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Abstract—An increasing attention has been concentrated on
nondiffracting Bessel beams, due to their novel properties and
prospective applications. In order to study their properties entirely,
including the transverse modes, the polarization states and the flow of
energy, vector analyses are necessary. In this paper, based on auxiliary
functions of Hertzian vector potential, nondiffracting Bessel beams are
analyzed. The useful results are obtained and presented in this paper.

1. INTRODUCTION

In 1983, a new type of exact solution to the scalar wave equation in
free space was reported firstly by Brittingham [1], which was termed
a focus wave mode (FWM) due to its property of localized energy
distribution. Another type of localized wave solution was discovered
by Ziolkowski in 1985 [2]. Then the demonstrative experiments were
carried out by Ziolkowski and co-workers [3, 4]. In 1987, Durnin
introduced a novel class of exact solutions for free space scalar wave
equation [5]. These solutions can be expressed in the form of zero-
order Bessel function of the first kind — thus, whose beams are known
as zero-order Bessel beams (denoted by J0 beams). Subsequently,
Durnin and co-workers demonstrated experimentally that a good
approximation to a J0 beam can be generated physically [6]. The
transverse intensity distributions of ideal J0 beams can be highly
localized and are always unaltered when propagating in free space.
In theory, they do not suffer from transverse diffractive spreading.
Therefore, the ideal J0 beams are also termed as diffraction-free or
nondiffracting Bessel beams. From then on, much attention has been
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paid to investigating such beams in international scope, owing to
their novel properties and promising applications. More nondiffracting
beams have been discovered successively and further studied by many
investigators, such as high-order Bessel beams [7, 8], X beams [9, 10],
Bowtie beams [11, 12], Mathieu beams [13, 14]. However, all of them
are scalar solutions to free space wave equation. It is necessary to
carry out vector analyses of these beams in order to study their
characteristics thoroughly. Lots of work have been done [15–21]. For
example, the vector potential method presented in [15] was applied to
analyze a J0 beam; the method of vector wave function method was
employed to analyze Bessel beams [16] and Mathieu beams [21]; Bessel
beams [16] and X beams [20] were also analyzed by using the vector
angular spectrum approach.

Although Bessel beams were analyzed in [15–19], there are still
many other important properties of them that have not been developed
but could be significant for future researches and applications.
Therefore, the main purpose of this paper is to analyze Bessel beams,
including the TM and TE modes Bessel beams, the polarization
states, and the energy density and Poynting vector, based on auxiliary
functions of Hertzian vector potential.

The present paper is organized as follows. The scalar analysis is
presented in Section 2. The vector analyses are described in Section 3,
among which Subsection 3.1 is devoted to the TM and TE modes Bessel
beams; the polarization states are discussed in Subsection 3.2; the
energy density and Poynting vector are calculated in Subsection 3.3.
Our summary is given in Section 4.

2. SCALAR ANALYSIS

In free space, the scalar field is governed by the following wave equation

∇2E (−→r , t) − 1
c2

∂2

∂t2
E (−→r , t) = 0 (1)

where ∇2 is the Laplacian operator, c is the velocity of light in free
space, −→r is the position vector. Assuming that the angular frequency
is ω, the field can be written as

E (−→r , t) = E (−→r ) exp(−iωt) (2)

Substituting (2) into (1), we have the homogeneous Helmholtz wave
equation

∇2E (−→r ) + k2E (−→r ) = 0 (3)
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where k = ω2μ0ε0 is the wave number in free space. Applying the
method of separation of variables in cylindrical coordinates [22–26],
we can derive the following solution from (3)

E (−→r , t) = E0Jn (k⊥ρ) exp(inϕ) exp (i (kzz − ωt)) (4)

where E0 is a constant; Jn is the nth-order Bessel function of the first
kind; ρ =

√
x2 + y2, x = ρ cos ϕ, y = ρ sinϕ, k2

⊥ + k2
z = k2, k⊥ and kz

are the radial and longitudinal wave numbers, respectively. Thus, the
time-average intensity of (4) can be given by

I(ρ, ϕ, z ≥ 0) = I(ρ, ϕ, z = 0) = |E0Jn (k⊥ρ) |2 (5)

It can be seen from (5) that the intensity distribution always keeps
unchanged in any plane normal to the z-axis. This is the characteristic
of the so-called nondiffracting Bessel beams.

When n = 0, (4) represents the zero-order Bessel beams (i.e., J0

beams) discovered firstly by Durnin in 1987 [5]. The central spot of a
J0 beam is always bright, as shown in Figs. 1(a) and (b). The size of the
central spot is determined by k⊥; when k⊥ = k, it reaches the minimum
possible diameter of about 3λ/4; but when k⊥ = 0, (4) reduces to
a plane wave. The intensity profile of a J0 beam decays at a rate
proportional to (k⊥ρ)−1, so it is not square integrable [5]. However, its
phase pattern is bright-dark interphase concentric fringes, as shown in
Fig. 1(c). An ideal Bessel beam extends infinitely in the radial direction
and contains infinite energy, and therefore a physically generated Bessel
beam is only an approximation to the ideal. Experimentally, the
generation of an approximate J0 beam is reported firstly by Durnin and
co-worker [6]. The geometrical estimate of the maximum propagation
rang of a J0 beam is given by

Zmax = R
[
(k/k⊥)2 − 1

]1/2
(6)

where R is the radius of the aperture in which the J0 beam is formed.
We can see from (6) that when R → ∞, Zmax → ∞, provided that
k/k⊥ is a fixed value.

But for n > 0, (4) denotes the high-order Bessel beams (i.e., Jn

beams, n is an integer). The intensity distribution of all the higher-
order Bessel beams has zero on axis surrounded by concentric rings.
For example, when n = 3, the J3 beam has a dark central spot and its
first bright ring appears at ρ = 4.201/k⊥, as illustrated in Figs. 2(a)
and (b). However, the phase pattern of the Jn beam is much different
from that of the J0 beam. It has 2n arc sections distributed evenly
from the innermost to the outermost ring, as shown in Fig. 2(c).
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(a)

(b) (c)

Figure 1. A J0 beam. (a) One-dimension (1D) intensity distribution,
(b) 2D intensity distribution plotted in a gray-level representation,
(c) Phase distribution (t = 0, z = 0). The relevant parameters are
λ = 3 mm, k⊥ = 0.962 mm−1 and R = 50 mm.

3. VECTOR ANALYSIS

3.1. TM and TE Modes Bessel Beams

Now, we focus on the vector analysis. By using the Hertzian vector
potentials of electric and magnetic types

−→∏
e,

−→∏
m, respectively [27–

30], the electric and magnetic field vectors are expressed as

−→
E e = ∇×∇×

−→∏
e = ∇∇ ·

−→∏
e + k2

−→∏
e (7a)

−→
H e = iω0μ0∇×

−→∏
e (7b)

−→
E m = −iω0μ0∇×

−→∏
m (7c)
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(a)

(b) (c)

Figure 2. A J3 beam. (a) 1D intensity distribution, (b) 2D
intensity distribution plotted in a gray-level representation, (c) Phase
distribution (t = 0, z = 0). The relevant parameters are the same as
in Fig. 1, except k⊥ = 0.638 mm−1.

−→
H m = ∇×∇×

−→∏
m = ∇∇ ·

−→∏
m + k2

−→∏
m (7d)

where
−→∏

e and
−→∏

m are the solutions to the vector Helmholtz equations.
In source-free regions,

−→∏
e and

−→∏
m satisfy the homogeneous vector

Helmholtz equations, respectively.

∇2
−→∏

e + k2
−→∏

e = 0 (8a)

∇2
−→∏

m + k2
−→∏

m = 0 (8b)

When the choice of
−→∏

e =
∏

e
−→z and

−→∏
m =

∏
m
−→z , (8) are reduced

to the scalar Helmholtz wave equations

∇2
∏

e
+k2

∏
e

= 0 (9a)
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∇2
∏

m
+k2

∏
m

= 0 (9b)

Comparing (3) and (9), we find that
∏

e and
∏

m can take the form:
Jn(k⊥ρ) exp(inϕ) exp(i(kzz −ωt)). Thus,

−→∏
e and

−→∏
m can be written

in the form
−→∏

e =
∏

e

−→z = PeJn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]−→z (10a)
−→∏

m =
∏

m

−→z = PmJn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]−→z (10b)

where Pe and Pm are the electric and magnetic dipole moments,
respectively. It is known that

−→∏
e and

−→∏
m can be used to calculate the

TM and TE waves, respectively. The general solutions in cylindrical
coordinates can be obtained by superposing the corresponding
components of the TM and TE waves. Therefore, by substituting (10)
into (7) respectively, we finally obtain the TM and TE modes Bessel
beams.

TMn mode:

Eρe = iPek⊥kzJ
′
n(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Eϕe = −n

ρ
PekzJn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Eze = Pek
2
⊥Jn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Hρe =
n

ρ
PeωεJn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Hϕe = iPek⊥ωεJ ′
n(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Hze = 0

(11a)

TEn mode:

Eρm = −n

ρ
PmωμJn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Eϕm = −iPmk⊥ωμJ ′
n(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Ezm = 0
Hρm = iPmk⊥kzJ

′
n(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Hϕm = −n

ρ
PmkzJn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

Hzm = Pmk2
⊥Jn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

(11b)

From (11), their instant field vectors and intensity distributions for the
TM or TE modes Bessel beams can be easily obtained. Two examples
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for TM0 and TE0 modes Bessel beams are illustrated in Figs. 3 and
4, respectively. For (11a), we can see that the transverse electric field
component of the TM0 mode is only a radial part and thus it is radially
polarized. This can also be seen from Fig. 3(a). Similarly, the TE0

mode is only an azimuthal component of the electric field and thus is
azimuthally polarized. Its field vectors at t = 0 are shown in Fig. 4(a).

(a) (b)

(c) (d)

Figure 3. TM0 mode Bessel beam. (a) Instant vector diagram for
the transverse component of the electric field (t = 0, z = 0), (b)
the transverse electric field intensity (I⊥ = |Eρe|2 + |Eϕe|2), (c) the
longitudinal electric field intensity (Iz = |Eze|2) and (d) the total
electric filed intensity (I = I⊥ + Iz). The color bars illustrate the
relative intensity. The relevant parameters are λ = 3 mm, k⊥ =
2.004 mm−1, kz = 0.608 mm−1, and R = 10 mm.

3.2. Polarization States

Due to the circular symmetry of Bessel beams, the cylindrical
coordinates are usually used to describe the generation or application
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(a) (b)

Figure 4. TE0 mode Bessel beam. (a) Instant vector diagram for
the transverse component of the electric field (t = 0, z = 0), (b) the
transverse electric field intensity. The relevant parameters are the same
as in Fig. 3, except k⊥ = 1.503 mm−1, and kz = 1.459 mm−1.

of such fields. However, in order to facilitate the discussion of the
polarization states of Bessel beams, (11) should be converted from
cylindrical coordinates to rectangular coordinates. The following
representations for the electric fields can be easily obtained, by using
the relationships: −→ρ = −→x cos ϕ + −→y sinϕ and −→ϕ = −−→x sinϕ +−→y cos ϕ.

Exe =
[
ik⊥J ′

n(k⊥ρ) cos ϕ +
n

ρ
Jn(k⊥ρ) sinϕ

]
×

Pekz exp(inϕ) exp[i(kzz − ωt)]

Eye =
[
ik⊥J ′

n(k⊥ρ) sinϕ − n

ρ
Jn(k⊥ρ) cos ϕ

]
×

Pekz exp(inϕ) exp[i(kzz − ωt)]

Eze =Pek
2
⊥Jn(k⊥ρ) exp(inϕ) exp[i(kzz − ωt)]

(12a)

Exm = −
[
n

ρ
Jn(k⊥ρ) cos ϕ − ik⊥J ′

n(k⊥ρ) sinϕ

]
×

Pmωμ exp(inϕ) exp[i(kzz − ωt)]

Eym = −
[
n

ρ
Jn(k⊥ρ) sinϕ + ik⊥J ′

n(k⊥ρ) cos ϕ

]
×

Pmωμ exp(inϕ) exp[i(kzz − ωt)]
Ezm = 0

(12b)
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When both
∏

e and
∏

m are present, we may superpose the electric
field representations derived above. So, the electric field components
for Ex and Ey can be obtained by, respectively,

Ex = A1Exe + A2Exm (13a)

Ey = A1Eye + A2Eym (13b)

here A1 and A2 are the proportional coefficients. Let Pe = 1, according
to electromagnetic duality, we have Pm = i

√
ε/μ. Substituting (12)

into (13), the following representations are deduced easily.

Ex =
{[

A1nkz

ρ
Jn(k⊥ρ)−A2kk⊥J ′

n(k⊥ρ)
]

sinϕ+i
[
A1k⊥kzJ

′
n(k⊥ρ)

−A2
nk

ρ
Jn(k⊥ρ)

]
cos ϕ

}
× exp(inϕ) exp[i(kzz − ωt)] (14a)

Ey =
{
−

[
A1nkz

ρ
Jn(k⊥ρ)−A2kk⊥J ′

n(k⊥ρ)
]

cos ϕ+i
[
A1k⊥kzJ

′
n(k⊥ρ)

−A2
nk

ρ
Jn(k⊥ρ)

]
sinϕ

}
× exp(inϕ) exp[i(kzz − ωt) (14b)

Let

B1 =
A1nkz

ρ
Jn(k⊥ρ) − A2kk⊥J ′

n(k⊥ρ) (15a)

B2 = A1k⊥kzJ
′
n(k⊥ρ) − A2

nk

ρ
Jn(k⊥ρ) (15b)

(14) are reduced as

Ex = (B1 sinϕ + iB2 cos ϕ) exp(inϕ) exp[i(kzz − ωt)]

=
√

(B1 sinϕ)2 + (B2 cos ϕ)2 exp(iθ1) exp(inϕ) exp[i(kzz − ωt)]
= ExA exp(iθ1) exp(inϕ) exp[i(kzz − ωt)] (16a)

Ey = (−B1 cos ϕ + iB2 sinϕ) exp(inϕ) exp[i(kzz − ωt)]

=
√

(B1 cos ϕ)2 + (B2 sinϕ)2 exp(iθ2) exp(inϕ) exp[i(kzz − ωt)]
= EyA exp(iθ2) exp(inϕ) exp[i(kzz − ωt)] (16b)

where

ExA =
√

(B1 sinϕ)2 + (B2 cos ϕ)2 (17a)



66 Yu and Dou

EyA =
√

(B1 cos ϕ)2 + (B2 sinϕ)2 (17b)

θ1 = arctan
(

B2 cos ϕ

B1 sinϕ

)
(18a)

θ2 = arctan
(
−B2 sinϕ

B1 cos ϕ

)
(18b)

We now analyze the polarization represented in (16). Consider the
following special case:

Case 1) θ2 − θ1 = Kπ, where K = 0, 1, 2 . . . is an integer. The
Bessel beam is linearly polarized. To satisfy this case and assume that
n = 0, it is demanded from (16) that A1 = 0 and A2 �= 0, or A1 �= 0 and
A2 = 0. Under these conditions, we can acquire the zero-order Bessel
beam with linear polarization, as shown schematically in Figs. 5 and 6.

(a) (b) (c)

Figure 5. Linearly polarized Bessel beam. (a)–(c) Vector diagrams of
the transverse component of the electric field at three different instants:
t = 0, t = 0.5 T, t = T , T = 2π/ω, respectively. The parameters used
in Fig. 5 are k⊥/k = 0.25, n = 0, A1 = 0, and A2 �= 0.

Case 2) θ2 − θ1 = +π/2 and ExA = EyA. The Bessel beam is left-
hand circularly polarized. To satisfy these requirements, the demand
of A1/A2 = +k/kz can be derived from (16). The left-hand circularly
polarized Bessel beam is illustrated in Fig. 7.

Case 3) θ2 − θ1 = −π/2 and ExA = EyA. The Bessel beam
become right-hand circularly polarized. Similarly, the demand of
A1/A2 = −k/kz is needed. Fig. 8 shows the right-hand circularly
polarized Bessel beam.

Case 4) In other cases, the Bessel beam is elliptically polarized.
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(a) (b) (c)

Figure 6. Linearly polarized Bessel beam. (a)–(c) vector diagrams of
the transverse component of the electric field at three different instants:
t = 0, t = 0.5 T, t = T , respectively. The parameters used in Fig. 6
are the same as in Fig. 5, except A1 �= 0, and A2 = 0.

(a) (b) (c)

Figure 7. Left-hand circularly polarized Bessel beam. (a)–(c) Vector
diagrams of the transverse component of the electric field at three
different instants: t = 0, t = 0.125 T, t = 0.25 T, respectively. The
relevant parameters are k⊥/k = 0.4, and A1/A2 = +k/kz.

3.3. Energy Density and Poynting Vector

Using the above Equations (11), the total time-average electromagnetic
energy density for the transverse modes, TE or TM, is calculated to
be

w=
1
4
ε
∣∣∣−→E ∣∣∣2 +

1
4
μ

∣∣∣−→H ∣∣∣2 =
1
4
ε

{
(k⊥Jn)2+

(
k2+k2

z

)[(nJn

ρ

)2

+
(
k⊥J ′

n

)2

]}

(19)

And the time-average Poynting vector power density is given by

−→
S =

1
2
Re

(−→
E ×−→

H ∗
)

= ωεkz

[(
nJn

ρ

)2

+
(
k⊥J ′

n

)2

]
−→z +

nωε

ρ
(k⊥Jn)2 −→ϕ

(20)
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(a) (b) (c)

Figure 8. Right-hand circularly polarized Bessel beam. (a)–(c) Vector
diagrams of the transverse component of the electric field at three
different instants: t = 0, t = 0.125 T, t = 0.25 T, respectively. The
relevant parameters are k⊥/k = 0.4, and A1/A2 = −k/kz.

From (19) or (20), it can immediately be seen that neither w nor −→
S

depends on the propagation distance z. This means the time-average
energy density does not change along the z axis, and our solutions
clearly represent nondiffracting Bessel beams. In addition, from (20),
we note that −→S has the longitudinal and transverse components, which
determine the flow of energy along the z axis and perpendicular to the
z-axis, respectively. However, when n = 0, corresponding to TM0 or
TE0 mode, −→S is directed strictly along the z-axis and is proportional
to J2

1 .

4. SUMMARY

Based on auxiliary functions of Hertzian vector potential, nondiffract-
ing Bessel beams have been analyzed in our paper. The representations
for the TM and TE modes Bessel beams have been derived; the detailed
analysis of polarization states of Bessel beams have been presented; and
the flow of the electromagnetic energy has also been evaluated. These
results are advantageous to investigate the generation and applications
of Bessel beams. We have done some researches on Bessel beams at
mm- and submm-wavelengths [31–35].
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