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Abstract—An iterative time-domain algorithm for reconstructing
three-dimensional (3-D) objects is presented, using normalized
microwave data. The incident waveform information is excluded from
the cost functional by normalizing the observed and calculated fields in
the frequency domain. The exciting pulse used in the reconstruction
can be freely selected by considering the bandwidth of the received
data. Two numerical examples are shown to demonstrate that the
proposed method can rebuild an inhomogeneous object from noisy
data where different waveforms in the observation and reconstruction
are used. Two normalized data sets from synthetic observed data and
calculated data for a known model are illustrated too.

1. INTRODUCTION

Various inversion methods in the frequency domain [1–14] and time
domain [15–21] that are suitable for large-size and high-contrast objects
have been developed in the last twenty years. For the frequency
domain methods there are Born and distorted Born iterative method,
Newton-Kantorovitch method, contrast source and modified contrast
source inversion method, local shape function method, etc. For the
time domain methods there are layer-stripping method, local shape
function method, forward-backward time-stepping method, etc. There
are several approaches in the frequency domain to reconstruct 3-D
objects imbedded in a homogeneous medium or in layered media [11–
14], while in the time domain, few 3-D reconstruction examples exist.
† All the authors are also with Key Laboratory of Geophysical Prospecting, China National
Petroleum Corporation, Beijing 102249, China
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We have proposed a forward-backward time-stepping method for
reconstructing electrical properties of dielectric objects using time-
domain data and have shown the successful reconstruction of a lossless
3-D object [20] and lossy medium [21]. In the forward-backward time-
stepping algorithm, the gradients of the cost functional with respect
to the unknown parameters can be expressed explicitly by introducing
an adjoint field. In those papers [20–23], the waveform of an incident
pulse to the feeding point in the observation was supposedly known
before the reconstructions. For the time-domain observations, it is not
easy to obtain the exact waveform of the incident pulse required in the
reconstructions.

In this paper, based on the forward-backward time-stepping
method, we discuss a reconstruction method without requiring the
incident waveform information by normalization under an assumption
that the received data can be expressed as the convolution of the
responses of a transmitting antenna, a receiving antenna, the media
in which the microwave propagates, and the incident pulse [24]. A
cost functional that is the energy of residuals between the normalized
computed and observed fields is defined. The gradients of the cost
functional with respect to unknown parameters are derived. The
optimization of the cost functional can be achieved by the conjugate
gradient method. In this proposed reconstruction method, the
deduction of the incident pulse is avoided.

Two reconstruction examples using one component of the electric
field are illustrated. Different exciting waveforms are used in
the observation and reconstruction. An inhomogeneous and a
homogeneous object are reconstructed from noisy data with signal-
to-noise ratio (SNR) of 15 dB and 10 dB respectively.

The rest of this paper contains sections on the normalized inverse
problem, numerical examples of reconstruction, numerical examples
of normalization, and conclusions. In the normalized inverse problem
section, the cost functional of the inverse scattering problem is defined,
and its gradients with respect to unknown parameters are given. In the
numerical examples sections, reconstruction results from noisy data are
presented, and normalized data from synthetic observed and computed
data are illustrated.

2. NORMALIZED INVERSE PROBLEM

The field data v3m(p; rr
n, t), in general, may be expressed as [24]

v3m (p; rr
n, t) = Rm(t) ∗ Pm (p; rr

n, t) ∗ Jm(t) ∗ Rn(t), (1)
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where ∗ represents the convolution for time t; Rm(t) and Rn(t) are
the functions of the transmitter and the receiver; Pm(p; rr

n, t) is the
impulse response of the media at the nth receiver position attributed
from a source Jm(t) at the mth source position; p = (εr μr ησ)t is
the electrical parameters of the media. In the frequency domain (1) is
written as

v3m (p; rr
n, ω) = Rm (ω)Pm (p; rr

n, ω)Jm(ω)Rn(ω). (2)

By normalizing (2) using the received signal, for example, at
rr
l (l = 1, 2, · · · , or N), we have

v3mg (p; rr
n, ω) =

v3m (p; rr
n, ω)

v3m(p; rr
l , ω)

=
Pm (p; rr

n, ω) Rn(ω)
Pm

(
p; rr

l , ω
)
Rl(ω)

, (3)

which does not contain the source information.
An objective functional without the source waveform information

is defined as

Q(p) =
∫ +∞

−∞

M∑
m=1

N∑
n=1

|H (ω) [v3mg (p; rr
n, ω) − ṽ3mg (rr

n, ω)]|2dω, (4)

where H(ω) is a bandpass filter used to limit the frequency range of the
normalized data. Beyond the range the amplitude of the observed and
calculated signal is much smaller than its peak value. v3mg(p; rr

n, ω)
is the normalized calculated wave field in the media with a guessed
parameter p and ṽ3mg(rr

n, ω) is the normalized observed one at the
receiving position corresponding to the mth source. When the full
field vm(p; rr

n, t) is calculated, a source waveform determined from the
band of the observed data, not necessarily the same as the pulse shape
in the observation, can be used.

Equation (4) is equivalent to a time-domain functional

Q(p) =
∫ cT

0

M∑
m=1

N∑
n=1

|v3mgf (p; rr
n, t) − ṽ3mgf (rr

n, t)|2d(ct), (5)

v3mgf (p; rr
n, t) = F−1

[
H(ω)

v3m (p; rr
n, ω)

v3m
(
p; rr

l , ω
)
]

, (6)

ṽ3mgf (rr
n, t) = F−1

[
H(ω)

ṽ3m (rr
n, ω)

ṽ3m
(
rr
l , ω

)
]

, (7)

F−1 is the inverse Fourier transform. T is the duration of the observed
data. The distribution of p is reconstructed from the received data by
minimizing the cost functional (5).
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By using the same derivation method as [20, 21], the gradients gε,
gμ, gησ of Q(p) with respect to εr, μr and ησ are given by

gε = 2
∫ cT

0

M∑
m=1

3∑
i=1

wi
mg(p; r, t)

∂vimf (p; r, t)
∂(ct)

d(ct), (8)

gμ = 2
∫ cT

0

M∑
m=1

6∑
i=4

wi
mg(p; r, t)

∂vimf (p; r, t)
∂(ct)

d(ct), (9)

gησ = 2
∫ cT

0

M∑
m=1

3∑
i=1

wi
mg(p; r, t) vimf (p; r, t)d(ct), (10)

where wi
mg(p; r, t) =

∑N
n=1 wi

mng (p; r, t). wi
mng (p; r, t) is the ith

component of wmng(p; r, t), which satisfies

L∗wmng (p; r, t) = uI
mgf (p; rr

n, t) δ (r − rr
n) iz

−uII
mgf (p; rr

n, t) δ (r − rr
l ) iz, (11)

wmng (p; r, T ) = 0, (12)

uI
mgf (p; rr

n, t) = F−1
[
H (ω) uI

mg (p; rr
n, ω)

]
, (13)

uII
mgf (p; rr

n, t) = F−1
[
H (ω) uII

mg (p; rr
n, ω)

]
, (14)

uI
mg (p; rr

n, ω) =
umg (p; rr

n, ω)
v3m

(
p; rr

l , ω
)∗ , (15)

uII
mg (p; rr

l , ω) =
v3m (p; rr

n, ω)∗ umg (p; rr
l , ω)

v2
3m

(
p; rr

l , ω
)∗ , (16)

umg (p; rr
n, ω) = v3mg (p; rr

n, ω) − ṽ3mg (rr
n, ω) , (17)

where L∗ is the adjoint operator [20, 21]; the asterisk represents
conjugate. vimf (p; r, t) is the ith component of vmf (p; r, t), which
is the filtered vm(p; r, t) satisfying the Maxwell’s equations. The
optimization of the cost functional (5) is achieved by the conjugate
gradient method.

In the derivation of the algorithm, it is supposed that the object
is set in a very large homogeneous background medium. There are no
reflections from the outer boundaries of the background medium. As a
result, the perfect matched layer (PML) absorbing boundary condition
is used in both forward and backward FDTD simulations.



Progress In Electromagnetics Research M, Vol. 5, 2008 141

3. NUMERICAL EXAMPLES OF RECONSTRUCTION

The configuration of transmitters and receivers of synthetic examples
is shown in Figure 1. In free space, there is a 3-D object and 3 circles,
the middle circle and the 3-D object are concentric. On each circle,
5 transmitting antenna positions are homogeneously distributed as
shown in Figure 1(b). Ten receiving dipoles as shown in Figure 1(a)
are set uniformly in a range of 216◦. All dipoles are in the z-direction.

For each experiment, such as one example as shown in Figure 1(a),
only one transmitting ideal dipole illuminates the object and all
30 receiving ideal dipoles record the z-component of the electric
field, including the direct coupling and scattered field. The relative
horizontal positions of the transmitter and the receivers are fixed. The
positions of the receiving antennas are the same for the transmitting
antennas located at the same azimuth. For a transmitting antenna at
a certain azimuth, the transmitting and receiving antennas are rotated
together to let the transmitting antenna locate in that azimuth. The
received z-components of the electric field are used to reconstruct the
nonconductive and nonmagnetic object.

The incident current pulse to the transmitting antennas for the
synthetic observation data is expressed as

J(t) =
d3

dt3
exp

[
−α2 (t − τ)2

]
, (18)

where τ = βΔt, α = 4/τ , β = 132, Δt is the time interval. The
wave shape is shown in Figure 2 as the solid line. The highest
frequency at which the spectrum amplitude is 5% of the maximum
of the incident pulse is about 4.5 GHz. The corresponding wavelength
in the background is λmin = 6.70 cm. The dominant frequency of the
pulse is about half of the maximum frequency.

For both forward (guessed field) and backward (adjoint field)
calculations using the FDTD method, the spatial and temporary steps
are Δx = Δy = Δz = ΔS = 3.0 mm and Δt = 5.66 ps, respectively.
The gap of transmitter-receiver circles is 8ΔS .

The 3-D objects are cubes with size of 14ΔS × 14ΔS × 14ΔS

(0.63λmin × 0.63λmin × 0.63λmin), and the reconstruction region is a
cube with side length of 20ΔS (0.90λmin). The radii of the circles are
25ΔS . The FDTD simulation space is 59ΔS × 59ΔS × 59ΔS and the
duration T = 550Δt.
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Figure 1. Configuration of transmitting and receiving antennas. (a) A
transmitter and its all 30 receivers. (b) Positions of all 15 transmitters.
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Figure 2. Incident current pulses to the transmitting antennas. The
solid line is for observation, and the dotted and dashed lines are for
reconstruction.

3.1. Reconstruction of an Inhomogeneous Object

In this example the actual distribution of relative permittivity in the
reconstruction region is expressed as

εr(i, j, k) =

⎧⎪⎪⎨
⎪⎪⎩

1 + 4 cos
π (i − I)

2l
cos

π (j − J)
2l

cos
π (k − K)

2l
,

i ∈ [I − l, I + l] , j ∈ [J − l, J + l] , k ∈ [K − l, K + l] ,
1, elsewhere

(19)
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where i, j, k ∈ [1, 21], l = 7, I = J = K = 11. The maximum value of
the relative permittivity is 5. The actual distributions of the relative
permittivity of 6 slices perpendicular to the z-axis of the reconstruction
cube are shown in Figure 3. Slice 11 passes through the center of the
object and the reconstruction cube.
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Figure 3. Actual distributions of the relative permittivity of 6 slices
perpendicular to the z-axis of the reconstruction cube.

At first, using the same pulse as used in the observation, the
reconstruction result from noisy data with SNR = 15 dB is shown in
Figure 4. The initial guess of the relative permittivity is set to
that of the background. It is known that the object is reconstructed
successfully; the influence of the noise is not evident. There is some
difference between the actual and reconstructed distributions. In
fact, after 20 iterations the object has been roughly reconstructed.
Increasing the number of iterations can improve the accuracy of
reconstruction. Therefore, the result shown in this paper for this
example is at iteration 100. It can be seen from the result that the
reconstruction method is stable.
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Next, pulses given by (20) and (21), which differs from pulse (18)
in the observation, are used in the reconstruction

J(t) =
d2

dt2
exp

[
−α2 (t − τ)2

]
, (20)

J(t) =
d

dt
exp

[
−α2 (t − τ)2

]
, (21)

where β = 121 and β = 110 for (20) and (21) respectively. The
bandwidth of (20), (21) is the same as that of (18). The wave shapes
are shown in Figure 2 as the dotted and dashed lines.
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Figure 4. Reconstructed distributions of the relative permittivity of
the slices at the 100th iteration from noisy data with SNR = 15 dB.
The pulse used in reconstruction is the solid one in Figure 2, which is
the same as that in observation.

Figure 5 illustrates the reconstructed result at the 100th iteration
from the noisy data using pulse (20) and Figure 6 is the result using
pulse (21). Comparing Figures 5 and 6 with Figure 4 it is known



Progress In Electromagnetics Research M, Vol. 5, 2008 145

5
10

15
20

5
10

15
201

2

3

4

5

ΔyΔx

5
10

15
20

5
10

15
201

2

3

4

5

ΔyΔx

5
10

15
20

5
10

15
201

2

3

4

5

ΔyΔx
5

10
15

20

5
10

15
201

2

3

4

5

ΔyΔx

ΔyΔx 5
10

15
20

5
10

15
201

2

3

4

5

Slice 11

Slice 5

Slice 14 Slice 17

Slice 8

ΔyΔx
Slice 2

5
10

15
20

5
10

15
201

2

3

4

5

ε r
ε r

ε r

5
10

15
20

5
10

15
201

2

3

4

5

yx

5
10

15
20

5
10

15
201

2

3

4

5

yx

5
10

15
20

5
10

15
201

2

3

4

5

yx
5

10
15

20

5
10

15
201

2

3

4

5

yx

yx 5
10

15
20

5
10

15
201

2

3

4

5

Slice 11

Slice 5

Slice 14 Slice 17

Slice 8

yx
Slice 2

5
10

15
20

5
10

15
201

2

3

4

5

Figure 5. Reconstructed distributions of the relative permittivity of
the slices at the 100th iteration from noisy data with SNR = 15 dB.
The pulse used in reconstruction is the dotted one in Figure 2.

that the reconstructed object is almost the same by using the exact
and different pulses. It means that the reconstructed result is not
influenced by the wave shape of the incident pulse.

Each iteration takes about 8 min on a personal computer with Intel
Core 2 Duo CPU 2.4 GHz, 4 GB RAM, and Windows Vista operating
system.

3.2. Reconstruction of a Homogeneous Object

The setup and the size of the object are the same as those of the
inhomogeneous example. The distribution of relative permittivity is
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Figure 6. Reconstructed distributions of the relative permittivity of
the slices at the 100th iteration from noisy data with SNR = 15 dB.
The pulse used in reconstruction is the dashed one in Figure 2.

given by

εr(i, j, k) =
{

5, i ∈ [I − l, I + l] , j ∈ [J − l, J + l] , k ∈ [K − l, K + l]
1, elsewhere .

(22)
The reconstructed result is shown in Figure 7 from noisy data

of SNR = 10 dB after 55 iterations. The incident waveform in the
reconstruction is given by (20). It is seen from Figure 7 that the
homogeneous object is correctly reconstructed. Figure 7 illustrates
that the object can be reconstructed from noisy data. However, it is
clear that the homogeneous object is not reconstructed as accurately
as the smooth model. Although the shapes of the distributions are
deformed, it is clear that there is an object in the reconstruction region,
and the properties of the object is recognizable. The influence of the
noise is clearly seen.
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Figure 7. Reconstructed distributions of the relative permittivity of
the slices at the 55th iteration from noisy data with SNR = 10 dB.

Figure 8 shows the bandpass filter in (4) in the reconstruction
examples. It is determined according to the band of the observed
data.

4. NUMERICAL EXAMPLES OF NORMALIZATION

To illustrate the effect of the normalization method, the observed,
calculated, and normalized data for the known model in the first
example are shown here. In Figures 9(a) and (c), the dotted lines
are the calculated data v3m(p; rr

n, t); the dashed lines are the noise-
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Figure 9. Examples of data normalization. In (a) and (c) are
calculated (dotted line) and observed noise-free (dashed line) and noisy
data (solid line), in (b) and (d) are filtered normalized data from the
calculated data (dotted line), noise-free observed data (dashed line),
and noisy observed data (solid line). (a) and (b) are of m = 1, n = 7,
and (c) and (d) are of m = 1, n = 30.

free “observed” data ṽ3m(rr
n, t), and the solid lines show the noisy

observed data with SNR = 15 dB. In Figures 9(b) and (d), the dotted
lines are the filtered normalized data v3mgf (p; rr

n, t) given by (6)
with l = 1 (see Figure 1); the dashed lines are the filtered normalized
noise-free data ṽ3mgf (rr

n, t) calculated by (7); and the solid lines show
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Figure 10. Exmaples of amplitude spectra of “observed” noisy data.
(a) is of m = 1, n = 1, and (b) is of m = 1, n = 7.

the filtered normalized noisy observed data. In the computation of
the calculated data, pulse (20) is used, while in the calculation of the
observed data, pulse (18) is used. Figures 9(a) and (b) are for m = 1
and n = 7 and Figures 9(c) sand (d) are for m = 1 and n = 30.
From the normalized noise-free and noisy data it can be seen that the
normalization is effective.

Figure 10 shows the amplitude spectra of two received “observed”
noisy signals of the first reconstruction example. Figure 10(a) is of
m = 1, n = 1, and (b) is of m = 1, n = 7, whose time domain signal
is the solid line in Figure 9(a). There is no zero amplitude in the band
of a bandpass filter whose band is 0.69–4.14 GHz, out of this band the
filtered amplitude is zero.

5. CONCLUSIONS

We propose a method that the incident waveform information can be
removed by normalizing the observed data by the received signal at a
certain position. This technique differs from the calibration method
in the frequency domain data acquisition that is for calibrating the
system [25], or to approximate, for example, horn antennas by line
sources [26]. However, this method is for excluding the information
of the incident pulse. The reconstruction of a three-dimensional
homogeneous and inhomogeneous lossless and nonmagnetic objects has
succeeded, using normalized noisy data. In the reconstruction, the
exact incident waveform information is not required. As a result, the
difficult process of deducting the incident pulse can be avoided.

There are some interesting and important topics to investigate.
For example, how the radiation pattern of antennas and the
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gap between the scattering object and the antennas affect the
reconstruction results, and what is the relation between the
reconstruction accuracy and object size for this algorithm. These are
our future research topics.
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