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Abstract—In this paper the discontinuity problems of the junction
of two different dielectric rectangular waveguides has been studied,
both for two dimensional (2D) and three dimensional (3D) cases. The
technique used, is to obtain expressions for the z-directed complex
power due to all modes (propagating and non propagating) present at
the step junction for a normalized incident field. The expressions for
junction parameters like admittance and susceptance have been derived
for the structures with step junctions in x direction, in y direction and
for the 3D case where the step is both x and y directed. The numerical
results have then been computed for different step ratios of these three
cases.

1. INTRODUCTION

Discontinuity problems in Dielectric waveguides of both closed and
open types play an important role in practical applications like filter
design [10, 14, 16] and in integrated circuits ranging from microwave to
optical wavelengths. The cascade of steps in a rectangular dielectric
waveguide occurs in active and passive components for integrated
optics and optical communication such as grating coupler, transformer
and distributed feedback laser [1, 3, 7, 13].
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Analysis of dielectric slab waveguides have been carried out
by various authors [12, 15] by using techniques such as analytical
continuity method [11].

The isolated step in a dielectric waveguide is a basic discontinuity
problem occurring in various optical and millimeter wave components.
Various techniques [4, 5, 8] have been used in obtaining solutions for
different parameters at the step. The scattering parameters to observe
the scattering behavior of the step discontinuity have been discussed
in [6, 8].

The main objective of the proposed work is to obtain the junction
admittance for a single step in a dielectric waveguide for both 2D
and 3D problems. The junction susceptance is then derived which is
useful for the microwave, millimeter wave networks and designing of
components like filters, couplers, etc. The analysis presented in this
paper is based on a very general concept of modal expansion of fields
and hence can be extended for the problems of dielectric image lines
or dielectric loaded metallic waveguides.

The analysis has been carried out for dielectric guide with high
dielectric constant and thus no substantial leakage of field takes place
in the waveguide. Hence radiation modes have been neglected for the
analysis.

In the structures shown in Figures 1, 2, and 3 wave propagates
from one dielectric waveguide to another with a different cross section
where the two structures are connected to create abrupt discontinuities.
The modes existing in the waveguide depend on the excitation of the
guide. The non propagating modes are of appreciable magnitude only
in the vicinity of sources or the discontinuity. These non propagating
modes present at the step junction of our interest are nothing but the
localization of energy at that discontinuity. These then give rise to
the circuit parameters of capacitance and inductance. This reactance
(or susceptance) is the basis for designing of any passive component
used in the microwave and millimeter wave. In order to obtain the
capacitance and inductance the reactive part of the power has to be
separated from the total power present at the junction. This has been
accomplished in this paper by exploring the propagation possibilities
in all the modes after the arbitrary field inside a section of waveguide is
expanded as a sum over all possible modes. Then the non propagating
and propagating modes for a particular waveguide dimension are
separated. In a lossless guide, the power for a propagating mode is
a real quantity and that for a non propagating mode is imaginary.
This imaginary power is the basis for the junction susceptance which
has been computed for different cases in this paper.
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2. ANALYSIS OF DISCONTINUITY

The structures of Figures 1 and 2 are two different problems which
have been handled independently in this paper. Figure 1(c) represents
the 3D discontinuity in both the transverse x and y directions.
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Figure 1. Y -directed step.
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Figure 2. X-directed step.

The TMx excitation for even modes has been considered and for
all the structures we assume that almost all the fields are well confined
to the waveguide.

For a guide of dimensions a1×b1 the wave functions for the bound
mode (even) would be [9]

ψ = A cos(ux) cos(u1y)ejkzz (1)

where u, u1 and kz are the wave numbers of the dielectric in the x and
y transverse directions and z direction respectively.

2.1. Structure 1 (y Directed Step)

In the structure shown in Figure 1, let Hy = f(x, y) be known over the
z = 0 cross section. The field at z > 0 is to be determined assuming
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that the guide is matched. Considering the superposition of all TMx

modes we can write the ψ function as [8]

ψ =
∞∑

m=0

∞∑
n=1

Amncos (mπx/2a1) cos(nπy/2b1)e
−γmnz (2)

where Amn are the mode amplitudes and γmn the mode propagation
constants. The value of Hy at z = 0 can be obtained as

Hy|z=0 =
∞∑

m=0

∞∑
n=1

−γmnAmn · cos (mπx/2a1) · cos (nπy/2b1) (3)

the above equation is in the form of a double Fourier series, γmnAmn

are thus the Fourier coefficients of Hy and can be evaluated as

−γmnAmn = Hmn = (2εn/a1 · b1)

·
a∫

0

b1∫

0

Hy|z=0 · cos(mπx/2a1) · cos(nπy/2b1)dxdy (4)

where εn = 1 for n = 0 and is 2 otherwise.

2.1.1. Modal Expansions of Fields

(i) Propagation in the Smaller Guide [z < 0]:

Assuming that only the normalized dominant mode (TM10)
propagates in the Waveguide

Hy = cos(πx/2a) · e−γ
10

z y < b2
= 0 y > b2

(5)

Hy at the junction is then given as

Hy|z=0 = cos(πx/2a1) y < b2
= 0 y > b2

(6)

using Equations (4) and (6) the value of H10 at the junction can be
obtained as

H10 = (2/a1 · b1)
a1∫

0

b2∫

0

cos(πx/2a1) · cos(πx/2a1)dxdy (7)
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which reduces to

H10 = b2/b1 (8)

(ii) Propagation in the Bigger Guide [z > 0]:

The mode amplitude derived in Equation (8) is that of the incident
field for the bigger guide.

Due to the discontinuity at z = 0 spurious modes are generated
in the second guide. Hence apart from the dominant mode of guide 2
other modes are also present at the junction which can be expressed
as TMmn in general. For them the modal amplitudes Hmn can be
calculated using eqn. (4). Imposing the boundary condition on Hy

that the tangential component of H vanishes along the discontinuity
outside, we have for any general TMmn mode

Hmn =(2εn/a1 · b1)·
a1∫

0

b1∫

0

Hy|z=0 · cos (mπx/2a1)· cos (nπy/2b1) dxdy

(9)

For the calculation of the above equation, taking different values of m
and n three different cases arise. For m �= 1, n �= 0

Hmn = 8π2 ·
(
m2 − 1

)
· n [(m− 1) · sin{(π/2)(m+ 1)}

+(m+ 1) · sin{(π/2)(m− 1)}] · sin(n · π · b2/2 · b1) (10)

For m = 1, n �= 0

H1n= (4/n · π) · sin(n · π · b2/2 · b1) (11)

For n = 0, m �= 1

Hm0 = 4b2/π
(
m2 − 1

)
· [(m− 1) · sin{(π/2)(m+ 1)}

+(m+ 1) · sin{(π/2)(m− 1)}] (12)

2.1.2. Derivation of Power

For the wave function given by Equation (2) using the field equation

Ex = (1/jωεd) ∗ (δ2/δx2 + k2)ψ (13a)
Hy = δψ/δz (13b)



238 Jigyasa and De

the z directed complex power at z = 0 is given by

P =

a1∫

0

b1∫

0

(
ExXH

∗
y|z=0

)
dxdy (14)

The TMx characteristic wave admittances are given by

(Y0)mn = −
[
(γmn) /

(
k2

d − (mπ/2 · a1)
2
)]
.jωεd (15)

Using (13), (14) and (15) and because of the orthogonality of the wave
functions the z directed complex power reduces to

P =
∞∑

m=0

∞∑
n=1

|Hmn|2 · (a1 · (b1) /2 · εn) · (1/(Y0)mn) (16)

Equation (16) is simply a summation of powers for the individual
modes which can be divided into 2 parts

Ptotal = Pdominant + Pmn (m �= 1, n �= 0) (17)

where Pmn is the power due to the modes other than the dominant
mode of guide 2 which comprise of the modal amplitudes given by
Equations (10), (11) and (12).

The power for the dominant mode Pdominant for the particular
geometry is real and Pmn imaginary as kz is real for the dominant
mode and imaginary otherwise. The imaginary portion of the total
power indicates no time-average power transmitted in these modes and
hence the entire energy is localized to the junction.

2.1.3. Derivation of the Junction Parameters

To obtain the junction admittance, we consider the voltage across the
centre of the junction (z = 0) as V . The junction admittance will then
be given by

Yj = P ∗/ |V |2 (18)

As the component of electric field contributing to z-directed complex
power is Ex the voltage across the junction will be directed along the
x direction and hence for the structure in Figure 1 the value would be
V = a. (V = E ∗ d)

Yj = P ∗/a1
2 (19)

Imaginary part of this equation is the junction susceptance Bj .
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2.2. Structure 2 (x Directed Step)

2.2.1. Modal Expansion of Fields

(i) Propagation in the Smaller Guide [z < 0]:

For the same mode propagation for any incident field as in
structure1 as shown in Figure 2 for the normalized dominant mode
the value of Hy is given by

Hy = cos (πx/2a2) · e−γ
10

z x < a2

= 0 x > a2
(20a)

at the junction the value of Hy is given by

Hy|z=0 = cos(πx/2a2). x < a2

= 0 x > a2
(20b)

using Equations (4) and (6) the value of H10 can be obtained as

H10 = (2/(a1) · b1) ·
a2∫

0

b1∫

0

cos (πx/2a1) · cos (πx/2a1) dxdy (21a)

This reduces to

H10 = (2 · a1/π) · [{sin{(π · a1) (1/2a1 + 1/2a2)}/(a2 + a1)}
{sin{(π · a2) (1/2a2 − 1/2a1)}/ (a1 − a2)}] (21b)

(ii) Propagation in the Bigger Guide:

Imposing the boundary conditions on Hy we have for any general
TMmn mode

Hmn =(2εn/a1 · b1)·
a2∫

0

b∫

0

Hy|z=0 cos (mπx/2a1) · cos (nπy/2b) dxdy

(22)

which gives: for n �= 0

Hmn =
(
2 · εn/a1 · n · π2

)
· sin(nπ/2) · [{sin(π/2 +mπa2/2a1)/(1/2a2 +m/2a1)}
+ [{sin(π/2 −mπa2/2a1)/(1/2a2 −m/2a1)} (23)

for n = 0

Hm0 = (2 · εn/a1 · π) [{sin(π/2 +mπa2/2a1)/(1/2a2 +m/2a1)}
+ [{sin(π/2 −mπa2/2a1)/(1/2a2 −m/2a1)} (24)
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Figure 3. 3D step.

2.2.2. Derivation of Power

As for the previous structure the total power can be represented as

P ′
total= P ′

dominant+P ′
mn

Voltage across the centre of the junction (z = 0), is V = c for the
structure in Figure 2. The junction admittance will then be given by

Yj = P ∗/ |V |2 = P ∗/a2
2 (25)

the imaginary part of Yj gives the junction susceptance Bj for the
x-directed step.

2.3. Three Dimensional Step

For a Waveguide junction where the discontinuity is both x and y
directed given in Figure 3, the analysis for the three dimensional step
is done as for the above two structures. the value of Hy at the junction
would be given by

Hy|z=0 = cos(πx/2a2). x < a2

= 0 x > a2
(26)

The non zero modal amplitudes for the general TMmn modes
propagating in the bigger guide are thus given by

Hmn = (2εn/a1 · b1) ·
a2∫

0

b2∫

0

Hy|z=0 · cos (mπx/2a1) · cos (nπy/2b1) dxdy

(27)
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The junction admittance is obtained by using Equations (16) and (27)
where P is the z-directed power in the bigger guide. The junction
susceptance Bj is the imaginary part of this junction admittance.

Table 1. Susceptance values for different permittivities for step size
(a2/a1 = b2/b1 = .5).

εd 4 6 8 10 12 14 16

−Bj 8.507 10.314 12.606 16.61 29.562 −4.02E-08 −1.53iE-8

3. RESULTS AND DISCUSSION

The junction susceptance for the three proposed structures has been
calculated at 21 GHz for the dielectric of permittivity 12. The plots
of the susceptance Bj at the junction verses the step ratios for the
structures 1 and 2 are as shown in the graphs Figures 4, 5 and
6. Their behavior is in agreement with the results for the similar
structures in metallic waveguide [9]. The susceptance for the first case
of discontinuity (y-directed step) is capacitive (positive) and hence the
junction can be termed as capacitive waveguide junction, the x-directed
step having a negative susceptance is an inductive junction.

The behavior of the graphs can be understood as on increasing
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Figure 4. Susceptance verses step ratio for the y-directed step.
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Figure 5. Susceptance verses step ratio for the x-directed step.
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Figure 6. Susceptance verses step ratio for the 3D step.

the step size the value of susceptance increases. When both the guides
are of same dimensions susceptances converge to zero value indicating
that the whole power gets transmitted through the junction and there
is no localization of energy at the step. The susceptance values with
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Figure 7. Susceptance verses permittivity for step size (a2/a1 =
b2/b1 = .5).

fixed step ratios of a2/a1 = b2/b1 = 0.5 and different permittivity (εd)
for the structure of Figure 3 are as given in Table 1 and shown in the
graph. All numerical results have been computed using MATH-CAD
software.
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