20 dB for all frequencies. However, the results are very sensitive
to disturbances in β for both angles of incidence, which means that
such an absorber is unstable to small perturbing magnetic fields.
Furthermore, from Figure 4 it is seen that the reflection coefficients
are fairly independent of the azimuthal angle, i.e., the material behaves
approximately as if isotropic. From the discussion following (22) we
might expect that a decrease in the layer thickness d needs to be
accompanied by an increase in the saturation magnetization MS or

0.5 1 1.5 2 2.5 3 3.5 4
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency/GHz

R
ef

le
ct

io
n/

dB

r
XX,0

r
YY,0

β=0 

β=0.05 

0.5 1 1.5 2 2.5 3 3.5 4
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency/GHz

R
ef

le
ct

io
n/

dB

r
TMTM,0

r
TETE,0

β=0 

β=0.05 

(a) (b)

Figure 3. Reflection for different angles of incidence. The PEC-
backed layer has a periodicity a = 1 ·10−1 m, thickness d = 4.5 ·10−3 m,
α = 0.1,MS = 5 · 105 A/m and an isotropic permittivity ε = 5. The
maximum mode number N = 26. (a) θ = 0◦, ϕ = 0◦. (b) θ = 30◦,
ϕ = 0◦.
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Figure 4. Curves of constant reflection (in dB) at 2 GHz with the
polar coordinate in the radial direction. The PEC-backed layer has a
periodicity a = 1 · 10−1 m, thickness d = 4.5 · 10−3 m, α = 0.1,MS =
5 · 105 A/m, β = 0 and an isotropic permittivity ε = 5. The maximum
mode number N = 26. (a) rTMTM, 0. (b) rTETE, 0.
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Figure 5. Reflection at normal incidence for different material
parameters. The PEC-backed layer has a periodicity a = 1 · 10−1 m,
thickness d = 2.5 · 10−3 m, and an isotropic permittivity ε = 5. The
maximum mode number N = 26. (a) α = 0.05, MS = 5 · 105 A/m. (b)
α = 0.1, MS = 1 · 106 A/m.

a decrease in the loss parameter α, in order to maintain low reflection
for normal incidence. Indeed, this behavior is confirmed in Figure 5,
which displays two variations of the design used in Figure 3(a) for
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a reduced thickness: one changes only α, and one changes only MS.
Simultaneously increasing or decreasing α and MS resulted in poorer
results. However, in agreement with (21), when decreasing α we see
from Figure 5(a) that the absorption at higher frequency is worse than
in Figure 5(b) were α remains unchanged and MS is increased. Thus,
in terms of band width, it seems preferable to increase MS rather than
decreasing α when reducing the thickness of the absorber. Further, the
results remain sensitive to small changes in β, and no cross polarization
was observed. From Figure 6 we once again infer that the material
is approximately isotropic. Also note that, for all cases of oblique
incidence, the TM mode appears to have the best absorption.
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Figure 6. Curves of constant reflection (in dB) at 3.2 GHz with the
polar coordinate in the radial direction. The PEC-backed layer has a
periodicity a = 1 · 10−1 m, thickness d = 2.5 · 10−3 m, α = 0.1,MS =
1 · 106 A/m, β = 0 and an isotropic permittivity ε = 5. The maximum
mode number N = 26. (a) rTMTM, 0. (b) rTETE, 0.

Finally, here we have only considered the fundamental modes even
though higher order modes start to propagate (in the −z-direction)
within the frequency range investigated; in the numerical examples, at
3 GHz for normal incidence and below that for oblique incidence. For
incidence in the xz-plane it may happen that a higher order mode is
reflected in the opposite direction of the incoming wave. However,
upon examination, the reflection coefficients for these higher order
modes proved to remain below the −20 dB level at all the frequencies
presented here.
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9. DISCUSSIONS AND CONCLUSIONS

The numerical examples indicate that composites and laminated films
based on ferro- and ferrimagnetic media having a large saturation
magnetization are possible candidates for thin absorbers operating
in the lower microwave region. Unfortunately, they appear to be
quite sensitive to perturbations in the parameter β, i.e., to perturbing
magnetic fields. To understand this consider moderate values of α.
Then high losses in µt implies (cf. (19)) ω � αωS. In the general
expressions (9), we see that β has minor influence if βωS � αω, i.e.,

β � α2,

a condition that can be very difficult to reach uniformly within a layer.
Apart from being sensitive to deviations from β = 0, a periodically

rotating lateral magnetization can “average out” the influence of
anisotropy. Particularly, for normal incidence, with a layer of only
a few millimeters in thickness, quite equal reflection coefficients for
both polarizations with levels below −20 dB are obtained for several
octaves. For oblique incidence the reflection coefficients are different
for the two polarizations, but almost independent of the azimuthal
angle of incidence. Still, rather good absorption is achieved for several
octaves up to 30◦ in the polar angle for both polarizations. However,
when the wavelength of the incident wave is of the same order as the
periodicity of the magnetization, i.e., λ ≈ a, we can no longer expect
the material to behave as if isotropic, which is seen from Figure 6. Also,
at these frequencies the higher order modes will most likely affect the
isotropic behavior of the fundamental mode. Thus, in order to avoid
these effects the absorber should be designed to operate for wavelengths
λ > a.

A limitation of the numerical method is that for large n, the
mode wave-numbers in the z-direction becomes kz,n ≈ in2π/a. Hence,
the higher order evanescent modes will exhibit strong exponential
growth/decay, resulting in ill-conditioned matrices. For thick layers,
this may reduce the truncation number N considerably. However, in
this paper where relatively thin layers are considered, the number of
Floquet-modes used seems to be sufficient for the numerical results to
converge before the matrices become ill-conditioned. As we have only
considered a single-periodic layer, the trade-off between convergence
and ill-conditionality must be re-examined in any extension of the
present method to double-periodic layers. Securing the condition λ > a
by reducing the periodicity a the condition πd/a � 1 can be violated
(even though the layer still is thin in terms of the wavelength, d � λ).
In such a case, the numerical propagator method described becomes
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inapplicable, and one must consider another method, like for example
homogenizing the medium in the lateral directions [19].

In the present study we have overlooked the nonlinear
magnetostatic problem that has to be solved in order to find the stable
solutions of the static magnetization M0. In general, one then ends up
with a static magnetization varying in the z-direction as well, and with
all its cartesian components non-zero [7, 8]. The permeability tensor
in (26) will then be stratified, i.e., with an additional z-dependence.
The stratified case can be solved by replacing the matrix exponential
in (45) by numerical integration of Equation (44), which makes the
method computationally slower, but the implementation is straight
forward [16].

In summary, our results confirm that a periodical arrangement
of the magnetization can lead to a desired property, in this case
“isotropic” reflection of the fundamental mode. Hence, the concept of
a periodically changing medium has potential usefulness when applied
to other kinds of anisotropic, or even bianisotropic, media.

Furthermore, in this investigation we have only considered planar
layers. It is also of interest to investigate weather the method of a
lateral magnetization that varies periodically can be used to obtain an
“isotropic” reflection from layers of more complex geometries designed
as conformal to the surface. For example, the simplest non planar
geometries are perhaps cylindrical structures. Applying a lateral
periodically varying magnetization which is periodic along the cylinder
will result in a RCS that is independent of the azimuthal angle. On
the other hand applying a periodicity of the magnetization a long the
azimuthal direction will result in a whole number of periods around
the cylinder and an interaction with the cylindrical eigenmodes. The
number of periods/turn will then most likely be crucial to the RCS
dependence on the azimuthal angle. Typically a small period compared
to the wavelength is required for the cylinder to behave approximately
as isotropic.

APPENDIX A. THE MAGNETIC FIELD INSIDE A
PERIODICALLY MAGNETIZED LAYER

Here, we present how the expression (24) for the field inside the layer
is obtained from the expression (23) for the static magnetization. The
method is general, and can thus be used for other forms of periodic
static magnetizations.

The continuous variation in the static magnetization M0 gives
rise to the magnetic volume charge density ρm = −∇ · M0, and at
surfaces where M0 varies discontinuously there will be a magnetic
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surface charge density σm = n̂21 · (M0,1 − M0,2).
Introducing a periodic Green’s function G(x, z;x′, z′) fulfilling(

∂2

∂x2
+

∂2

∂z2

)
G

(
x, z;x′, z′

)
= −δ

(
x− x′

)
δ
(
z − z′

)
(A1)

G
(
x + a, z;x′, z′

)
= G

(
x, z;x′, z′

)
(A2)

the periodic scalar magnetic potential is determined as

Ψ0(x, z) =
∫ a

0
dx′

∫ ∞

−∞
dz′G

(
x, z;x′, z′

)
ρm

(
x′, z′

)
+

∫
C
dl′G

(
x, z;x′, z′

)
σm

(
x′, z′

)
(A3)

where C denotes the set of surfaces (in one unit cell) where M0 is
discontinuous.

Expanding G(x, z;x′, z′) into the Fourier series

G
(
x, z;x′, z′

)
=

∞∑
n=−∞

gn

(
z;x′, z′

)
e−

i2πnx
a (A4)

it follows that(
∂2

∂x2
+

∂2

∂z2

)
G

(
x, z;x′, z′

)
=

∞∑
n=−∞

(
d2gn

dz2
− n24π2

a2
gn

)
e−

i2πnx
a (A5)

Similarly, expanding the x-part of the Dirac-delta function into a
Fourier series:

δ
(
x− x′

)
=

∞∑
n=−∞

{
1
a

∫ a

0
δ
(
x− x′

)
e

i2πnx
a dx

}
e−

i2πnx
a

=
1
a

∞∑
n=−∞

e
i2πnx′

a e−
i2πnx

a (A6)

it follows, from (A1), (A5), (A6) and the orthogonality of the Fourier
terms, that

d2gn

dz2
− n24π2

a2
gn = −1

a
e

i2πnx′
a δ

(
z − z′

)
, n = −∞ . . .∞ (A7)

Let g+
n and g−n be the solutions to (A7) in the regions z > z′ and z < z′,

respectively. At z = z′, the Dirac-delta term yields a step-discontinuity
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in dgn

dz while gn becomes continuous. Hence, one obtains the boundary
conditions

g+
n

(
z′;x′, z′

)
= g−n

(
z′;x′, z′

)
(A8)

dg+
n

dz
(
z′;x′, z′

)
− dg−n

dz
(
z′;x′, z′

)
= −1

a
e

i2πnx′
a (A9)

For n = 0, one obtains

g+
0 = A+

0 + B+
0 z = A+

0 +
B+

0 + B−
0

2
z +

B+
0 −B−

0

2
z (A10)

g−0 = A−
0 + B−

0 z = A−
0 +

B+
0 + B−

0

2
z − B+

0 −B−
0

2
z (A11)

The common term B+
0 +B−

0
2 z gives rise to a homogeneous field with

sources at z = ±∞, and since this kind of field is absent we have
B−

0 = −B+
0 , whereby (A9) yields

B+
0 = − 1

2a
, B−

0 =
1
2a

(A12)

Using (A8), we thus obtain

A−
0 = A+

0 − z′

a

Since any additive constant does not influence the field, we can impose
the additional condition g0(z′;x′, z′) = 0, which yields A+

0 = −A−
0 = z′

2a
whereby

g0

(
z;x′, z′

)
= −|z − z′|

2a
(A13)

For n �= 0 we disregard solutions giving rise to fields that grow without
bound when |z| → ∞. Hence

g+
n = A+

n e−
2π|n|z

a , g−n = A−
n e

2π|n|z
a , (A14)

for which (A8) and (A9) yield

A+
n =

1
4π |n|e

i2πnx′
a e

2π|n|z′
a , A−

n =
1

4π |n|e
i2πnx′

a e−
2π|n|z′

a (A15)

Collecting all terms, the Fourier expansion of the periodic Green’s
function becomes

G
(
x, z;x′, z′

)
=−|z − z′|

2a
+

1
4π

∑
n�=0

1
|n|e

− i2πnx
a e

i2πnx′
a e−

2π|n||z−z′|
a (A16)
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Finally, since the Green’s function is real valued, the expansion is
rewritten to

G
(
x, z;x′, z′

)
= −|z − z′|

2a
+

1
2π

∞∑
n=0

1
n

[
cos

(
2πnx
a

)
cos

(
2πnx′

a

)

+ sin
(

2πnx
a

)
sin

(
2πnx′

a

)]
e−

2πn|z−z′|
a (A17)

In our particular problem, we have

M0(x) = MS

[
cos

(
2πx
a

)
x̂ + sin

(
2πx
a

)
ŷ

]
, 0 < z < d,

with M0 = 0 elsewhere, which yields

ρm(x) = −∇ · M0 =
2π
a
M sin

(
2πx
a

)
, 0 < z < d, (A18)

σm(z = 0) = −ẑ ·M0 = 0, σm(z = d) = ẑ ·M0 = 0, and ρm = σm = 0
elsewhere.

By using (A3), we thus obtain

Ψ0(x, z)=
MS

2
sin

(
2πx
a

) ∫ d

0
e−

2π|z−z′|
a dz′

=
MSa

2π
sin

(
2πx
a

)



sinh
(
πd
a

)
e−

2π
a (z− d

2 ), z > d

1−e−
πd
a cosh

(
2π
a

(
z − d

2

))
, 0<z<d

sinh
(

πd
a

)
e

2π
a (z− d

2 ), z < 0

(A19)

from which H0 = −∇Ψ0 becomes

H0,x(x, z)=MS cos
(

2πx
a

)



− sinh
(

πd
a
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2π
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(
2π
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(
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− sinh
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e
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(A20)

H0,y(x, z)=0 (A21)

H0,z(x, z)=MS sin
(

2πx
a

)



sinh
(
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πd
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(
2π
a

(
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− sinh
(
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)
e

2π
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2 ), z < 0

(A22)
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Assuming that πd
a � 1, i.e., a thin layer, and including the first order

terms, the field inside the magnetized layer becomes

H0 ≈ MS

[
−πd

a
cos

(
2πx
a

)
x̂ +

2π
a

(
z − d

2

)
sin

(
2πx
a

)
ẑ

]
(A23)

APPENDIX B. EXPRESSIONS FOR THE MATRICES
USED IN THE SCATTERING ANALYSIS

The sub-matrices in the fundamental Equation (44) are given by

W11 =

(
−ik0yp6 − ik ip7k − ik

ik0yp1 − ik0yI −ip1k − ik0yI

)
(B1)

W12 =




iωµ0p8 + i
k0y

ωε0ε
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1
ωε0ε

kk

−iωµ0p2 + i
k0y

ωε0ε
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ωε0ε
k


 (B2)

W21 =


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−i
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ωµ0
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33 k
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33 k
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where
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...
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with
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0
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kx,n = k0x + n
2π
a

(B11)

The rotation matrix Φ transforms between the main coordinate
system and the plane of incidence, with respect to which the TM- and
TE-type Floquet-modes in the free space region are defined:

Φ =





cosϕ−N · · · 0

...
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...
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(B12)

where
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y0

)1/2
, sinϕn =
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k2

x,n + k2
y0

)1/2
(B13)

The impedance matrix Z gives the relation between the tangential
fields of the Floquet-modes in the free space region:

Z =


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where

ZTM,n = η0
kz,n

k0
, ZTE,n = η0

k0

kz,n
(B15)
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{(
k2

0 − k2
x,n − k2

y0

)1/2
, when k2

x,n + k2
y0 ≤ k2

0

i
(
k2
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y0 − k2

0

)1/2
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x,n + k2
y0 > k2

0
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