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Abstract—This paper talks about the adiabatic parameter dynamics
of Gaussian and super-Gaussian optical solitons that propagate
through dispersion-managed optical fibers. These parameter dynamics
are useful in further study of various aspects of optical solitons,
including the quasi-particle theory of optical solitons, collision induced
timing jitter, the four-wave mixing and various other features. These
perturbation terms and its corresponding adiabatic dynamics also
can be used to study the aspects of ghost pulses and the effects of
randomness in dispersion-managed optical fibers.
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1. INTRODUCTION

The propagation of solitons through optical fibers has been a
major area of research given its potential applicability in all optical
communication systems [1–30]. The field of telecommunications has
undergone a substantial evolution in the last couple of decades due to
the impressive progress in the development of optical fibers, optical
amplifiers as well as transmitters and receivers. In a modern optical
communication system, the transmission link is composed of optical
fibers and amplifiers that replace the electrical regenerators. But the
amplifiers introduce some noise and signal distortion that limit the
system capacity. Presently the optical systems that show the best
characteristics in terms of simplicity, cost and robustness against the
degrading effects of a link are those based on intensity modulation with
direct detection (IM-DD). Conventional IM-DD systems are based on
non-return-to-zero (NRZ) format, but for transmission at higher data
rate the return-to-zero (RZ) format is preferred. When the data rate is
quite high, soliton transmission can be used. It allows the exploitation
of the fiber capacity much more, but the NRZ signals offer very high
potential especially in terms of simplicity [9].

There are limitations, however, on the performance of optical
system due to several effects that are present in optical fibers and
amplifiers. Signal propagation through optical fibers can be affected by
group velocity dispersion (GVD), polarization mode dispersion (PMD)
and the nonlinear effects. The chromatic dispersion that is essentially
the GVD when waveguide dispersion is negligible, is a linear effect that
introduces pulse broadening generates intersymbol interference. The
PMD arises due the fact that optical fibers for telecommunications
have two polarization modes, in spite of the fact that they are called
monomode fibers. These modes have two different group velocities
that induce pulse broadening depending on the input signal state of
polarization. The transmission impairment due to PMD looks similar
to that of the GVD. However, PMD is a random process as compared to
the GVD that is a deterministic process. So PMD cannot be controlled
at the receiver. Newly installed optical fibers have quite low values of
PMD that is about 0.1 ps/

√
km.

The main nonlinear effects that arises in monomode fibers are the
Brillouin scattering, Raman scattering and the Kerr effect. Brillouin is
a backward scattering that arises from acoustic waves and can generate
forward noise at the receiver. Raman scattering is a forward scattering
from silica molecules. The Raman gain response is characterized by low
gain and wide bandwidth namely about 5 THz. The Raman threshold
in conventional fibers is of the order of 500 mW for copolarized pump
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and Stokes’ wave (that is about 1 W for random polarization), thus
making Raman effect negligible for a single channel signal. However, it
becomes important for multichannel wavelength-division-multiplexed
(WDM) signal due to an extremely wide band of wide gain curve.

The Kerr effect of nonlinearity is due to the dependence of the fiber
refractive index on the field intensity. This effect mainly manifests as
a new frequency when an optical signal propagates through a fiber. In
a single channel the Kerr effect induces a spectral broadening and the
phase of the signal is modulated according to its power profile. This
effect is called self-phase modulation (SPM). The SPM-induced chirp
combines with the linear chirp generated by the chromatic dispersion.
If the fiber dispersion coefficient is positive namely in the normal
dispersion regime, linear and nonlinear chirps have the same sign
while in the anomalous dispersion regime they are of opposite signs.
In the former case, pulse broadening is enhanced by SPM while in
the later case it is reduced. In the anomalous dispersion case the
Kerr nonlinearity induces a chirp that can compensate the degradation
induced by GVD. Such a compensation is total if soliton signals are
used.

If multichannel WDM signals are considered, the Kerr effect
can be more degrading since it induces nonlinear cross-talk among
the channels that is known as the cross-phase modulation (XPM).
In addition WDM generates new frequencies called the Four-Wave
mixing (FWM). The other issue in the WDM system is the collision-
induced timing jitter that is introduced due to the collision of solitons
in different channels. The XPM causes further nonlinear chirp that
interacts with the fiber GVD as in the case of SPM. The FWM is a
parametric interaction among waves satisfying a particular relationship
called phase-matching that lead to power transfer among different
channels.

To limit the FWM effect in a WDM it is preferable to operate
with a local high GVD that is periodically compensated by devices
having an opposite sign of GVD. One such device is a simple optical
fiber with opportune GVD and the method is commonly known as
the dispersion-management. With this approach the accumulated
GVD can be very low and at the same time FWM effect is strongly
limited. Through dispersion-management it is possible to achieve
highest capacity for both RZ as well as NRZ signals. In that case
the overall link dispersion has to be kept very close to zero, while
a small amount of chromatic anomalous dispersion is useful for the
efficient propagation of a soliton signal. It has been demonstrated
that with soliton signals, the dispersion-management is very useful
since it reduces collision induced timing jitter [3] and also the pulse
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interactions. It thus permits the achievement of higher capacities as
compared to the link having constant chromatic dispersion [9, 28].

2. GOVERNING EQUATIONS

The relevant equation, for studying the propagation of solitons through
polarization-preserving optical fibers, is the nonlinear Schrödinger’s
equation (NLSE) with damping and periodic amplification [1]. In the
dimensionless form, the NLSE is given by

iuz +
D(z)

2
utt + |u|2u = −iΓu + i

[
eΓza − 1

] N∑
n=1

δ(z − nza)u (1)

Here, Γ is the normalized loss coefficient, za is the normalized
characteristic amplifier spacing and z and t represent the normalized
propagation distance and the normalized time, respectively, while u
represents the wave profile expressed in the nondimensional units.

Also, D(z) is used to model strong dispersion management. The
fiber dispersion D(z) is decomposed into two components namely a
path-averaged constant value δa and a term representing the large rapid
variation due to large local values of the dispersion [2]. Thus,

D(z) = δa +
1
za

∆(ζ) (2)

where ζ = z/za. The function ∆(ζ) is taken to have average zero over
an amplification period namely

〈∆〉 =
1
za

∫ za

0
∆

(
z

za

)
dz = 0 (3)

so that the path-averaged dispersion D will have an average δa namely

〈D〉 =
1
za

∫ za

0
D(z)dz = δa (4)

The proportionality factor in front of ∆(ζ), in (2), is chosen so that
both δa and ∆(ζ) are quantities of order one. In practical situations,
dispersion management is often performed by concatenating together
two or more sections of given length with different values of fiber
dispersion. In the special case of a two-step map it is convenient to
write the dispersion map as a periodic extension of [2]

∆(ζ) =




∆1 : 0 ≤ |ζ| < θ

2

∆2 :
θ

2
≤ |ζ| < 1

2

(5)
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where ∆1 and ∆2 are given by

∆1 =
2s
θ

(6)

and

∆2 = − 2s
1 − θ

(7)

with the map strength s defined as

s =
θ∆1 − (1 − θ)∆2

4
(8)

Conversely,

s =
∆1∆2

4(∆2 − ∆1)
(9)

and

θ =
∆2

∆2 − ∆1
(10)

∆1

1

1- θ/2

1/2-1

∆2

- θ/2-1+θ/2

-1/2

0 ζ

∆(ζ)

Figure 1. Schematic diagram of a two-step dispersion map.

A typical two-step dispersion map is shown in the following figure. The
solution to (1) is chosen of the form u(z, t) = P (z)q(z, t), for real P .
Taking P to satisfy

Pz + ΓP −
[
eΓza − 1

] N∑
n=1

δ(z − nza)P = 0 (11)
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(1) transforms to

iqz +
D(z)

2
qtt + g(z)|q|2q = 0 (12)

where

g(z) = P 2(z) = a2
0e

−2Γ(z−nza) (13)

for z ∈ [nza, (n + 1)za) and n > 0 and also

a0 =
[

2Γza

1 − e−2Γza

] 1
2

(14)

so that over each amplification period

〈g(z)〉 =
1
za

∫ za

0
g(z)dz = 1 (15)

Thus, in equation (12), qz represents the evolution term, while the
sec- ond term is the dispersion term and the third term represents
the Kerr law nonlinearity. The optical soliton is the result of a
delicate balance between dispersion and nonlinearity. Equation (12) is
commonly known as the Dispersion-Managed Nonlinear Schrodinger’s
equation (DM-NLSE) and it governs the propagation of a dispersion-
managed soliton through an optical fiber with damping and periodic
amplification [2–4, 9].

3. POLARIZATION PRESERVING FIBERS

In a polarization preserved optical fiber, the propagation of solitons is
governed by DM-NLSE given by (12). If D(z) = g(z) = 1 in (12), the
NLSE is recovered. It is possible to integrate NLSE by the method of
Inverse Scattering Transform (IST) and thus the NLSE falls into the
category of S-integrable partial differential equations [15]. The IST is
the nonlinear analog of Fourier transform that is used for solving linear
partial differential equations. Moreover, the NLSE has an infinite
number of conserved quantities. However, (12), as it appears, is no
longer integrable and thus it does not belong to IST picture. Now, it
is assumed that the solution of (12) is given by a chirped pulse of the
form [3, 4, 6]

q(z, t) = A(z)f [B(z) {t− t̄(z)}]
exp

[
iC(z) {t− t̄(z)}2 − iκ(z) {t− t̄(z)} + iθ(z)

]
(16)
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where f represents the shape of the pulse. Also, here the parameters
A(z), B(z), C(z), κ(z), t̄(z) and θ(z) respectively represent the soliton
amplitude, the inverse width of the pulse, chirp, frequency, the center
of the pulse and the phase of the pulse.

3.1. Integrals of Motion

Equation (12) does not contain an infinite number of integrals of
motion as in the case of NLSE that gives classical solitons. In fact,
there are as few as two of them. They are energy (E), also known as
the L2 norm, and linear momentum (M) that are respectively given
by [2, 3]

E =
∫ ∞

−∞
|q|2dt =

A2

B
I0,2,0,0,0,0,0,0 (17)

and

M =
i

2
D(z)

∫ ∞

−∞
(q∗qt − qq∗t )dt = −κD(z)

A2

B
I0,2,0,0,0,0,0,0 (18)

where these conserved quantities are evaluated by using the pulse form
that is given by (16). Also, the following notation is introduced for
nonnegative integers pj for 1 ≤ j ≤ 8.

Ip1,p2,p3,p4,p5,p6,p7,p8

=
∫ ∞

−∞
τp1fp2(τ)

(
df

dτ

)p3
(

d2f

dτ2

)p4
(

d3f

dτ3

)p5
(

d4f

dτ4

)p6

(
d5f

dτ5

)p7
(

d6f

dτ6

)p8

dτ (19)

The Hamiltonian that is given by

H=
1
2

∫ ∞

−∞

(
D(z)|qt|2 − g(z)|q|4

)
dt

=
D(z)

2

(
A2BI0,0,2,0,0,0,0,0+4

A2C2

B3
I2,2,0,0,0,0,0,0+

κ2A2

B
I0,2,0,0,0,0,0,0

)

−g(z)
2

A4

B
I0,4,0,0,0,0,0,0 (20)

is however not a conserved quantity unless D(z) and g(z) are constants
in which case one encounters infinitely many conserved quantities.
However, in the context of optical solitons, Hamiltonian plays an
important role and is therefore studied [28].
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3.2. Parameter Dynamics

The soliton parameters that were introduced in the previous subsection
are now defined as [28]

κ(z) =
i

2
D(z)

∫ ∞

−∞
(qq∗t − q∗qt) dt∫ ∞

−∞
|q|2dt

(21)

C(z) =
i

∫ ∞

−∞
t (qq∗t − q∗qt) dt∫ ∞

−∞
t2|q|2dt

(22)

B̄(z) =

∫ ∞

−∞
t2|q|2dt∫ ∞

−∞
|q|2dt

(23)

t̄(z) =

∫ ∞

−∞
t |q|2 dt∫ ∞

−∞
|q|2dt

(24)

where B̄ is defined as the root-mean-square (RMS) width of the soliton.
In case of DM solitons, the alternately varying dispersion as seen in (2)
and (5), makes the soliton breathe periodically. Thus, the soliton width
does not stay constant although the energy of the soliton does. Hence,
the RMS width is used in the analytical study of DM solitons. From
these definitions, one can derive the variations of the soliton frequency,
chirp, RMS-width as

dκ

dz
= 0 (25)

dC

dz
= D(z)

(
I0,0,2,0,0,0,0,0

I2,2,0,0,0,0,0,0
B4 − 12C2 +

I0,2,0,0,0,0,0,0

I2,2,0,0,0,0,0,0
κ2B2

)

−g(z)A2B2 I0,4,0,0,0,0,0,0

I2,2,0,0,0,0,0,0
(26)

dB̄

dz
= −4D(z)

C

B

I2,2,0,0,0,0,0,0

I0,2,0,0,0,0,0,0
(27)
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Also, the velocity of the soliton is given by given by

v =
dt̄

dz
= −κD(z) (28)

4. PULSE TYPES

In this section, Equation (12) will be studied based on the observation
that it supports well-defined chirped soliton solution whose shape is
close to that of a Gaussian [1, 3]. These pulses deviate from classical
solitons. However, Gaussian pulses have relatively broad leading and
trailing edges. As one may expect, dispersion-induced broadening
is sensitive to steepness of soliton edges. In general, a soliton with
leading and trailing edges broadens more rapidly as it propagates
since such a pulse has a wider spectrum to start with. Pulses emitted
by directly modulated semiconductor lasers fall in this category and
cannot generally be approximated by a Gaussian soliton. A hyper-
Gaussian, also known as a super-Gaussian (SG) soliton can be used
to model the effects of steep leading and trailing edges on dispersion-
induced pulse broadening [5].

4.1. Gaussian Pulses

For a pulse of Gaussian type, f(τ) = e−τ2/2. Then, the conserved
quantities respectively reduce to

E =
∫ ∞

−∞
|q|2dt =

A2

B

√
π (29)

M =
i

2
D(z)

∫ ∞

−∞
(q∗qt − qq∗t ) dt = −κD(z)

A2

B

√
π (30)

while the Hamiltonian is

H =
1
2

∫ ∞

−∞

[
D(z)|qt|2 − g(z)|q|4

]
dt

=
√

πA2

4B3

{
D(z)

(
B4 − 2κ2B2 + 4C2

)
−

√
2g(z)A2B2

}
(31)

The variations of the chirp and the RMS-width reduce to

dC

dz
= D(z)

(
B4 + κ2B2 − 12C4

)
−

√
2g(z)A2B2 (32)

and
dB̄

dz
= −2CD(z)

B
(33)
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Figure 2. Breathing Gaussian
soliton.
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Figure 3. RMS-width variation
of a Gaussian soliton.

In Figure 2, the breathing Gaussian soliton is seen, while in Figure 3,
the variation of the RMS width of a Gaussian soliton is plotted.

4.2. Super-Gaussian Pulses

For SG pulses, f(τ) = e−τ2m/2 with m ≥ 1 where the parameter
m controls the degree of edge sharpness. With m = 1, the case of
a chirped Gaussian pulse is recovered while for larger values of m
the pulse gradually becomes square shaped with sharper leading and
trailing edges [5]. In Figure 4 below, one can see the shapes of the
pulses as the parameter m varies.
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Figure 4. SG solitons for various values of “m”.
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For a SG pulse the integrals of motion respectively are

E =
∫ ∞

−∞
|q|2dt =

A2

mB
Γ

(
1

2m

)
(34)

M =
i

2
D(z)

∫ ∞

−∞
(q∗qt − qq∗t ) dt = −κD(z)

A2

mB
Γ

(
1

2m

)
(35)

while the Hamiltonian is

H =
1
2

∫ ∞

−∞

[
D(z)|qt|2 − g(z)|q|4

]
dt

=
A2

B

[
D(z)

{
2C2

mB2

(
3

2m

)
+

mB2

2
Γ

(
3

2m

)
− κ2

2m
Γ

(
1

2m

)}

−g(z)
A2

2m2
1

2m

Γ
(

1
2m

)]
(36)

The variations of the chirp and the RMS width in this case are given
by

dC

dz
= D(z)

(
m2B4 − 12C4 + m2κ2B2

)
− g(z)

A2B2

2
1

2m

Γ
(

1
2m

)

Γ
(

3
2m

) (37)

and

dB̄

dz
= −4CD(z)

B

Γ
(

3
2m

)

Γ
(

1
2m

) (38)

In Figures 5 and 6, one can see the profile of a breathing SG soliton
and the variation of the RMS width of the SG soliton.

5. SOLITON PERTURBATION

In presence of perturbation terms, the perturbed NLSE is given by

iqz +
D(z)

2
qtt + g(z)|q|2q = iεR [q, q∗] (39)

where R represents the spatio-differential operator, although some-
times it could, very well, represent an integral operator. Also, the
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Figure 5. Breathing SG soliton.
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Figure 6. RMS-width variation
of SG soliton.

perturbation parameter ε is the relative width of the spectrum and
0 < ε � 1 by virtue of quasi-monochromaticity. In presence of these
perturbation terms given by (39), the adiabatic variation of soliton
parameters are given by

dE

dz
= ε

∫ ∞

−∞
(q∗R + qR∗) dt (40)

From (21)–(23), one can obtain

dκ

dz
=

εD(z)
E

[
i

∫ ∞

−∞
(q∗t R−qtR

∗) dt− κD(z)
∫ ∞

−∞
(q∗R+qR∗) dx

]
(41)

dC

dz
= D(z)

(
I0,0,2,0,0,0,0,0

I2,2,0,0,0,0,0,0
B4 − 12C2 +

I0,2,0,0,0,0,0,0

I2,2,0,0,0,0,0,0
κ2B2

)

−g(z)A2B2 I0,4,0,0,0,0,0,0

I2,2,0,0,0,0,0,0
+

4ε
I2,2,0,0,0,0,0,0

CB3

A2

∫ ∞

−∞
t2(q∗R+qR∗)dx

+
iε

I2,2,0,0,0,0,0,0

B3

A2

[
2
∫ ∞

−∞
t(q∗t R−qtR

∗) dt+
∫ ∞

−∞
(q∗R−qR∗)dx

]
(42)

dB̄

dz
= −4D(z)

C

B

I2,2,0,0,0,0,0,0

I0,2,0,0,0,0,0,0
+

ε

E

∫ ∞

−∞
t2 (q∗R + qR∗) dx (43)

Using the definitions given by (24) for the perturbed DM-NLSE (39),
one gets the velocity change for the perturbed soliton as

v =
dt̄

dz
= κD(z) +

ε

E

∫ ∞

−∞
t (q∗R + qR∗) dt (44)
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5.1. Examples

In this paper, the following perturbation terms that are considered,
are all exhaustively studied in the context of fiber optics and optical
solitons [2–4, 9, 12, 16, 17, 21, 28–30].

R = δ |q|2p q + αqt + βqtt − γqttt + λ
(
|q|2q

)
t
+ ν

(
|q|2

)
t
q

+ρ |qt|2 q − iξ
(
q2q∗t

)
t
− iηq2

t q
∗ − iζq∗

(
q2

)
tt
− iµ

(
|q|2

)
t
q

−iχqtttt − iψqtttttt + (σ1q + σ2qt)
∫ t

−∞
|q|2ds (45)

In (45), δ is the coefficient of nonlinear damping or amplification [5]
depending on its sign and p could be 0, 1, 2. For p = 0, δ is the
linear amplification or attenuation according to δ being positive or
negative. For p = 1, δ represents the two-photon absorption (or a
nonlinear gain if δ > 0). If p = 2, δ gives a higher order correction
(saturation or loss) to the nonlinear amplification-absorption. Also,
β is the bandpass filtering term [6]. In (45), λ is the self-steepening
coefficient for short pulses [5] (typically ≤ 100 femto seconds), ν is
the higher order dispersion coefficient [5]. Here µ is the coefficient
of Raman scattering [5, 6] and α is the frequency separation between
the soliton carrier and the frequency at the peak of EDFA gain [6].
Moreover, ρ represents the coefficient of nonlinear dissipation induced
by Raman scattering [7]. The coefficients of ξ, η and ζ arise due to
quasi-solitons [9]. The integro-differential perturbation terms with σ1

and σ2 are due to saturable amplifiers [5, 6].
The coefficients of the higher order dispersion terms are

respectively given by γ, χ and ψ. It is known that the NLSE, as
given by (1), does not give correct prediction for pulse widths smaller
than 1 picosecond. For example, in solid state solitary lasers, where
pulses as short as 10 femtoseconds are generated, the approximation
breaks down. Thus, quasi-monochromaticity is no longer valid and so
higher order dispersion terms come in. If the group velocity dispersion
is close to zero, one needs to consider the third and higher order
dispersion for performance enhancement along trans-oceanic and trans-
continental distances. Also, for short pulse widths where group velocity
dispersion changes, within the spectral bandwidth of the signal cannot
be neglected, one needs to take into account the presence of higher
order dispersion terms. This reasoning leads to the inclusion of the
fourth and sixth order dispersion terms that are respectively given by
the coefficients of χ and ψ. For these perturbation terms, the adiabatic
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parameter dynamics are given as

dE

dz
=

2εA2

B5

[
δA2pB4I0,2p,0,0,0,0,0,0

−βB4
(
4C2I2,2,0,0,0,0,0,0 + κ2B2I0,2,0,0,0,0,0,0 + B4I0,0,2,0,0,0,0,0

)
+A2B4

(
4C2I2,4,0,0,0,0,0,0 + κ2BI

0,4,0,0,0,0,0,0 + B4I0,2,2,0,0,0,0,0

)
−2ξA2B4C (I0,4,0,0,0,0,0,0+2I1,3,1,0,0,0,0,0)+ηA2B4CI1,3,1,0,0,0,0,0

−2ζA2B4C (2I0,4,0,0,0,0,0,0 − 5I1,3,1,0,0,0,0,0)

+4χC
{
B6 (2I1,1,0,0,1,0,0,0 + 3I0,1,0,1,0,0,0,0)

−3κ2B4 (2I1,1,1,0,0,0,0,0 + I0,2,0,0,0,0,0,0)

−4B2C2 (2I3,1,1,0,0,0,0,0 + 3I2,2,0,0,0,0,0)
}

+4ψC
{
6B8I1,1,0,0,0,0,1,0 + 15B6I0,1,0,0,0,0,1,0 − 4B8I1,0,0,1,1,0,0,0

−9B6I0,0,1,0,1,0,0,0 − 9B8I0,0,0,2,0,0,0,0

−3κ2B7 (11I1,1,0,0,1,0,0,0 + 63I0,1,0,1,0,0,0,0)

+4B4C2 (9I1,0,1,1,0,0,0,0 − 11I3,1,0,0,1,0,0,0 − 63I2,1,0,1,0,0,0,0)

+30B4
(
κ4 − 12C2

)
I1,1,1,0,0,0,0,0+15B4

(
κ4−4C2

)
I0,2,0,0,0,0,0,0

−120κ2B2C2 (2I3,1,1,0,0,0,0,0 + 3I2,2,0,0,0,0,0,0)

+48C4 (2I5,1,1,0,0,0,0,0 + 5I2,2,0,0,0,0,0,0)
}

+σ2A
2B4

∫ ∞

−∞
f
df

dτ

(∫ τ

−∞
f2 (τ1) dτ1

)
dτ

]
(46)

dκ

dz
=

2εD(z)
B4I0,2,0,0,0,0,0,0

[
βκ

{
B6 (I0,0,2,0,0,0,0,0 − I0,1,0,1,0,0,0,0)

+8B2C2I2,2,0,0,0,0,0,0

}
+ 2γC

{
B6 (3I0,0,2,0,0,0,0,0 + I0,0,1,1,0,0,0,0

−I1,1,0,0,1,0,0,0) + 2κ2B4 (3I0,0,2,0,0,0,0,0 + I0,0,1,1,0,0,0,0)

+4B2C2(2I3,1,1,0,0,0,0,0+3I2,2,0,0,0,0,0,0)
}
−4ξκA2B4CI0,4,0,0,0,0,0,0

−8ρκA2B2C2I2,4,0,0,0,0,0,0 + 2µA2B6I0,2,2,0,0,0,0,0

+4 (λ + ν)A2B4CI1,3,1,0,0,0,0,0−(8ξ−η+6ζ)κA2B4CI1,3,1,0,0,0,0,0

+4χκC
{
2B6 (3I1,0,1,1,0,0,0,0 + 3I0,0,2,0,0,0,0,0 − I1,1,0,0,1,0,0,0)

−B4 (2I1,1,1,0,0,0,0,0 + I0,2,0,0,0,0,0,0)

−8B2C2 (2I3,1,1,0,0,0,0,0 + 3I2,2,0,0,0,0,0,0)
}

+2ψκC
{
B8 (2I0,1,0,0,0,1,0,0 − 9I0,0,0,2,0,0,0,0 − 6I1,1,0,0,0,0,1,0

+4I1,0,0,1,1,0,0,0 + 53I0,0,1,0,1,0,0,0 − 40I1,0,1,0,0,1,0,0)
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−κ2B6 (13I1,1,0,0,1,0,0,0 + 180I1,0,1,1,0,0,0,0

+216I0,1,0,1,0,0,0,0 + 6I0,0,2,0,0,0,0,0)

+36B4C2 (I3,1,0,0,1,0,0,0 − 20I3,0,1,1,0,0,0,0 + I1,0,1,1,0,0,0,0

−17I2,1,0,1,0,0,0,0 − 10I2,0,2,0,0,0,0,0)

+15B4
(
κ4 − C2

)
(2I1,1,1,0,0,0,0,0 + I0,2,0,0,0,0,0,0)

−80κ2B2C2 (2I3,1,1,0,0,0,0,0 + 3I2,2,0,0,0,0,0,0)

−192C4 (2I5,1,1,0,0,0,0,0 + 5I4,2,0,0,0,0,0,0)
}

+σ2κA
2B4

∫ ∞

−∞
f
df

dτ

(∫ τ

−∞
f2dτ1

)
dτ

]
(47)

dC

dz
=

D(z)
I0,0,2,0,0,0,0,0

(
B4I0,0,2,0,0,0,0,0 − 12C4 + κ4B2I0,2,0,0,0,0,0,0

)
−g(z)A2B2 I0,4,0,0,0,0,0,0

I2,2,0,0,0,0,0,0
+

2εB3

I2,2,0

[
8δA2pC

B3
I0,2p+2,0,0,0,0,0,0

+A2B (ξ + 2η) (2I1,2,1,1,0,0,0,0 + I0,3,0,1,0,0,0,0)

+2A2B(2ξ+η+2ζ)I1,1,3,0,0,0,0,0+ A2B(4ξ+η+2ζ)I0,2,2,0,0,0,0,0

−κA2

B
(4λ + 4ν + ξκ− ηκ + 3ζκ) I1,3,1,0,0,0,0,0

+
κA2

B
(λ+3ξκ−κη)I0,4,0,0,0,0,0,0−

8A2C

B3
(2ξ−2η−3ζ)I3,3,1,0,0,0,0,0

+A2
(
7ρκ2 − ηC + 6ζC

)
I2,4,0,0,0,0,0,0

+
ρA2C

B5

(
8B4I2,4,0,0,0,0,0,0 + 3C2I4,4,0,0,0,0,0,0

)
+γκ (2BI1,1,0,0,1,0,0,0 + 6I1,0,1,1,0,0,0,0 − 3I0,1,0,1,0,0,0,0)

+
8βC

B
(I2,1,0,1,0,0,0,0 − I2,0,2,0,0,0,0 − I1,1,1,0,0,0,0,0)

+
1
B

(
ακI0,2,0,0,0,0,0,0 − 4γκ3I1,1,1,0,0,0,0,0 − 2βCI0,2,0,0,0,0,0,0

)
+

γ

B

(
κ3 + 6κ2C − 4C2

)
I0,2,0,0,0,0,0,0

−2γκC
B3

(5I2,2,0,0,0,0,0,0 + 28CI3,1,1,0,0,0,0,0)

−4βC

B5

(
8C2I4,2,0,0,0,0,0,0+κ2B2CI2,2,0,0,0,0,0,0+3κ2B2I2,2,0,0,0,0,0,0

)
+

χ

B5

{
2B8I1,0,1,0,0,1,0,0 + B8I0,1,0,0,0,1,0,0 + 2B3I0,0,1,0,1,0,0,0

+2κ2B6I1,1,0,0,1,0,0,0 − 6κ2B5I1,0,1,1,0,0,0,0 − 3κ2B5I0,1,0,1,0,0,0,0
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+B4
(
64C2I3,1,0,0,1,0,0,0 − 48C2I3,0,1,1,0,0,0,0

+72C2I2,1,0,1,0,0,0,0 + 96C2I2,0,2,0,0,0,0,0

)
−6B4

(
κ4 + 12C2

)
I1,1,1,0,0,0,0,0 + B4

(
κ4 − 12C2

)
I0,2,0,0,0,0,0,0

−240κ2B2C2I3,1,1,0,0,0,0,0 − 168κ2B2C2I2,2,0,0,0,0,0,0

−16C4 (8I5,1,1,0,0,0,0,0 + 23I4,2,0,0,0,0,0,0)
}

+
ψ

B7

{
2I1,0,1,0,0,0,0,1 + I0,1,0,0,0,0,0,1 + 12κ2B10I1,1,0,0,0,0,1,0

−30κB10I1,0,1,0,0,1,0,0−15κ2B10I0,1,1,0,0,0,1,0+96B8C2I3,1,0,0,0,0,1,0

−120B8C2I3,0,1,0,0,1,0,0+180B8C2I2,1,0,0,0,1,0,0+160B8C2I2,0,1,0,1,0,0,0

−40B8
(
κ4 + 6C2

)
I1,1,0,0,0,1,0,0 + 712B8C2I2,0,0,2,0,0,0,0

+8B8
(
15κ4 − 2C2

)
I1,0,1,1,0,0,0,0 − 15B8

(
κ4 + 12C2

)
I0,1,0,1,0,0,0,0

−288B7
(
κ4 + 32C2

)
I0,0,2,0,0,0,0,0 − 1440κ2B6C2I3,1,0,0,1,0,0,0

−2880κ2B6C2I3,0,1,1,0,0,0,0 − 2520κ2B6C2I2,1,0,1,0,0,0,0

+2κ2B6
(
5κ4 − 252C2

)
I1,0,1,0,0,0,0,0 + 360κ2B6C2I2,0,2,0,0,0,0,0

−κ2B6
(
κ4 − 36C2

)
I0,2,0,0,0,0,0,0 + 4320κ2B2C4I5,1,1,0,0,0,0,0

+7440κ2B2C4I4,2,0,0,0,0,0,0+64C6(22I7,1,1,0,0,0,0,0+59I6,2,0,0,0,0,0,0)

+4B4C2
(
480C2I5,0,1,1,0,0,0,0 − 320C2I5,1,0,0,0,0,0,0

−1380C2I4,1,0,1,0,0,0,0 + 165κ4I2,2,0,0,0,0,0,0 + 1164C2I4,0,2,0,0,0,0,0

+210κ4I3,1,1,0,0,0,0,0 − 1128C2I3,1,1,0,0,0,0,0−276C2I2,2,0,0,0,0,0,0

)}
−2σ1κA

2

B3

∫ ∞

−∞
τf2(τ)

(∫ τ

−∞
f2 (τ1) dτ1

)
dτ

−2σ2A
2C

B3

∫ ∞

−∞
τf2(τ)

(∫ τ

−∞
f2 (τ1) dτ1

)
dτ

]
(48)

dB̄

dz
=−4D(z)

C

B

I2,2,0,0,0,0,0,0

I0,2,0,0,0,0,0,0
+

2ε
I0,2,0,0,0,0,0,0B6

[
A2pB4I2,2p+2,0,0,0,0,0

+βB2
(
B4I2,1,0,1,0,0,0,0 − κ2B2CI2,2,0,0,0,0,0,0 − 4C2I4,2,0,0,0,0,0,0

)
+ρA2B2

(
4C2I4,4,0,0,0,0,0,0 + B4I2,2,2,0,0,0,0,0 + κ2B2I2,4,0,0,0,0,0,0

)
−γκB4C (I2,2,0,0,0,0,0,0 + 2I3,1,1,0,0,0,0,0)

+A2B4C {2 (η − ξ) I3,3,1,0,0,0,0,0 + (2ζ − ξ) I2,4,0,0,0,0,0,0}
+4χ

{
B6C (2I3,1,0,0,1,0,0,0 + 3I2,1,0,1,0,0,0,0) − 2κB7I1,1,0,0,1,0,0,0

−3κ2B6 (2I3,1,1,0,0,0,0,0 + I2,2,0,0,0,0,0,0)

−4B2C3 (2I5,1,1,0,0,0,0,0 + 3I4,2,0,0,0,0,0,0)
}
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+2ψ
{
3B8C (2I3,1,0,0,0,0,1,0 + 5I2,1,0,0,0,1,0,0 + 3I2,0,0,2,0,0,0,0)

−30κ2B6C (2I3,1,0,0,1,0,0,0 − 3I2,1,0,1,0,0,0,0)

−40B4C3 (2I5,1,0,0,1,0,0,0 + 9I4,1,0,1,0,0,0,0)

+15B4C
(
κ4−4C2

)
I2,2,0,0,0,0,0,0+30B4C

(
κ4−12C2

)
I3,1,1,0,0,0,0,0

+48C5 (2I7,1,1,0,0,0,0,0 + 5I6,2,0,0,0,0,0,0)

+40κ2
(
C3I5,1,1,0,0,0,0,0 + 9B2I6,2,0,0,0,0,0,0

)}
+σ2A

2B5

∫ ∞

−∞
τ2f

df

dτ

(∫ τ

−∞
f2dτ1

)
dτ

]
(49)

while, the velocity change is given by

v=−κD(z)+
2ε

B4I0,2,0,0,0,0,0,0

[
αB4I1,1,1,0,0,0,0,0 + 4βκB2CI2,2,0,0,0,0,0,0

+γB2
{
12C2 (I2,2,0,0,0,0,0,0 + I3,1,1,0,0,0,0,0) −B4I1,1,0,0,1,0,0,0

}
−4ρκA2B2CI2,4,0,0,0,0,0,0 + 2κA2B4(ξ − η + 4ζ)I3,1,1,0,0,0,0,0

+A2B4(3λ + 2ν)I3,1,1,0,0,0,0,0 + 4χB2
{
κ3B2I1,1,1,0,0,0,0,0

−κB4I1,1,0,0,1,0,0,0+12κC2(I2,2,0,0,0,0,0,0+I3,1,1,0,0,0,0,0+I2,2,0,0,0,0,0,0)
}

+2ψκ
{
10κ2B6I1,1,0,0,1,0,0,0 − 3B8I1,1,0,0,0,0,1,0 − 3κ4I1,1,1,0,0,0,0,0

+12B5C2 (10I3,1,0,0,1,0,0,0 + 21I2,1,0,1,0,0,0,0 + 6I2,0,2,0,0,0,0,0

+21I1,1,1,0,0,0,0,0) − 120κ2B2C2 (I1,3,1,1,0,0,0,0 + I2,2,0,0,0,0,0,0)

−240C4 (I5,1,1,1,0,0,0,0 + 2I4,2,0,0,0,0,0,0)
}

+σ1A
2B2

∫ ∞

−∞
τf2(τ)

(∫ τ

−∞
f2 (τ1) dτ1

)]
(50)

5.2. Gaussian Pulses

For a pulse of Gaussian type, the adiabatic parameter dynamics reduce
to

dE

dz
=

ε
√

2πA2

4B3

[
4
√

2δA2pB3

√
p + 1

+6
√

2ψB2C
(
2B4 − 93κ2B2+42C2

)
−A2B2C (4ξ+η + 26ζ)

+ρA2
(
B4 + 4κ2B2 + 4C2

)
− 2

√
2β

(
B4 + 2κ2B2 + 4C2

)
−4

√
2σ2A

2B2

∫ ∞

−∞
τe−τ2

(∫ τ

−∞
e−τ2

1 dτ1

)
dτ

]
(51)
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dκ

dz
=−εD(z)

4B2

[
8βκB

(
B4 + 4C2

)
+ 2

√
2µA2B4

−8
√

2ρκA2C2−4
√

2(λ + ν)A2B2C−(8ξ+η − 6ζ)
√

2κA2B2C

+4ψκC
(
1566B3C2 + 561κ2B4 − 321B6

)
−8

√
πσ2κA

2B2

∫ ∞

−∞
τe−τ2

(∫ τ

−∞
e−τ2

1 dτ1

)
dτ

]
(52)

dC

dz
=D(z)

(
B4 + κ2B2 − 12C4

)
−

√
2g(z)A2B2

+4εB3

[
4δA2pC

B3(p + 1)
3
2

−
√

2A2B

16
(3ξ + η + 12ζ) +

9
√

2ρA2C3

4B5

+
√

2A2

8B
(
8λκ + 4νκ + 6ρC + 13ξκ2 − 5ηκ2 − 3ζκ2

)
+

ακ

B
+

√
2A2C

4B3

(
7ρκ2 + 6ξC − 8ηC + 3ζC

)
− β

B5

{
2B5C + 24C3 − 2κ2B2C(C + 3)

}
+

γ

B3

{
22κC + B3

(
3κ3 + 6κ2C − 4C2

)}
+

χ

2B5

(
3B8+36κ2B6+384B4C2+8κ4B4+192κ2B2C2−72C4

)
− ψ

4B7

(
45B12+210κ2B10+288B8C2+228κ4B8+15408κ2B6C2

+24κ6B6+9792B4C4+1200κ4B4C2+10080κ2B2C4+8640C6
)

−2σ1κA
2

√
πB3

∫ ∞

−∞
τe−τ2

(∫ τ

−∞
e−τ2

1 dτ1

)
dτ

−2σ2A
2C√

πB3

∫ ∞

−∞
τe−τ2

(∫ τ

−∞
e−τ2

1 dτ1

)
dτ

]
(53)

dB̄

dz
=−2CD(z)

B
+

ε

8B6

[
8δA2pB4

(p + 1)
3
2

+4βB2
(
B4 − 2κ2B2C − 12C2

)
+ 96χBC

(
B5 + 2κ2B3 + 4C2

)
3ρA2B√

2

(
B5+C2

)
+A2B4C

√
2(ξ−3η+4ζ)+16γB4C

(
κ−B2

)
−12ψC

(
9B6+120κ2B7+720B4C2+450κ4B4+480κ2B2C2+480C4

)
−16σ2A

2B4

√
π

∫ ∞

−∞
τ3e−τ2

(∫ τ

−∞
e−τ2

1 dτ1

)
dτ

]
(54)
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while the velocity change is given by

v=−κD(z) +
ε

4B4

[
16βκB2C − 8αB4

+ρ
√

2κA2BC − 6γB2
(
B4 + 4C2

)
−

√
2(3λ + 2ν)A2B4

−2
√

2(ξ − η + 4ζ)κA2B4 − 8χκB2
(
3B4 + 2κ2B2 + 12C2

)
+6ψκ

(
15B8+12κ2B6+96B4C2+4κ4B4+80κ2B2C2+240C4

)
+8

√
πσ1A

2B3

∫ ∞

−∞
τe−τ2

(∫ τ

−∞
e−τ2

1 dτ1

)
dτ

]
(55)

5.3. Super-Gaussian Pulses

For SG pulses, the adiabatic parameter dynamics reduce to

dE

dz
=

2εA2

B5

[
δA2pB4

m(p + 1)
1

2m

Γ
(

1
2m

)
− βB2

m{(
m2B4 + 4C2

)
Γ

(
3

2m

)
+ κ2B2Γ

(
1

2m

)}
+

2γκB4C

m{
2mΓ

(
3

2m

)
−Γ

(
1

2m

)}
+

2ξA2B5C

m2
3

2m

{
2mΓ

(
3

2m

)
−2

1
m Γ

(
1

2m

)}

+
ηA2B5C

2
3

2m

− 2ζA2B5C

m2
3

2m

{
5mΓ

(
3

2m

)
+ 2Γ

(
1

2m

)}

+
ρA2B2

m2
3

2m

{(
m2B4 + 4C2

)
Γ

(
3

2m

)
+ 2

1
m κ2B2Γ

(
1

2m

)}

+
4χC

m

{
8mB2C2Γ

(
3

2m

)
− (2m− 3)Γ

(
3

2m

)
+ Γ

(
1

2m

)}

−2ψB5C

m

{
2m

(
m4B3 + 22m2B2C2 − 48C4

)
Γ

(
7

2m

)
−

(
240C4−240mκ2B2C2−12m2B4C2(3m+32)−33m3κ2B6−41m4

)
Γ

(
5

2m

)
−B2

(
360κ2C2 − 30mB3

(
κ4 − 12C2

)
+36mB2C2(m + 7)− 278m2κ2B4 − 123m3B

)
Γ

(
3

2m

)

−3
(
5B5

(
κ4 − 4C2

)
+ 63mκ2B6 + 12m2

)
Γ

(
1

2m

)}
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−mσ2A
2B3

∫ ∞

−∞
τe−τ2m

(∫ τ

−∞
e−τ2m

1 dτ1

)
dτ

]
(56)

dκ

dz
=

2εD(z)

B4Γ
(

1
2m

) [
βκB2

{
8C2Γ

(
3

2m

)
+ mB4

(
1

2m

)}

+2γC
{
m2B6

(
3Γ

(
3

2m

)
− 2mΓ

(
5

2m

))

−2κ2B4

(
2mΓ

(
3

2m

)
− Γ

(
1

2m

))

−4B2C2

(
2mΓ

(
5

2m

)
− 3Γ

(
3

2m

))}

+
2m2µA2B6

2
3

2m

Γ
(

3
2m

)
− 8mρκA2B2C2

2
3

2m

Γ
(

3
2m

)

−4m(λ + ν)A2B4C

2
3

2m

Γ
(

3
2m

)
+ 4χκC

{
2m2B6

(
3Γ

(
3

2m

)

−2mΓ
(

5
2m

))
+ B4

(
2mΓ

(
3

2m

)
− Γ

(
1

2m

))

+8B2C2

(
2mΓ

(
5

2m

)
− 3Γ

(
3

2m

))}

+2ψκC

{
m2B8

(
42m3Γ

(
7

2m

)

−238m2Γ
(

5
2m

)
+45mΓ

(
3

2m

)
− 3Γ

(
1

2m

))

+mκ2B6

(
193m2Γ

(
5

2m

)
− 441mΓ

(
3

2m

)
+ 216Γ

(
1
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while the velocity change is given by
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These adiabatic parameter dynamics of optical solitons, in presence
of the perturbation terms, are very useful in studying the various
aspects of solitons in nonlinear fiber optics. The collision induced
timing jitter can be studied using these parameter dynamics. Also,
the four-wave mixing problem can be studied and suppressed due to
these perturbation terms. The quasi-particle theory to suppress the
intra-channel collision of optical solitons can be developed by using
the soliton perturbation theory. In fact, these parameter dynamics is
absolutely essential to formulate this theory. The theory of ghost pulses
is also studied using these soliton parameter dynamics. Thus, these
adiabatic parameter dynamics is very essential to study the optical
to increase performance enhancement across trans-oceanic and trans-
continental distances.
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6. CONCLUSIONS

This paper talks about the adiabatic parameter dynamics of dispersion-
managed optical solitons in presence of perturbation terms that are
both local as well as non-local. The adiabatic variation of the energy
and the frequency of the solitons are obtained in this paper along with
the change in the velocity of the soliton. Both Gaussian as well as
super-Gaussian type solitons are considered in this paper.

These results are going to be used for further study of dispersion-
managed solitons. One immediate application of this is in the study
of intra-channel collision of solitons by virtue of quasi-particle theory.
Another application of this is in the issue of Gabitov-Turitsyn equation
in presence of perturbation terms. Such applications will be ventured
in future and the results of those research will be reported in future
publications.
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