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Abstract—Uncertainties in biological tissue properties are weighed in
the case of a hyperthermia problem. Statistical methods, experimental
design, kriging technique, stochastic methods, and spectral and
collocation approaches are applied to analyze the impact of these
uncertainties on the distribution of the electromagnetic power absorbed
inside the body of a patient. The sensitivity and uncertainty analyses
made with the different methods show that experimental designs are
not suitable for this kind of problem and that the spectral stochastic
method is the most efficient method only when using an adaptative
algorithm.

1. INTRODUCTION

An important issue in hyperthermia and more generally in numerical
dosimetry tackles the variability of the biological tissue properties [1].
This variability can be modeled by considering those properties as
random variables with probabilistic laws in agreement with the existing
experimental data. The problem consists then in evaluating how this
uncertainty affects physical quantities such as the distribution of the
electromagnetic power absorbed inside the human body. In this work,
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some variability is introduced for the biological tissue properties in a
hyperthermia problem. Even if 3D situations are more realistic, a 2D
example has been chosen here for focusing the study mainly on the
variability aspect. In order to determine the most influential factors
and quantify their effects, different approaches are briefly presented
and compared in terms of accuracy and computational cost: a two
level experimental design approach [2], kriging approach [3] and finally,
stochastic spectral [4] and collocation [5] methods using adaptive sparse
grid [6].

2. HYPERTHERMIA PROBLEM

The treatment of a tumor located inside the liver of a patient is
considered. The 2D model has been obtained from a computed
tomography slice of the body.

In the first step, the electromagnetic properties (permittivity ε and
conductivity σ) of the different healthy tissues are set to the common
values used in literature [7] while those of the tumor are based on a
specific study of cancerous tissues at radio frequencies [8] (see Table 1).
The amplitudes and the phases of four incident waves are adjusted so
that to maximize the power absorbed inside the liver and minimize the
power absorbed elsewhere in the body (see Fig. 1). More precisely, the
quantity we minimize is:

Figure 1. Repartition of the specific absorption rate (SAR) inside the
body when it is illuminated by four incoming waves. The frequency is
set to 100 MHz. Computations are performed using the finite element
library getfem++ [9].
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Table 1. Mean values of tissue parameters involved in the
hyperthermia problem and range of variation.

Quantity Mean Variation
σ muscle 0.707 ±25%
εr muscle 65.972 ±25%
σ fluid body 1.504 ±25%
εr fluid body 69.085 ±25%
σ bone 0.064 ±25%
εr bone 15.283 ±25%
σ marrow 0.022 ±25%
εr marrow 6.488 ±25%
σ kidney 0.810 ±25%
εr kidney 98.094 ±25%
σ liver 0.487 ±25%
εr liver 69.022 ±25%
σ tumor 1.005 ±50%
εr tumor 84.342 ±50%
σ bowel 1.655 ±25%
εr bowel 96.549 ±25%
σ lung 0.558 ±25%
εr lung 67.108 ±25%

y =

∫
body �=liver σ (τ) |E (τ)|2 dτ∫

liver σ (τ) |E (τ)|2 dτ
(1)

where E is the amplitude of the electric field. As it is not the core of
this work, this optimization step will not be detailed.

In the second step, the properties of the different tissues are
supposed to be random variables with uniform probability laws while
the phases and amplitudes of the four incident waves are maintained
at the values found in the first step. For the sake of illustration, the
properties of the tissues are assumed to vary in a range of ±25% around
the mean value except those of the tumor, which vary in a range of
±50%; this distinction is introduced because the properties of tumors
are usually less known than those of healthy tissues.

In the following, y, defined in (1) as the observed quantity, is a
random variable depending on the 18 random variables corresponding
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to the tissue properties. For each of the strategies mentioned in
the introduction, a specific model for y is assumed and a specific
numerical experimental design is built in order to estimate the
unknown parameters of the model. Such a design consists in the choice
of a set of realizations or nodes for the random variables. Comparisons
are proposed in terms of sensitivity and uncertainty analyses.

3. CLASSIC TWO LEVEL EXPERIMENTAL DESIGN

The random input variables are normalized between −1, the low level,
and +1, the high level. The model for y is:

y (x̃) = β0 +
18∑
i=1

βix̃i +
18∑
i=1

∑
j>i

βi,j x̃ix̃j + . . .+ ε (x̃) (2)

where x̃ = {x̃i}i=1,... ,18 ∈ [−1, 1]18 denote the normalized variables.
The coefficients {βi}i=1,... ,18 correspond to the main components;
{βi,j}i,j=1,... ,18; j>i correspond to the interactions between two
variables; higher order interactions are also considered. The first part
of the model is the regression model and the remaining ε is the error.
This error is supposed to be a random process with a zero mean and
where two realizations are uncorrelated.

Once a numeric experimental design is built, the estimate β̂ of β
is the ordinary least square solution based on the nodes of the design.
In statistics, it is also the best linear unbiased predictor for β.

In a two level experimental design, the nodes are chosen at the
edges of the domain and thus each x̃i can take the values −1 and +1.
Consequently, the complete design will involve 218 = 262, 144 nodes.
When the numerical experiments are expensive in computational
resources, the complete design cannot be performed. A solution is
to consider fractional experimental designs where some effects are
confounded. A fractional design is characterized by its resolution: in a
resolution III, main components can be confounded with interactions
of order 2; in a resolution IV, main components cannot be confounded
with interactions of order 2 but two interactions of order 2 can be
confounded.

Fractional designs of resolution III and IV have been applied to
the hyperthermia problem. The results are detailed in Table 2. Our
attention is focused on the most influential components even though
an experimental design enables to also extract information on the
interactions between factors. As the quality of the resolution increases,
the cost also increases: 32 nodes for a resolution III and 64 nodes for a
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resolution IV. It appears that the properties of the liver and the fluid
body have the greatest influence on the value of y; the properties of
the muscle have a lower impact. As shown in the next sections, these
results are in agreement with those obtained by other methods. On
the other hand, the experimental designs give little importance to the
properties of the tumor and the bone, which is actually unexpected.
Moreover, there is a discrepancy in the estimation of the coefficients β6

and β14 between resolution III and IV. In order to refine the results, the
resolution should be increased but the numerical cost will also strongly
increase: 512 nodes is required for the resolution VI (resolution V does
not exist for this example).

Table 2. Results for the fractional experimental design.

Resolution III Resolution IV
Quantity Coefficient 218−13 218−12

32 nodes 64 nodes
β0 16.888 17.194

σ muscle β1 3.378 2.514
εr muscle β2 −1.222 −2.0237
σ fluid body β3 5.976 6.812
εr fluid body β4 −5.348 −5.485
σ bone β5 1.035 0.845
εr bone β6 −0.796 0.508
σ marrow β7 0.331 −0.538
εr marrow β8 −0.485 0.297
σ kidney β9 0.150 −0.309
εr kidney β10 0.124 0.231
σ liver β11 −5.421 −5.935
εr liver β12 4.679 4.930
σ tumor β13 −1.812 −1.689
εr tumor β14 −1.565 1.322
σ bowel β15 −0.408 −0.249
εr bowel β16 0.179 −0.409
σ lung β17 −0.215 −0.120
εr lung β18 0.530 0.119
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Table 3. Results for the kriging approach: partial variance (%) and
total effect (%) of the different parameters.

Quantity
40 nodes 100 nodes

Variance Effect Variance Effect
σ muscle 2.40 2.79 2.14 2.35
εr muscle 2.82 3.59 1.25 1.51
σ fluid body 29.26 34.25 27.06 31.86
εr fluid body 17.56 21.72 19.90 24.74
σ bone 0.20 0.28 0.01 0.05
εr bone 0.14 0.14 0.02 0.05
σ marrow 0.44 0.51 0.04 0.04
εr marrow 0.05 0.25 0.03 0.07
σ kidney 0.24 0.24 0.01 0.01
εr kidney 0.14 0.25 0.03 0.04
σ liver 20.02 22.17 22.85 25.91
εr liver 18.00 19.15 17.77 19.87
σ tumor 0.59 0.75 0.16 0.41
εr tumor 0.29 0.29 0.25 0.87
σ bowel 0.49 0.62 0.04 0.49
εr bowel 0.13 0.13 0.03 0.24
σ lung 0.11 0.14 0.04 0.35
εr lung 0.09 0.09 0.04 0.17

4. KRIGING

In the kriging approach, the model of y is composed of a regression
model, as in classic experimental design, and of an error whose
properties are different from the error given in (2). Indeed, the error
is chosen to be a stationary Gaussian process with a zero mean but
where two realizations are correlated. From the numeric experimental
design, the parameters of the correlation function are estimated and it
enables to correct the systematic bias that appears between y and the
regression model at the nodes of the design.

The software GEM-SA [10] is used to test the kriging method. To
compute the model of y, it generates a Latin hypercube design of the
initial hypercube with 18 dimensions. For a user-defined number of
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nodes, this Latin hypercube is the result of an optimization process of
the space-filling properties.

Two simulations of the hyperthermia problem have been carried
out using 40 nodes and 100 nodes. The sensitivity analysis is given in
Table 3. For each input random variable xi, the partial variance and
the total effect are computed; those quantities correspond respectively
to Var[E[y|xi]]/Var[y], where E[·] denotes the expectancy and Var[·]
the variance, and to the contribution to the variance of xi but also
of the higher order interactions involving xi [11]. It appears that
the properties of the fluid body and the liver are the most influential
parameters on y. The muscle also has an effect but less important.
The other variables do not have any influence on y. In particular, the
contribution of the tumor is insignificant: this is due to the fact that
the tumor is small and consequently, its influence on the integral in (1)
is negligible. Moreover, it seems that there is low coupling between the
different variables since the partial variance is close to the total effect.
As for the mean and the variance, the results are in accordance with
those obtained in the next sections (see Table 4).

5. STOCHASTIC SPECTRAL METHOD

The stochastic spectral method is based on the expansion of the
random variable y in a polynomial basis depending on the input
random variables. Since the input random variables are characterized
by uniform laws, it can be efficiently expanded on the generalized
polynomial chaos [12] based on the Legendre polynomials:

y (ξ) =
∑
i∈N18

yiΨi (ξ) with Ψi (ξ) =
18∏

k=1

Lg ik (ξk) . (3)

The Lg p are the Legendre polynomials and ξ = {ξk}k=1,... ,18 the
normalized input random variables with uniform laws defined on
[−1, 1]. The total degree of the polynomial is the sum of the indexes ik
in (3).

The unknown coefficients yi in (3) can be computed using the
projection method:

yi =
E [yΨi]
E

[
Ψ2

i

] =
1

E
[
Ψ2

i

] ∫
[−1, 1]18

y (ξ) Ψi (ξ)
1

218
dξ. (4)

The term E
[
Ψ2

i

]
can be computed analytically but to compute the

second integral in (4), quadrature rules are applied; this will define the
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numerical experimental design. This scientific computing approach is
quite different from the statistical approach using Latin hypercubes
discussed in the previous section. However, applying a tensor product
design based on one-dimensional Gaussian quadrature rules is most of
the time prohibitive since the number of quadrature nodes increases
exponentially with the number of dimensions. For instance, an
exact integration up to the order 7 requires 418 = 68, 719, 476, 736
simulations. This number can be dramatically reduced using a sparse
grid : only 9, 841 have to be computed when considering Smolyak’s
algorithm with Gauss Patterson nodes. Nonetheless, an adaptive
sparse grid algorithm is even more suited in order to explore only the
most influential factors. This technique is used with Gauss Patterson
nodes since their building relies on nested sequences at the different
levels of accuracy [6]. However, another choice of quadrature nodes is
possible with some limitations: Stroud nodes can give the same results
with less computations when the degree of polynomials in (4) is low
[5, 13].

Our criterion for adaptivity in the hyperthermia problem is based
on the variance. From (3), the variance is given by:

σ2
y =

∑
i∈N18\(0,... ,0)

y2
i . (5)

In the adaptive version of Smolyak’s algorithm (see Appendix A for
more details), a comparison of the increment of variance brought by
each direction provides the error indicator allowing to choose in which
direction the accuracy of the quadrature has to be increased. A
direction in the algorithm is described by the index i = [i1, . . . , i18]
where the k-th component is such that ik + 1 indicates a level of
accuracy of the quadrature rule following the k-th variable. In (5),
the sum is reduced to the indexes i for which the numerical integration
of E[Ψ2

i ] is exact. At the beginning of the algorithm, only one point
is computed and it corresponds to the index [0, . . . , 0]. At this stage,
only the term y0 can be estimated and no term is available to calculate
the variance in (5). At the first iteration of Smolyak’s algorithm,
the level of accuracy is increased successively for each variable i.e.,
from index [1, 0, 0, . . . , 0] to [0, 0, . . . , 0, 1]. At this step, only the
coefficients related to the polynomials of total degree less or equal
to 1 are calculated from (4). Then, the variance in (5) is reduced to
a sum of 18 terms. At the second iteration of Smolyak’s algorithm,
the level of accuracy is increased from the direction that has brought
the largest contribution to the variance. The new sequences are used
not only to refine the calculation of existing yi coefficients but also to
integrate new yi coefficients that can be computed more precisely with
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Figure 2. Convergence of the stochastic spectral and collocation
methods using balanced and unbalanced criterions.

the new nodes. This approach can be seen as an adaptive building of
the polynomial chaos.

Figure 2 shows the convergence study of the stochastic spectral
method. Two criteria have been experimented in the adaptive
algorithm: first, only the contribution of an index to the variance
is considered; second, the contribution of an index to the variance is
balanced by the number of new nodes to calculate, i.e., the computing
time cost of the new nodes is taken into account. It appears that the
convergence is better when using the balanced variance criterion: in
this case, the variance converges after about 150 nodes while it needs
more than 400 nodes in the case of the unbalanced criterion. The
variance converges to a value close to the result obtained with the
kriging technique (see Table 4). However, the stochastic method gives

Table 4. Mean and variance computed using the different methods.

Method Kriging
Stochastic Stochastic
spectral collocation

Nb. of nodes 40 100 150 1, 000 160 1, 000
Mean 14.082 14.218 14.138 14.131 14.131 14.135

Variance 41.558 42.518 40.140 40.341 39.786 40.846
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Table 5. Results for the stochastic spectral method: partial variance
(%) and total effect (%) of the different parameters.

Quantity
150 nodes 1000 nodes

Variance Effect Variance Effect
σ muscle 2.80 3.20 2.79 3.29
εr muscle 1.82 2.16 1.80 2.16
σ fluid body 28.19 32.34 27.86 32.50
εr fluid body 19.88 23.50 19.58 23.54
σ bone 0.00 0.00 0.00 0.00
εr bone 0.00 0.00 0.00 0.00
σ marrow 0.00 0.00 0.00 0.00
εr marrow 0.00 0.00 0.00 0.00
σ kidney 0.00 0.00 0.00 0.00
εr kidney 0.00 0.00 0.00 0.00
σ liver 23.89 26.60 23.67 26.78
εr liver 16.12 17.91 15.89 18.00
σ tumor 0.10 0.10 0.28 0.50
εr tumor 0.52 0.67 0.50 0.89
σ bowel 0.02 0.02 0.03 0.03
εr bowel 0.03 0.03 0.04 0.04
σ lung 0.00 0.00 0.00 0.00
εr lung 0.00 0.00 0.00 0.00

a more accurate result with about one hundred nodes than the kriging
method. The sensitivity analysis is reported in Table 5: the data are in
agreement with those obtained by the kriging method. Three tissues
impact on the variability of y: the fluid body, the liver and the muscle.
The others are nearly negligible and their influence is more residual
than in the kriging prediction.

6. STOCHASTIC COLLOCATION METHOD

Sparse grid with an adaptive algorithm can also be exploited to
interpolate y. In this case, the interpolation function is obtained using
multi-dimensional Lagrange polynomials and it can be efficiently built
not only from Gauss Patterson nodes but also from other nodes like
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Stroud or Chebyshev nodes. As the sequences of nodes are nested, the
error indicator on the value of y at new nodes can be given by the
absolute difference with the values interpolated using the older nodes.

In this section, we use the Matlab sparse grid interpolation
toolbox [14]. As in the previous section, the adaptivity criterion can
be or not be balanced by the numerical cost of a sequence. Both
situations have been carried out and the results are given in Fig. 2.
It appears that the results do not converge exactly to the same value:
with 1, 000 nodes, σ2

y = 40.434 for the unbalanced criterion whereas
σ2

y = 40.846 for the balanced one. The result with the unbalanced
criterion is closer to the result given by the stochastic spectral method.
Moreover, it seems that the convergence is achieved later compared to
the stochastic spectral method. This is probably due to the fact that
the collocation method adaptivity used here is related to the quality
of the interpolation whereas the spectral method adaptivity is directly
linked to the variance. The effect of the different strategies can also
be viewed when one is interested in the maximum polynomial order
reached in the 18 variables. Fig. 3 shows this result after 1, 000 nodes
for the spectral and collocation methods. In both cases, the most
influential variables (number 1, 2, 3, 4, 11 and 12) are largely explored.
The variables associated to the tumor properties (number 13 and
14) are also exploited because of their weaker but existing influence.
However, the collocation method goes further in the exploration of the
variable number 16 that corresponds to the bowel permittivity but this
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the stochastic spectral and collocation methods.
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variable does not contribute to the variance as shown in Tables 3 and 5.
Finally, the mean results are similar to the ones given by the spectral
method (see Table 4).

7. CONCLUSION

The presence of uncertainties in the tissue properties has been analyzed
in a 2D hyperthermia problem. Among the 18 uncertain properties,
only those related to the tissues located in the neighborhood of the
tumor have an impact on the repartition of the absorbed power. The
sensitivity analysis made with fractional experimental designs leads to
erroneous conclusions while the sensitivity and uncertainty analyses
using the kriging technique give more accurate results. However, it
appears that the spectral stochastic method is the best choice for
this problem when it is used with an adaptive sparse grid algorithm:
convergence is reached with about one hundred nodes. It has been
shown that the implementation of the adaptative algorithm leads to
an adaptative building of the polynomial chaos. On the contrary,
using an adaptive sparse grid algorithm in a stochastic collocation
method does not seem efficient but the reason is probably that the
criterion for adaptivity used in this paper is not based on a statistical
quantity; one should use a criterion based on the variance to improve
the efficiency of the method. Finally, the 2D hyperthermia problem
studied in this paper is useful to properly compare different methods
and the conclusions here can be straightforwardly extended to other
situations.

APPENDIX A. AN ADAPTIVE VERSION OF
SMOLYAK’S ALGORITHM IN STOCHASTIC
PROBLEMS

Consider a regular univariate function f . The integral of f on the
interval [−1, 1] can be approximated by a quadrature formula of level
l: ∫ 1

−1
f (x) dx ≈ Ql(f) =

nl∑
k=1

wl,kf (xl,k) (A1)

where the wl,k and xl,k are respectively the weights and the abscissas
related to quadrature nodes of level l; accuracy increases with the level.

When the integration of regular functions in higher dimensions is
considered, Smolyak’s algorithm is usually preferred to the classical
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tensor product of univariate quadrature formulas. Introducing the
difference formulas:

∆l(f) = Ql(f) −Ql−1(f) with Q0(f) = 0, (A2)

the conventional Smolyak algorithm to compute the integral of a d-
variate function F on the hypercube [−1, 1]d is expressed by:∫

[−1, 1]d

F (x) dx ≈
∑
j∈I(l)

(
⊗d

k=1∆jk

)
(F ) (A3)

with j = [j1, . . . , jd] and I(l) = {j | |j|1 ≤ l−1} where |j|1 is the sum of
the components jk; the k-th component jk is such that jk +1 indicates
the level of accuracy of the quadrature rule following the k-th variable;
the symbol ⊗d

k=1∆jk
denotes the tensor product of unidimensional

quadrature rules.
In the adaptative version of the algorithm, the summation in (A3)

is extended to more general admissible sets than I(l). The only
requirement for constructing these new admissible sets is that the
difference formula ∆jk

= Qjk
− Qjk−1 can be computed. Thus, a

set of indices S is called admissible if, for all j ∈ S, j − ek ∈ S for
1 ≤ k ≤ d; ek is the k-th unit vector [15]. Following this definition, a
general sparse grid formula becomes:∫

[−1, 1]d

F (x) dx ≈
∑
j∈S

(
⊗d

k=1∆jk

)
(F ) (A4)

with S a given admissible set.
The idea of the adaptative algorithm is then to construct nested

sequences of admissible sets. This construction is performed by
adding in priority, to already computed indexes, the indexes in the
forward neighborhood of the index with the largest estimated error;
the forward neighborhood of an index j is defined as the d indexes
{j + ek | k = 1, . . . , d}. This leads to the desired dimension-adaptive
grid refinement. Newly added indexes are pooled as so-called active
indexes while indexes of which the forward neighborhood has been
processed become old indexes.

However, directly applying this algorithm in the case of the
integrals of (4) needs some care. Each index j coincides with a
maximum degree of functions that can be exactly integrated; since
the integrand is of the form F = yΨi when evaluating yi, it implies
that an index j enables to compute yi for a polynomial Ψi whose degree
in each direction k is lower or equal to the value of the index j in the
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same direction: ik ≤ jk ∀k. In other words, it means that as one moves
forward in the algorithm, that is to say as the number of indexes j for
which the nodes have been computed increases, the number of terms
yi that are estimated increases in the same way. Using the notations
given in [6], this specificity of the adaptative Smolyak algorithm is
summarized in Algorithm 1. In this algorithm, O is the set of old
indexes, A the set of active indexes, η the global error estimate, tol
the error tolerance and l indicates a truncation limit of the polynomial
chaos.

Algorithm 2 is another solution: it is more substantial but requires
more calculation.

Algorithm1 Adaptative algorithm. Version 1.
y i=0 for i I(l)
j =[0,..., 0]
for i I(l) do
y i =y i + d

k=1 jk (y i)
5: end for
O = A = {j}

g j ; 2
y =0

while ( tol) do
select j from A with largest g j

10: A = A
O = O
for p =1,...,d do

h = j + ep
if h − eq O for all q =1,...,d then

15: A = A
fo   i I(l) do
yi = yi + d

k=1 hk (y i)
end for

2
y, old = 2

y

20: 2
y = y2

i with i O A \{[0 0]}

gh = | 2
y

2
y,old

end if
end for

25: end while

( ) Ψ

=+ =+
η

\{j}
{j}

{h}

Ψ( )

|−

= max g j
2
y with j A(       )

r

∑

∪

≥

∈

∈

∈

∈

∈

∈

∪

∪

⊗

⊗

η

η

∆

∆

σ

σ σ

σ σ

σ∞ ∞

σ/

∅ ;
;

,...,
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Algorithm 2 Adaptativealgorithm. Version 2.
y i = 0 for i I(l)
j = [0, . . . , 0]
for i I (l) do
y i = y i + ( d

k=1 jk )(yΨ i)
5: end for

O = A = {j}
= + ; gj

while ( tol) do
select j from A with largest g j

10: A = A \ { j}
O = O { j}
for p = 1,..., d do

h = j + ep
if h eq O for all q = 1,..., d then

15: A = A {h}
for i I (l) do
y i = y i + d

k=1 hk (yΨi)
end for

end if
20: end for

AO+ = A O\ {[0 0]}
σ2
y = y2

i with i AO+

for j A do
for i AO+ \ j do

25: yi,tamp = y i
d
k=1 jk (y i)

end for
σ2
y,tamp = y2

i with i AO+ \ j

gj = 2
y

2
y,tamp |

end for
30: = max g j

2
y with j A

end while

= +

|

(       )

∆( ) Ψ

η
∞

−

ε

⊗

≥

∈

∈

∈

∈

∈
∈

∈

⊗

∈

⊗

∪

∆

∞

∪

∑

σ σ

∆

−

−

∪

η

∑

∈σ/
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