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Abstract—The permittivity tensor of an anisotropic material can be
predicted with use of the presented technique. A slab of this substance
possessing infinitesimal thickness is illuminated by a normally incident
plane wave and rigorous expressions for the transmission coefficients
are obtained. The derived formulas are linearly expanded with respect
to the small thickness of the slice, while simple approximations of the
material permittivities are produced by measuring the transmission
coefficients for suitable polarizations. These simplified expressions
provide a physical intuition about the use and the function of the
anisotropy parameters which cannot be achieved via more precise but
also more complex patterns. Some diagrams of the prediction error
with respect to the dielectric constants, the size of the slab and the
operating frequency are included and discussed.

1. INTRODUCTION

Anisotropic materials have been extensively analyzed and studied
during several decades as they can describe successfully real-world
configurations. Additionally, devices incorporating these materials
acquire interesting directionally dependent properties, useful in their
operation. In [1], metallic patches on anisotropic slabs constitute
frequency selective surfaces, while full-wave solution is obtained by
determining the dyadic Green’s function and applying the method of
moments (MoM). Also in [2], the scattering of a radiating strip by an
anisotropic cylinder is studied through solving an integral equation
with nonsingular kernel and the variations of the device’s features
with respect to the anisotropy parameters are shown. Additionally,
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a set of useful equations describing the scattering from an azimuthally
symmetric, radially inhomogeneous anisotropic sphere is presented in
[3] where particular attention is given to the discontinuities leading
to delta functions. The case of multi-layered biaxial anisotropic
configurations has been also examined with the help of FDTD method
[4] where the structure is excited by a Gaussian beam. Moreover,
a microwave cylindrical cavity with an annular slot in the perfectly
conducting walls and an anisotropic dielectric passing through the slot
is studied rigorously for the case of hybrid modes diffraction [5].

As anisotropic materials are so widely utilized, accurate methods
of estimating and measuring their permeability and permittivity
profiles are necessary to be proposed. In [6], the two-dimensional
inverse problem for an inhomogeneous biaxial cylinder is thoroughly
presented and the material parameters are reconstructed by the
knowledge of the scattered field measured outside. Furthermore
in [7], the profile reconstruction of an one-dimensional inhomogeneous
anisotropic medium is made through closed-form expressions obtained
by using Wentzel-Kramers-Brillouin (WKB) approximation. Finally,
in [8] a continuously stratified anisotropic slab under oblique incidence
is considered and the corresponding inverse scattering problem is solved
with help of frequency-domain techniques. In [9], an optimization
approach is used to retrieve the constitutive parameters of a slab
of general bianisotropic medium from the recorded reflection and
transmission data.

In this work, we present a reliable and applicable technique of
estimating the dielectric constants of an anisotropic homogeneous
material. A thin slice of this substance and a single accurate
measurement of the transmission coefficient, suffice to predict the
elements of the permittivity tensor with satisfactory precision. We
assume a slab with infinite transversal dimensions and small thickness
which is illuminated by a normally incident plane wave. The scattered
field is calculated through numerical evaluation of exponential
matrices. However, closed-form analytical formulas are derived
by applying linear approximations with respect to the infinitesimal
thickness of the slab. In this way, simple asymptotic expressions for
the permittivity profiles of the anisotropic material are produced and
explained. The transmission coefficient can be measured successfully
because it is determined by the electric field at each point of the entire
area, not across a restricted area of the considered region.
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2. PROBLEM STATEMENT

Consider a slab (area 1) of thickness W filled with a lossless,
magnetically inert and electrically anisotropic material possessing the
following relative permittivity tensor

ε1 =


 ε1xx ε1xy 0

ε1yx ε1yy 0
0 0 1


 (1)

with real elements. The background medium is vacuum (ε0, µ0) and
the structure is excited by a plane wave normally incident to the slab.
With reference to the Cartesian coordinate system (x, y, z), defined
in Fig. 1, the incident electric field is linearly polarized, not possessing
a longitudinal (z) component, while its vector forms an angle Φ with
x axis. The choice of the axes x and y is arbitrary. The elements of
(1) related to z direction, are unitary (diagonal) or equal to zero (off-
diagonal) which makes no difference because our approach assumes
transverse electromagnetic fields. Moreover, the same form for ε1

is assumed and adopted by many researchers when examining two-
dimensional configurations with directionally dependent properties
[10, 11]. We call the regions z < 0 and z > W as areas 0 and 2
respectively. The time dependence is harmonic with an exp(+jωt)
form, where ω is the circular frequency of the excitation. The notation
k0 = ω

√
ε0µ0 is used for the free-space wavenumber.

The purpose of this work is to find approximate expressions for the
permittivity parameters of area 1 based on measurements performed
outside the slab.

3. MATHEMATICAL FORMULATION

3.1. Rigorous Solution

In this subsection, the plane wave scattering by the anisotropic slab is
solved rigorously. The incident field, taken of unitary magnitude with
no loss of generality, is given by:

E0, inc(z) = (x cos Φ + y sin Φ) exp(−jk0z) (2a)

The reflected and transmitted rays into areas 0 and 2 respectively with
arbitrary magnitudes and suitable propagation directions possess the
following expressions:

E0,ref (z) = (xRx + yRy) exp(jk0z) (2b)
E2(z) = (xTx + yTy) exp(−jk0(z − W )) (2c)
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Figure 1. The physical configuration of the investigated structure.
An anisotropic slab scatters a plane wave normally incident to it.

The electric field inside the anisotropic slab owns a general form
independent from (x, y), due to the symmetry of the structure.

E1(z) = xE1x(z) + yE1y(z) + zE1z(z) (2d)

If one applies the Faraday and Ampere laws to area 1, one notes that
E1z(z) = 0 and obtains a first-order differential linear system with the
solution below: 


E′

1x(z)
E′

1y(z)
E1x(z)
E1y(z)


 = M(z) ·




E′
1x(0)

E′
1y(0)

E1x(0)
E1y(0)


 (3a)
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where:

M(z) = exp{Nz} = exp







0 0 −k2
0ε1xx −k2

0ε1xy

0 0 −k2
0ε1yx −k2

0ε1yy

1 0 0 0
0 1 0 0


 z




(3b)

The derivatives with respect to z in (3a), are proportional to
the tangential magnetic field in area 1 as the permeability of the
anisotropic medium equals µ0. By enforcing the suitable boundary
conditions across the planes z = 0, W , a linear system with respect to
the reflection and transmission coefficients is derived:

A ·




Rx

Ry

Tx

Ty


 = b (4a)

where:

A=



−jk0M11(W ) − M13(W ) −jk0M12(W ) − M14(W ) −jk0 0
−jk0M21(W ) − M23(W ) −jk0M22(W ) − M24(W ) 0 −jk0

−jk0M31(W ) − M33(W ) −jk0M32(W ) − M34(W ) 1 0
−jk0M41(W ) − M43(W ) −jk0M42(W ) − M44(W ) 0 1




(4b)

b=




(M13(W )−jk0M11(W )) cos Φ+(M14(W )−jk0M12(W )) sin Φ
(M23(W )−jk0M21(W )) cos Φ+(M24(W )−jk0M22(W )) sin Φ
(M33(W )−jk0M31(W )) cos Φ+(M34(W )−jk0M32(W )) sin Φ
(M43(W )−jk0M41(W )) cos Φ+(M44(W )−jk0M42(W )) sin Φ




(4c)

The notation Mαβ(z) is used for the corresponding (α, β) element
of well-conditioned matrix M(z). The matrix A of the system is
numerically invertible and thus the transmission coefficients of the
system (varying with polarization angle Φ) Tx(Φ), Ty(Φ) are properly
determined.

3.2. Thin Slab Approximation

In this subsection, a simplified approximate solution for the
transmission coefficients of the investigated system is derived under
the condition that the thickness W of the slab is significantly smaller
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than the nonzero elements of matrix N. More specifically, in case
W → 0, the following linear approximation for the exponential matrix
(3b) is affordable in terms of numerical error:

M(W ) ∼= I + NW (5)

where I is the identity 4 × 4 matrix. This simplification leads to a
linear system similar to (4a)–(4c) which is rigorously solved and yields
the following formulas for Tx(Φ), Ty(Φ):

Tx(Φ)∼=−2j[
k0W (k0W − j)2ε1xy sin Φ + (k0W (1 + ε1yy + k0W
(−k0Wε1yxε1xy + ε1xx(k0W (1 + ε1yy) − 2j))) − 2j) cos Φ

]

−4+k0W (k0W (1+ε1xx+ε1yy+ε1xxε1yy−ε1xyε1yx)−2j(2+ε1xx+ε1yy))
(6a)

Ty(Φ)∼=−2j[
k0W (k0W − j)2ε1yx cos Φ + (k0W (1 + ε1xx + k0W

(−k0Wε1yxε1xy + ε1yy(k0W (1 + ε1xx) − 2j))) − 2j) sin Φ

]

−4+k0W (k0W (1+ε1xx+ε1yy+ε1xxε1yy−ε1xyε1yx)−2j(2+ε1xx+ε1yy))
(6b)

3.3. Formula Inversion

In this subsection, we examine the possibility of determining the
permittivity tensor of the anisotropic material through measurements
of the transmission coefficients. The choice of infinitesimal slab
contributes to this objective as it has three advantages: (I) the formulas
of (6a), (6b) are simple, (II) more small-W asymptotic expressions
can be obtained and (III) the assumption for a structure with infinite
dimensions towards x and y axes can be more easily satisfied for thin
slabs. We are not interested for the reflection coefficients as they vanish
for W → 0 and it is difficult to separate fields of small magnitudes from
an aggregate with substantial values (incident plane wave).

Given the tiny thickness of the anisotropic slice, an additional
linear approximation with respect to W is permitted. In particular,
we take the first-order Taylor expansion of (6a), (6b) at W = 0, in
order to produce more functional expressions.

Tx(Φ) ∼= cos Φ − jk0W
(1 + ε1xx) cos Φ + ε1xy sin Φ

2
(7a)

Ty(Φ) ∼= sin Φ − jk0W
(1 + ε1yy) sin Φ + ε1yx cos Φ

2
(7b)
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It should be stressed that the real parts of Tx(Φ), Ty(Φ) correspond
to absent slab (T 2

x (Φ) + T 2
y (Φ) = 1) and thus are independent

from the permittivity parameters. As a result, the measurement
procedure should be focused on the imaginary parts of the transmission
coefficients which are nonzero even in the case of a real diagonal tensor.
Even though they are small, they are easily discernible from the related
real parts (waves of opposite phases). The problem arises when the
total magnitude of the measured quantity is negligible and that is why
we prefer large Tx(Φ), Ty(Φ).

When Φ = 0, the x component of the transmission coefficient
becomes maximum and simultaneously, the coefficient of ε1xy is
vanishing. Therefore, an x-polarized plane wave is suitable for the
prediction of the corresponding diagonal element of (1):

ε1xx
∼= −1 − 2

k0W
Im [Tx(0)] (8a)

In the same way, the y component of the transmission coefficient is
maximized for Φ = π/2 and through it, the following estimation of
ε1yy is possible:

ε1yy
∼= −1 − 2

k0W
Im [Ty(π/2)] (8b)

By using these approximate formulas (8a) and (8b), similar relations
for ε1xy, ε1yx can be obtained from Tx(Φ), Ty(Φ) with an oblique
polarization giving information for both directions. Particularly for
Φ = π/4, both components are sufficiently large and the following
approximate expressions are derived:

ε1xy
∼= 2

k0W
Im [Tx(0)] − 4√

2k0W
Im [Ty(π/4)] (9a)

ε1yx
∼= 2

k0W
Im [Ty(π/2)] − 4√

2k0W
Im [Tx(π/4)] (9b)

The aforementioned simple formulas provide alternative definitions for
the permittivity tensor elements of the anisotropic material and give
us a physical intuition about their role. In particular, we note that
the parameters ε1xx and ε1yy are mainly affected by the x-polarized
and the y-polarized excitation respectively. Finally, the off-diagonal
quantities ε1xy and ε1yx are derived via studying the scattering of
obliquely polarized waves too.
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4. INDICATIVE RESULTS

4.1. Various Permittivities

In this subsection, we study the variation of the relative error of the
predictions (8a), (8b), (9a) and (9b) with respect to the elements of the
permittivity matrix. The exact values of the transmission coefficients
are computed from the linear system (4a). In Fig. 2(a) we show a
contour plot of the average prediction error (arithmetic mean of the
four absolute errors corresponding to the four unknown elements of the
permittivity tensor) over a rectangular grid of the diagonal elements
ε1xx, ε1yy. As the representation is of qualitative value only, we think
that the scale indicated by color bar is not necessary. It is observed
that the difference between the approximate values and the actual
ones is relatively low when ε1xx

∼= ε1yy which means that the proposed
method is more successful for materials with similar behavior for both
directions. It is also remarkable that the maximum error (white region)
is recorded when ε1yy is close to zero, while minimum difference (black
region) is exhibited for ε1xx → 0.

In Fig. 2(b) the contour plot of the average error is depicted for
variable off-diagonal elements of the permittivity tensor. One can point
out that for negligible ε1xy and significant ε1yx, the estimation error is
high; on the other hand, the approximate permittivity formulas give
more reliable results when ε1xy 	 ε1yx, which could be explained by
the fact that ε1xx > ε1yy in the considered example. In addition, for
increasing ε1xy the prediction error is decaying and the fall is more
significant when ε1yx gets larger. Finally, the difference is substantial
and independent from ε1yx with small ε1xy. It can be also noted that
Fig. 2(b) examines cases of ε1 with badly broken symmetry, while the
real permittivity tensor should be symmetric as indicated in [12]. This
is a true statement but we think that it is worth studying fictitious
materials which can be constructed in the future, violating even the
most fundamental principle; moreover, the diagonals of these graphs
describe currently realizable cases.

4.2. Various Thicknesses

In Fig. 3 we represent the prediction error of the proposed method in
db as function of the electrical thickness of the slab for each element of
the permittivity tensor. We use logarithmic scale at horizontal axis for
demonstration purposes. It is apparent that the difference is increasing
for larger slab thickness which is sensible as the approximation (5) gets
less valid. The significance of this condition is remarked by the linearly
upward sloping curves in logarithmic scale. The estimation errors for
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Figure 2. Contour plots of the estimation error for variable: (a)
diagonal elements of the permittivity tensor with ε1xy = 0.5, ε1yx =
0.5, (b) off-diagonal elements of the permittivity tensor with ε1xx = 3,
ε1yy = 2. Plot parameters: f = 10 MHz, W/λ0 = 10−4.
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Figure 3. The prediction error for each permittivity element as
function of the electrical thickness of the slab. Plot parameters:
f = 10 MHz, ε1xx = 1.5, ε1xy = 0.3, ε1yx = 0.3, ε1yy = 2.5.
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Figure 4. The prediction error for each permittivity element as
function of the operating frequency. Plot parameters: W/λ0 = 10−4,
ε1xx = 2, ε1xy = 0.5, ε1yx = 0.5, ε1yy = 1.
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ε1xy, ε1yx are very different each other even though ε1xy = ε1yx and
this can be attributed to the unequal diagonal elements ε1xx 
= ε1yy.
It seems that the ratio of the off-diagonal over to the corresponding
diagonal element plays a pivotal role in permittivity prediction. On
the other hand, the off-diagonal elements are computed with similar
error although they are quite different.

4.3. Various Frequencies

In Fig. 4 we show the variation of the prediction error induced by
the proposed method as function of the operating frequency with
constant electrical thickness W/λ0 of the slab. It is noteworthy that
for the same electrical size the estimation errors are negatively related
to the oscillation frequency and this is owed to the fact that the
approximation (5) is based on small-W assumption, instead of small-
k0W one.

5. CONCLUSION

A relatively accurate measurement technique for the permittivity
tensor of an electrically anisotropic material is presented. A thin slice
from this substance scatters a normally incident wave of arbitrary
polarization. We consider the Taylor expansion of the rigorous
formulas for small slab thickness, and then simplified approximations of
the permittivities are straightforwardly derived with suitably polarized
excitations. The obtained expressions are both simple providing
physical intuition for the dielectric constants of the material, and
accurate as the transmission coefficients are easily measured.

The described method can be applied to multi-layered isotropic
structures in an attempt to guess the permittivity variation along the
axis of the device. In addition, the normal or oblique ray scattering
by bianisotropic structures could lead to unified formulas covering a
variety of interesting inverse problems of practical interest. Finally,
similar results could be obtained for materials with horizontally
inhomogeneous anisotropy by using Gaussian beam excitation instead
of an incident plane wave.
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