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Abstract—A novel blind Direction of arrival (DOA) and polarization
estimation method for polarization-sensitive uniform circular array
is investigated in this paper. An analysis of the received signal
of the polarization-sensitive uniform circular array shows that the
received signal has trilinear model characteristics, and hence trilinear
decomposition-based blind DOA and polarization estimation for
polarization sensitive uniform circular array is proposed in this paper.
Our proposed algorithm has better DOA and polarization estimation
performance. Our proposed algorithm can be thought of as a
generalization of ESPRIT, and has wider application than ESPRIT
method. The useful behavior of the proposed algorithm is verified by
simulations.

1. INTRODUCTION

Polarization is an important characteristic of the electromagnetic
wave [1–7]. Polarization sensitive antenna arrays have some
inherent advantages over traditional arrays, because they can separate
signals based on their polarization characteristics. Intuitively,
polarization sensitive antenna arrays will provide improved signal
detection performance for signals having different polarization
characteristics. Polarization sensitive arrays are used widely in the
communication, radio and navigation [8–12]. Direction-of-arrival
(DOA) estimation [13–17] is key technique in array signal processing
or polarization sensitive array. The problems of estimating jointly
direction-of-arrival (DOA) and polarization parameters of diversely
polarized multiple cochannel signals have been considered in various
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works [18–29]. There are many joint DOA and polarization estimation
methods, including ESPRIT [19–22], MUSIC [23], Root-MUSIC [24],
cumulants [25], cyclostationarity [26] and others [27–29]. In all of these
methods, the ESPRIT algorithm exploits the invariance properties of
polarization sensitive arrays, including uniform linear array and square
array, so that both angle and polarization estimates may be computed.
In [19], ESPRIT is used to estimate both the arrival directions and
the polarizations of incoming plane waves with a uniform linear array
of crossed dipoles. In [21], ESPRIT algorithm is used with a square
array of crossed dipoles to estimate both the two-dimensional arrival
angles and the polarization of incoming narrowband signals. ESPRIT
is a closed-form eigen structure-based parameter estimation technique
that requires the data to possess certain “invariance” structures. The
direction matrix of uniform circular array does not have Vandermonde
characteristics, rotational invariance model can not be constructed,
and then ESPRIT algorithm fails to work. ESPRIT ideas have
revolutionized sensor array signal processing. Interestingly, a general
principle underlying ESPRIT has flourished independently in other
scientific fields and disciplines, where it is commonly referred to in a
variety of ways, including trilinear model or trilinear decomposition.
Trilinear decomposition-based DOA and polarization estimation for
polarization sensitive uniform circular array is investigated in this
paper.

It is well known that most of signal processing methods are
based on the theory of matrix, or the bilinear model. In general,
matrix decomposition is not unique, since inserting a product of an
arbitrary invertible matrix and its inverse in between two matrix
factors preserves their product. Matrix decomposition can be unique
only if one imposes additional problem-specific structural properties
including orthogonality, Vandermonde, Toeplitz, constant modulus
or finite-alphabet constraints. Compared with the case of matrices,
trilinear model or trilinear decomposition has a distinctive and
attractive feature: it is often unique [30]. The uniqueness of trilinear
decomposition is of great practical significance, which is crucial in
many applications such as psychometrics [31] and chemistry [32–34].
Trilinear decomposition is thus naturally related to linear algebra for
multi-way data. In the signal processing field, trilinear decomposition
can be thought of as a generalization of ESPRIT and joint approximate
diagonalization ideas [35, 36]. Trilinear decomposition is used
widely in blind receiver detection for Direct-sequence code-division
multiple access system [37, 38], array signal processing [39, 40], blind
estimation of Multi-Input-Multi-Output system [41] and blind speech
separation [42].
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Our work links the polarization-sensitive uniform circular array
parameter estimation problem to the trilinear model and derives
a novel blind DOA and polarization estimation. Our proposed
algorithm has better DOA and polarization estimation performance.
The algorithm does not require pilot information and train sequence.
Instead, this method relies on a fundamental result of Kruskal [30]
regarding the uniqueness of low-rank three-way data decomposition.
ESPRIT method is a special case of our proposed algorithm. Our
proposed algorithm is the generalization of ESPRIT. Our proposed
algorithm has wider application than ESPRIT method.

This paper is structured as follows. Section 2 develops the
data model. Section 3 deals with algorithmic issues and discusses
identifiability issues. Section 4 presents simulation results. Section 5
summarizes our conclusions.

Denote: We denote by (.)∗ the complex conjugation, by (.)T the
matrix transpose, and by (.)H the matrix conjugate transpose. The
notation (.)+ refers to the Moore-Penrose inverse (pseudo inverse).
‖ ‖F stands for the matrix conjugate transpose. I is an identity matrix.

2. THE DATA MODEL

We consider an array with sensors at M different locations as shown in
Fig. 1. The location geometry is circular with the radius R. Centered
at each location, there are three orthogonal short dipoles, the x-, y-,
and z-axis dipoles, parallel to the x, y, and z axes, respectively.

x

z

y

Figure 1. Structure of polarization sensitive uniform circular array.

2.1. The Signal Model for Polarization Sensitive Antenna

We begin by considering the polarization of an incoming signal.
Suppose there is an antenna at the origin of a spherical coordinate
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system. Assume that a signal b(t) is arriving from direction θ, ϕ,
where θ is the elevation angle and ϕ is the azimuth angle. Let this
signal be a transverse electromagnetic (TEM) wave, and consider the
polarization ellipse produced by the electric field in a fixed transverse
plane. Polarization parameters are γ, η. We characterize the antenna
in terms of its response to linearly polarized signals in the x, y and
z directions. Let vx be the complex voltage induced at the antenna
output terminals by an incoming electromagnetic signal with a unit
electric field polarized entirely in the x direction. Similarly, let vy,
vz be the output voltages induced by signals with unit electric fields
polarized in the y and z directions, respectively. The total output
voltage from this antenna in response to the electromagnetic signal is

yp(t)=

[
vx

vy

vz

]
=

[ cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ
− sin θ 0

] [
sin γejη

cos γ

]
b(t) = sb(t) (1)

where

s =

[ cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ
− sin θ 0

] [
sin γejη

cos γ

]
(2)

s is the polarization vector, and it relates to the polarization and DOA
information.

2.2. The Signal Model for Polarization Sensitive Array

Assume that a signal b(t) is arriving at the uniform circular array with
M diversely polarized antennas. The received signal of the polarization
sensitive uniform circular array is shown as follows.

y(t) =
[
q0sT, q1sT, . . . , qM−1sT

]T
b(t) = (a ⊗ s) b(t) (3)

where ⊗ stands for Kronecker product; s is the polarization vector,
which is shown in (2). qm = exp(j2πR sin(θ) cos(ϕ − φm)/λ). R is
radius of circular array. φm = 2πm/M . a is the short form of the
direction vector a(θ, φ).

a(θ, ϕ) =




exp(j2πR sin(θ) cos(ϕ− φ0)/λ)
exp(j2πR sin(θ) cos(ϕ− φ1)/λ)

...
exp(j2πR sin(θ) cos(ϕ− φM−1)/λ)


 (4)
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It is assumed that there are K sources impinging the polarization
sensitive circular array, and the space time channel parameters are
constant for L symbols. Define the source matrix B ∈ R

L×K as

B =




b1,1 b2,1 · · · bK,1

b1,2 b2,2 · · · bK,2
...

...
. . .

...
b1,L b2,L · · · bK,L


 (5)

where bk,l is the lth symbol of the kth source.
When K sources impinge the polarization sensitive circular array,

the received signal of the polarization sensitive array is given by

X = [a1 ⊗ s1,a2 ⊗ s2, . . . ,aK ⊗ sK ]BT (6)

where ak and sk are the array direction vector and polarization vector
of the kth source, respectively.

Equation (6) can be denoted as

X = [A ◦ S]BT (7)

where A◦S is Khatri–Rao product. A·S = [a1⊗s1,a2⊗s2 . . .aK⊗sK ],
where ⊗ stands for Kronecker product. ak, sk are the k column of the
matrix A and the matrix S, respectively. A = [a1,a2, . . . ,aK ] ∈
C

M×K is the direction matrix, S = [s1, s2, . . . , sK ] ∈ C
3×K is the

polarization matrix. Eq. (7) can be denoted as

X =




X..1

X..2
...

X..M


 =




SD1(A)
SD2(A)

...
SDM (A)


BT (8)

where Dm(.) is understood as an operator that extracts the mth row of
its matrix argument and constructs a diagonal matrix out of it. X..m

can be denoted as

X..m = SDm(A)BT , m = 1, 2, . . . ,M (9)

X..m is regarded as the mth slice in spatial direction. For ESPRIT
algorithm only uses two slices, like X..1 = SBT and X..2 = SΦBT ,
where Φ is diagonal matrix.

In the presence of noise, the observation model becomes

X̃..m = X..m + V..m = SDm(A)BT + V..m, m = 1, 2, . . . ,M (10)
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where V..m, the 3×L matrix, is the received noise corresponding to
the mth slice.

The signal in Eq. (9) is also denoted through rearrangements

xm, l, p =
K∑

k=1

am,kbl,ksp,k m = 1, . . . ,M ; l = 1, . . . , L; p = 1, 2, 3

(11)

where am,k stands for the (m,k) element of A matrix, and similarly
for the others. The signal in (11) is the trilinear model. The trilinear
model reflects three kinds of diversity available: spatial, temporal and
polarization diversity, as shown in Fig. 2.

P M
Spatial

diversity

Polarization 
diversity

L

Figure 2. Trilinear model of the received signal.

3. BLIND DOA AND POLARIZATION ESTIMATION

3.1. Trilinear Decomposition

TALS (Trilinear Alternating Least Squares) algorithm is the common
data detection method for trilinear model [30].

According to Eq. (8), the costing function of this trilinear model
is

min
A,S,B

∥∥∥∥∥∥∥∥∥




X̃..1

X̃..2
...

X̃..M


 −




SD1(A)
SD2(A)

...
SDM (A)


BT

∥∥∥∥∥∥∥∥∥
F

(12)

where ‖ ‖F stands for the Frobenius norm. X̃..m,m = 1, 2, . . . ,M , are
the noisy slices. It follows that the least squares (LS) update for the
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source matrix B is

B̂T =




ŜD1

(
Â

)
ŜD2

(
Â

)
...

ŜDM

(
Â

)




+ 


X̃..1

X̃..2
...

X̃..M


 (13)

where [.]+ stands for pseudo-inverse. Â and Ŝ denote previously
obtained estimates of A and S.

Equation (9) is regarded as slicing the three-way data along the
spatial dimension. The symmetry of the trilinear model in Eq. (11)
allows two more matrix system rearrangements,

Y..p = BDp(S)AT , p = 1, 2, 3 (14)

Z..l = ADl(B)ST , l = 1, 2, . . . , L (15)

where Y..p is the pth slice in polarization direction Z..l is the lth
slice in temporal direction. Similarly, from the second type of slices:
Y..p = BDp(S)AT , p = 1, 2, 3, which is rewritten as[ Y..1

Y..2

Y..3

]
=

[ BD1(S)
BD2(S)
BD3(S)

]
AT (16)

According to symmetry of the trilinear model, the costing function in
Eq. (14) is rewritten as follows

min
A,S,B

∥∥∥∥∥∥

 Ỹ..1

Ỹ..2

Ỹ..3


 −

[ BD1(S)
BD2(S)
BD3(S)

]
AT

∥∥∥∥∥∥
F

(17)

where Ỹ..p, p = 1, 2, 3, are the noisy slices. B̂ and Ŝ denote previously
obtained estimates of B and S. And the LS update for the direction
matrix A is

ÂT =




B̂D1

(
Ŝ
)

B̂D2

(
Ŝ
)

B̂D3

(
Ŝ
)




+ 
 Ỹ..1

Ỹ..2

Ỹ..3


 (18)
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where B̂ and Ŝ denote previously obtained estimates of B and S.
Finally, from the third type of slices: Z..l = ADl(B)ST , l =

1, 2, . . . , L. According to the symmetry of the trilinear model, the
costing function in Eq. (14) is also rewritten as follows

min
A,S,B

∥∥∥∥∥∥∥∥∥




Z̃1

Z̃2
...

Z̃L


 −




AD1(B)
AD2(B)

...
ADL(B)


ST

∥∥∥∥∥∥∥∥∥
F

(19)

where Z̃..l, l = 1, 2, . . . , L, are the noisy slices. We find the LS update
for the polarization matrix S as

ŜT =




ÂD1

(
B̂

)
ÂD2

(
B̂

)
...

ÂDL

(
B̂

)




+ 


Z̃1

Z̃2
...

Z̃L


 (20)

where B̂ and Â denote previously obtained estimates of B and A.
According to Eq. (13), Eq. (18) and Eq. (20), the matrices B, A

and S are updated with conditioned least squares, respectively. The
matrix update will stop until convergence. We can use TALS algorithm
to attain the direction matrix A and the polarization matrix S.

TALS algorithm is optimal when noise is additive i.i.d.
Gaussian [43]. TALS yields maximum likelihood (ML) estimates for
zero-mean white Gaussian noise [44]. TALS algorithm has several
advantages: it is easy to implement, guarantee to converge and
simple to extend to higher order data. The shortcomings are mainly
in the occasional slowness of the convergence process [45]. In this
paper, we use the COMFAC algorithm [46] for trilinear decomposition.
COMFAC algorithm is essentially a fast implementation of TALS,
and can speeds up the LS fitting. COMFAC algorithm is essentially
a fast implementation of TALS, and can speeds up the LS fitting.
COMFAC compresses the three-way data into a smaller three-way
data. After fitting the model in the compressed space, the solution
is decompressed to the original space. This is followed by a few TALS
steps in uncompressed space. Usually, the decompressed model is
close to the LS solution, hence smaller TALS steps are sufficient for
this refinement stage. We can use COMFAC algorithm to attain the
direction matrix A and the polarization matrix S.
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3.2. Identifiability

The k-rank concept is very important in the trilinear algebra.
Definition 1 [30]: Consider a matrix U ∈ C

I×J . If rank(U) = r,
then U contains a collection of r linearly independent columns.
Moreover, if every l ≤ J columns of U are linearly independent, but
this does not hold for every l + 1 columns, then U has k-rankkU = l.
Note that kU ≤ rank(U),∀U.

Theorem 1 [30]: X..m = SDm(A)BT , m = 1, 2, . . . ,M , where
A ∈ C

M×K , S ∈ C
3×K , B ∈ R

L×K , if

kA + kB + kS ≥ 2K + 2 (21)

Then A, B and S are unique up to permutation and scaling of columns,
that is to say any other matrices Ā, B̄, S̄ that constitute the X..m,
m = 1, 2, . . . ,M data is related to via

Ā = AΠ∆1, B̄ = BΠ∆2, S̄ = SΠ∆3 (22)

where Π is a permutation matrix, and ∆1,∆2,∆3 are diagonal scaling
matrices satisfying scaling matrices satisfying

∆1∆2∆3 = I (23)

Scale ambiguity and permutation ambiguity are inherent to the
separation problem. This is not a major concern. Permutation
ambiguity can be resolved by resorting to a priori or the embedded
information. The scale ambiguity can be resolved using automatic
gain control, normalization, differential encoding/decoding and the
embedded information.

In our present context, for source-wise independent source signals,
kB = min(K,L); for source-wise independent DOA, kA = min(M,K);
for source-wise independent polarization, kS = min(3,K), and
therefore, Eq. (21) becomes

min(M,K) + min(L,K) + min(3,K) ≥ 2K + 2 (24)

For the received noisy signal, we use trilinear decomposition
to get the estimated direction matrix and the polarization matrix
Â = AΠ∆1 + N1, Ŝ = SΠ∆3 + N2, where N1 and N2 are noise.

3.3. DOA Estimation

In general φ0 = 0, each element in a(θq, ϕq) (direction vector for the
qth source, as shown in Eq. (4)) is divided by the first element, and we
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removes the first element to get an new vector a1, finally imag(ln(a1))
is shown as follows, where ln(.) is natural logarithm; imag(.) is to get
imaginary part of a complex number.


ξ sin θq cosϕq(cosφ1 − 1) + ξ sin θq sinϕq sinφ1

ξ sin θq cosϕq(cosφ2 − 1) + ξ sin θq sinϕq sinφ2
...

ξ sin θq cosϕq(cosφM−1 − 1) + ξ sin θq sinϕq sinφM−1


 (25)

where ξ = 2πR/λ. In Eq. (25), ith element is divided by (cosφi − 1),
i = 1, 2 . . . ,M − 1, then we get

g =




c0 + c1 sinφ1/(cosφ1 − 1)
c0 + c1 sinφ2/(cosφ2 − 1)

...
c0 + c1 sinφM−1/ (cosφM−1 − 1)


 (26)

where c0 = ξ sin θq cosϕq, c1 = ξ sin θq sinϕq. And we can use least
squares principle to estimate DOA.

The estimated direction vector âq is attained through trilinear
decomposition. The estimated direction vector âq is processed through
normalization, which can resolve scale ambiguity, and is processed like
mentioned above to get ĝ. Least squares fitting is

P
[
c0
c1

]
= β2 (27)

where

P =




1 sinφ1/(cosφ1 − 1)
1 sinφ2/(cosφ2 − 1)
...

...
1 sinφM−1/ (cosφM−1 − 1)


 (28)

We use least square principle to estimate
[
c0
c1

]
[
ĉ0
ĉ1

]
=

(
PTP

)−1
PT β2 (29)

DOA estimation

θ̂q = sin−1

(√
ĉ20 + ĉ21/ξ

)
(30)

ϕ̂q = tan−1(ĉ1/ĉ0) (31)
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3.4. Polarization Estimation

Define u = sin γqe
jηq , v = cos γq. According to the estimated angles

(θ̂q, ϕ̂q) and Eq. (2), the estimated vector of
[

sin γqe
jηq

cos γq

]
is

[
û
v̂

]
=


 cos θ̂q cos ϕ̂q − sin ϕ̂q

cos θ̂q sin ϕ̂q cos ϕ̂q

− sin θ̂q 0




+

ŝq (32)

where [.]+ stands for pseudo-inverse. ŝq is the estimated polarization
vector through trilinear decomposition. According to Eq. (32),
polarization parameter γq is estimated by

γ̂q = tan−1

(∣∣∣∣ ûv̂
∣∣∣∣
)

(33)

According to Eq. (32) and Eq. (33), polarization parameter ηq is
estimated by

η̂q = imag
(

ln
(

û

v̂ tan(γ̂q)

))
(34)

where imag(.) is to get imaginary part of a complex number.

3.5. Blind DOA and Polarization Estimation Algorithm

Trilinear decomposition-based blind joint DOA and polarization
estimation for polarization sensitive uniform circular array is proposed
in this paper. This algorithm firstly uses COMFAC for trilinear
decomposition to attain the direction matrix and polarization matrix,
and then estimate DOA according to the estimated direction matrix,
finally estimate polarization according to the estimated DOA and the
estimated polarization matrix.

It should be pointed out that ESPRIT is a special case of trilinear
model. ESPRIT is two-slice eigen analysis method, which is used to
parameter estimation via two-slices. Trilinear decomposition method
can be thought of as a generalization of ESPRIT.
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4. SIMULATION RESULTS

According to Eq. (10), we define SNR

SNR = 10 log10

M∑
m=1

∥∥SDm(A)BT
∥∥2

M∑
m=1

‖V..m‖2

dB (35)
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Figure 3. DOA and polarization estimation scatter with K = 2,
L = 100 and SNR = 28 dB.
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Figure 4. DOA and polarization estimation performance with K = 2
and L = 100.
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We present Monte Carlo simulations to assess the DOA and
polarization performance of our proposed algorithm. The number of
Monte Carlo trials is 1000.

The uniform circular array with 8 diversely-polarized-antennas is
used in the simulations. The antennas are considered to be completely
polarized. Complex additive Gaussian white noise is added into

this system. Define RMSE =
√

1
1000

∑1000
m=1 |am − a0|2, where am is

the estimated DOA/polarization of the mth time; a0 is the perfect
DOA/polarization.

Note that K is the number of sources and L is the number of
snapshots.

Simulation 1: There are 2 sources in this simulation. Their
DOAs are (10◦, 10◦), (20◦, 20◦), and their corresponding polarization
parameters (γ, η) are (10◦, 15◦), (20◦, 25◦). Fig. 3 shows the DOA and
polarization scatters with K = 2, L = 100 and SNR = 28 dB. From
Fig. 3, we find that our proposed algorithm works well. Fig. 4 presents
the DOA and polarization estimation performance under different
SNR. We also compared our proposed algorithm with Cramer-Rao
bound CRB. From Fig. 4, we find that our proposed algorithm has
better DOA and polarization estimation performance.
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Figure 5. DOA and polarization estimation performance with
different L.
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Simulation 2: The performance of the algorithm under different
L is shown in Fig. 5. There are 2 sources in this simulation. Their
DOAs are (10◦, 10◦), (20◦, 20◦), and their corresponding polarization
parameters (γ, η) are (10◦, 15◦), (20◦, 25◦). Fig. 5 shows the elevation
angle, azimuth angle and polarization parameter (γ, η) estimation
performance with different L. From Fig. 5, we find that when L
becomes larger, the DOA and polarization estimation performance of
our proposed algorithm gets better.

Simulation 3: The performance of our proposed algorithm under
different source number K is investigated in the simulation. The
source number is set 2, 3 and 4. The number of snapshots is 100.
Our proposed algorithm has the different performance under different
source number, as shown in Fig. 6. Fig. 6 presents the elevation
angle, azimuth angle and polarization parameter (γ, η) estimation
performance under different K. From Fig. 6, we find that DOA
and polarization estimation performance of our proposed algorithm
degrades with the increasing of the source number K.
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different source.
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5. CONCLUSION

This paper links the polarization-sensitive uniform circular array
parameter estimation problem to the trilinear model and derives a
novel blind DOA and polarization estimation. Our proposed algorithm
has better DOA and polarization estimation performance. This
algorithm does not require pilot information and train sequence.
Instead, this method relies on a fundamental result of Kruskal
regarding the uniqueness of low-rank three-way data decomposition.
Compared with ESPRIT method, our proposed algorithm is the
generalization of ESPRIT. ESPRIT method is a special case of our
proposed algorithm. ESPRIT can work well in polarization-sensitive
uniform linear array or uniform square array, but ESPRIT fails to
work in polarization-sensitive uniform circular array. Our proposed
algorithm has wider application than ESPRIT method, and our
proposed algorithm can work well in polarization-sensitive uniform
linear array, uniform circular array, L-shape array and uniform square
array.
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