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Abstract—This paper presents an analysis with the aim of
characterizing the electromagnetic properties of an arbitrary linear,
bianisotropic material inside a metallic waveguide. The result is that
if the number of propagating modes is the same inside and outside
the material under test, it is possible to determine the propagation
constants of the modes inside the material by using scattering data
from two samples with different lengths. Some information can
also be obtained on the cross-sectional shape of the modes, but
it remains an open question if this information can be used to
characterize the material. The method is illustrated by numerical
examples, determining the complex permittivity for lossy isotropic and
anisotropic materials.

1. INTRODUCTION

In order to obtain a well controlled environment for making
measurements of electromagnetic properties, it is common to do the
measurements in a metallic cavity or waveguide. The geometrical
constraints of the waveguide walls impose dispersive characteristics
on the propagation of electromagnetic waves, i.e., the wavelength of
the propagating wave depends on frequency in a nonlinear manner. In
order to correctly interpret the measurements, it is necessary to provide
a suitable characterization of the waves inside the waveguide. This is
well known for isotropic materials [2, 3, 12, 20], bi-isotropic (chiral)
materials [9, 17], and even anisotropic materials where an optical axis
is along the waveguide axis [1, 10, 15, 16], but for general bianisotropic
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media with arbitrary axes there are so far very few results available. In
principle, an optimization approach as in [12] and [16] can be designed,
where the material parameters are found by minimizing the distance
between measured and simulated S-parameters. However, this method
is typically plagued by non-uniqueness and similar numerical issues,
and we seek a more direct method, providing physical insight to the
problem.

We present in this paper a partial solution to an inverse scattering
problem in a waveguide geometry. It is partial in the respect that the
primary information to be determined is the propagation constants of
the propagating modes in the material. The subsequent problem is to
extract information on the material from the propagation constants,
which we show how to solve for some special cases, but the general
case is still open. The direct problem is solved by defining modes in
an arbitrary linear material. This solution helps us define an N -port
model of the scattering problem, which is then utilized in the inverse
problem. Most of the references mentioned so far only treats the single-
mode case, but the formalism in this paper is ready for an arbitrary
number of modes. However, in practical applications the single-mode
case is usually preferable since it is difficult to measure higher order
modes.

A general formalism for anisotropic waveguides was presented in a
series of papers in the late fifties [5–8], but they have had surprisingly
few followers. The bianisotropic case is treated by [21] and [4]. In these
papers, the fundamental eigenvalue problem defining the modes in a
bianisotropic material is defined and explored for general orthogonality
properties, but it is not applied to a scattering problem. There is a
scattering formalism for discontinuities in [21], but it is rather vague
and there is also some confusion about propagating and evanescent
modes in this paper. This is better accounted for in [4], but the
formalism is only used to study the excitation of modes, not in a
scattering problem. In [22, 23], a coupled-mode analysis is performed
for bianisotropic waveguides, i.e., the fields inside the material are
expanded in terms of modes corresponding to an isotropic material.
The scattering problem is not treated here either, but there are some
graphs of dispersion relations in [22].

In this paper, we use an eigenvalue problem of the form used
in [4, 7, 21] to define modes propagating in a metallic waveguide
filled with a bianisotropic material. The approach is related to similar
spectral decompositions used in homogenization theory [18, 19], where
the boundary conditions of the waveguide are replaced by periodic
boundary conditions. Using these modes, we define an expansion of the
electromagnetic field, which is then used in a mode-matching analysis
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Figure 1. Geometry of the waveguide. The “complex” material may
be anisotropic, bianisotropic, lossy, etc, but has to be linear.

of the scattering problem. In order to deduce the general properties
of this formulation, the quasi-orthogonality results from [4, 8, 21] are
used extensively, and they are repeated in Section 4.

The paper is organized as follows. Some preliminary notions
are made in Section 2, and in Section 3, we illustrate what makes
the isotropic case so simple, namely that it is possible to define an
eigenvalue problem independent of both frequency and propagation
constant. In Section 4, we define the general eigenproblem in terms of
a first order differential equation. The forward scattering problem is
treated in Section 5, and the inverse scattering problem in Section 6.
The resulting algorithm is tested in a numerical example for a non-
magnetic, isotropic lossy dielectric medium in Section 7, and some
conclusions are given in Section 8.

2. PRELIMINARIES

We consider time-harmonic waves in a waveguide of infinite extent in
the z-direction, as in Figure 1. The electromagnetic fields then satisfy
(where we use SI units and time convention e−iωt)

∇× H = −iωD = −iω(εE + ξH) (1)
∇× E = iωB = iω(µH + ζE) (2)

for (x, y) ∈ Ω and z arbitrary, with the boundary conditions n̂×E = 0
and n̂ × H = JS, where JS is the surface current and n̂ is the unit
normal pointing into the region Ω. The surface current is usually
unknown, and the boundary condition n̂ × H = JS should be
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considered as a means of determining JS, not as a restrictive condition
on H. The PEC (Perfect Electric Conductor) condition n̂ × E = 0
is sufficient to calculate the fields. In the case of a lossy metallic wall,
this condition can be replaced by an impedance boundary condition.

In the typical case when the material parameters do not depend
on z, we consider fields with an exponential dependence on z,(

E(x, y, z)
H(x, y, z)

)
=

(
E(x, y)
H(x, y)

)
eγz (3)

where γ = α + iβ is a complex number. Maxwell’s equations can then
be written (where ∇t = x̂∂x + ŷ∂y)(

0 − (∇t + γẑ)×
(∇t + γẑ)× 0

) (
E

H

)
= iω

(
ε ξ
ζ µ

)
︸ ︷︷ ︸

=M

(
E

H

)
(4)

For propagating waves in a lossless waveguide, we have γ = iβ. Lossless
media are characterized by the material matrix M being a hermitian
symmetric positive definite matrix, i.e., MH = M and eHMe ≥ θ|e|2 for
some positive constant θ and all six-vectors e = [E,H]T. Under these
conditions, (4) is a well posed eigenvalue problem for a self-adjoint
operator for each fixed β, where ω is the eigenvalue. A detailed account
in the homogenization setting, where the PEC boundary condition is
replaced by periodic boundary conditions, can be found in [19].

Should M not be hermitian symmetric, a similar analysis of the
well-posedness can be made using a singular value decomposition.
Though, we shall assume that (4) defines suitable modes even in the
nonhermitian case, where the typical effect is that properties such
as orthogonality disappear [4]. This assumption means we consider
relatively small losses, so that it makes sense to talk about wave
propagation.

3. ISOTROPIC MATERIALS

Equation (4) defines the eigenvalue ω as a function of the parameter γ.
To illustrate how this problem corresponds to the classical approach
for isotropic waveguides, we now digress a bit to treat this special case.
For isotropic materials, the first order system (4) can be written as a
second order scalar equation,

−∇2
tu =

(
ω2εµ + γ2

)
u = λu (5)

where ∇2
t = ∂2

x + ∂2
y is the transverse Laplace operator. We see that

by treating ω2εµ + γ2 as a new eigenvalue λ, an eigenvalue problem
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independent of both ω and γ can be formulated and precomputed,
which provides us with dispersion relations as ω =

√
(λn − γ2)/(εµ),

where λn depends only on the shape of the boundary. Usually two
different eigenvalue problems are formulated: one for the z component
of the electric field u = Ez with Dirichlet conditions u = 0 on the
boundary (TM modes), and one for the z component of the magnetic
field u = Hz with Neumann conditions n̂ · ∇tu = 0 on the boundary
(TE modes).

The dispersion relation ω =
√

(λn − γ2)/(εµ) immediately
demonstrates the important phenomenon of a cutoff frequency. For a
hollow waveguide (consisting of a simply connected region Ω enclosed
by PEC walls), the smallest eigenvalue λ0 is always positive. This
means that there exists a cutoff frequency ωc =

√
λ0/(εµ), below which

there can be no fixed frequency propagating waves corresponding to a
purely imaginary propagation constant γ = iβ, since then −γ2 = β2 >
0.

4. BIANISOTROPIC MATERIALS

It is very difficult, maybe impossible, to derive an eigenvalue problem
independent of both ω and γ for a general bianisotropic material.
Equation (4) can be used as an eigenvalue problem determining ω
for a fixed γ, but in most practical applications it is more relevant to
study a fixed frequency ω. We postulate an eigenvalue problem for the
propagation constant as

γm

(
0 −ẑ×

ẑ× 0

) (
Em

Hm

)
=

[(
0 ∇t×

−∇t× 0

)
+ iω

(
ε ξ
ζ µ

)](
Em

Hm

)
(6)

This almost looks like an eigenvalue problem on generalized standard
form, i.e., Au = λBu, except that the mass matrix B =

(
0 −ẑ×

ẑ× 0

)
is not positive definite, which is usually required. The eigenvalues
of this matrix are −1, 0, 1, all with double multiplicity. The strict
mathematical problem of showing that this problem is well posed seems
to be an open issue.

The idea with this eigenvalue problem is to expand the
electromagnetic field in the eigenmodes, and insert them into the
z-dependent Maxwell’s equations which then produces ordinary
differential equations for the expansion coefficients. It then turns out
that the solution is simply an expansion in these modes multiplied
by exponential functions eγnz, and the expansion coefficients can be
determined from the boundary condition that the total transverse
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electromagnetic field is continuous across the boundary between the
surrounding medium and the material.

We now demonstrate some general properties for the solutions of
the eigenproblem (6). It has already been said that a lossless material
is characterized by a hermitian symmetric material matrix, M = MH.
It is convenient to have a means of characterizing the losses in a general
material matrix M. This is related to the anti-hermitian part, and we
use the notation

σM = −iω
M − MH

2
=

−iω
2

(
ε − εH ξ − ζH

ζ − ξH µ − µH

)
(7)

The hermitian symmetric matrix σM is postulated to be non-negative,
since this corresponds to passive media [14]. The notation is motivated
by considering the typical example of an isotropic medium with electric
conductivity:

M =




(
ε +

σ

−iω

)
I 0

0 µI


 =⇒ σM =

(
σI 0
0 0

)
(8)

We now sketch the derivation of the important quasi-orthogonality
relation for the modes. We start by noting that(

En

Hn

)H (
0 −ẑ×

ẑ× 0

) (
Em

Hm

)
= E∗

n · (−ẑ × Hm) + H∗
n · (ẑ × Em)

= ẑ · (Em × H∗
n + E∗

n × Hm) (9)

Multiplying Equation (6) with the (complex conjugated) solution
corresponding to another eigenvalue γn, integrating over the cross
section and integrating by parts, we obtain

γm

∫
Ω

ẑ · (Em × H∗
n + E∗

n × Hm) dS

=−γ∗
n

∫
Ω

ẑ ·(Em×H∗
n+E∗

n×Hm)dS−2
∫

Ω

(
En

Hn

)H

σM

(
Em

Hm

)
dS(10)

which can also be found as the result of applying the frequency domain
reciprocity relation, see [11, Sec. 28.3]. Introducing the notation

Pmn =
1
2

∫
Ω

ẑ · (Em × H∗
n + E∗

n × Hm) dS (11)

Qmn =
∫

Ω

(
En

Hn

)H

σM

(
Em

Hm

)
dS (12)
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where Pmn represents the time average of the mutual power flow in the
z direction, this implies the quasi-orthogonality relation (see also [4, 8])

(γm + γ∗n)Pmn = −Qmn (13)

When m = n, we have γm + γ∗n = 2Re(γn), which can be used to
characterize the different modes with respect to propagation direction
as follows. A lossless waveguide is characterized by σM = 0. In this
case, either Re(γn) = αn is equal to zero, i.e., the mode propagates
undamped with γn = iβn, or the time average of the power flow in
the z direction, Pnn, is zero. In a lossy waveguide, the sign of Re(γn)
must be the opposite of the sign of the power flow Pnn, since Qnn is
non-negative. This last property implies that we can enumerate the
modes according to the signs of Re(γn) and Pnn,

n > 0 if Re(γn) ≤ 0 and Pnn ≥ 0 (14)
n < 0 if Re(γn) ≥ 0 and Pnn ≤ 0 (15)

There is no mode corresponding to n = 0. This splitting is unique
in lossy waveguides, and can be introduced in lossless waveguides by
considering the modes as limits of modes in lossy waveguides when
the loss σM → 0. We use this splitting when analyzing the scattering
problems.

In lossless waveguides, the quasi-orthogonality relation (13)
demonstrates that the mutual power flow Pmn can be non-zero only if
γm + γ∗n = 0. This is achieved when m = n for propagating modes,
γn = iβn, but also for pairs of evanescent modes where γm = α and
γn = −α. Thus, for evanescent modes in lossless waveguides we always
have Pnn = 0, but P−nn may be nonzero. This condition demonstrates
how evanescent modes decaying in opposite directions can couple and
carry power through a structure, which is known as the tunnelling
effect in quantum mechanics. These modes are called twin-conjugate
modes in [4]. Even though the concept of propagating and evanescent
modes can only be clearly defined in lossless media, we assume the
phenomenology is present also in the case of small material losses,
i.e., a finite number of modes are weakly damped (corresponding to
propagating modes), and the rest are strongly damped (corresponding
to evanescent modes).

5. THE FORWARD SCATTERING PROBLEM

The purpose of this section is to provide a mode-matching formulation
for the forward scattering problem that can be used to solve the inverse
scattering problem. We assume a scattering geometry as in Figure 2.
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Figure 2. The scattering geometry in the waveguide. The material
under test (MUT) is confined to the region 0 < z < d with material
parameters M, and the surrounding parts of the waveguide are filled
with material M0, usually air.

The time harmonic field amplitudes in the different regions can then
be expanded as

N∑
n=−N

An

(
E0

n

H0
n

)
eγ0

nz +
∑

n<−N

An

(
E0

n

H0
n

)
eγ0

nz z < 0 (16)

∞∑
m=−∞

fm

(
Em

Hm

)
eγmz 0 < z < d (17)

N∑
n=−N

Bn

(
E0

n

H0
n

)
eγ0

n(z−d) +
∑
n>N

Bn

(
E0

n

H0
n

)
eγ0

n(z−d) d < z (18)

where superscript ‘0’ denotes modes and propagation constants in
the surrounding lossless medium M0. Although not explicitly noted,
the enumeration excludes the cases n = 0 and m = 0, since
there are no modes corresponding to these indices (as previously
mentioned). We have explicitly splitted the modes in the surrounding
waveguide in propagating and evanescent waves, denoting the number
of propagating modes by N . Note that the reference plane for the
B coefficients is chosen to be the right boundary through the shift
z → z − d in the exponentials.

The boundary conditions are that the tangential E and H fields
should be continuous. This is ensured by the following procedure.
Fix z = 0 in expansions (16) and (17), multiply each expansion with(−ẑ×H0

n

ẑ×E0
n

)H
, and integrate over the cross section. We use the notation

P ′
mn =

1
2

∫
Ω

ẑ ·
(
Em ×

(
H0

n

)∗ +
(
E0

n

)∗ × Hm

)
dS (19)
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for the product between expansion functions in different parts of the
waveguide. If the cross sections of the different parts are different,
this integral should be understood in terms of the common part of
the cross section, and another set of equations is generated by the
condition that the total tangential electric field on the metallic non-
aperture part of the junction should be zero. We do not give the
details of this procedure since it does not change the overall results.
Making use of the quasi-orthogonality relations (13) in the surrounding
lossless medium, we obtain the following equations (remember that for
evanescent waves Pnn = 0, but the combination P−nn may be nonzero)

AnPnn =
∞∑

m=−∞
fmP

′
mn 1 ≤ n ≤ N (20)

AnPnn =
∞∑

m=−∞
fmP

′
mn −N ≤ n ≤ 1 (21)

A−nP−nn =
∞∑

m=−∞
fmP

′
mn N < n (22)

0 =
∞∑

m=−∞
fmP

′
mn n < −N (23)

with similar equations for the B-coefficients. In the forward scattering
problem, the coefficients of the incident waves, {An}N

n=1 and {B−n}N
n=1,

are known, and the remaining coefficients are to be determined
assuming full knowledge of the modes inside and outside the MUT.
Equation (23) and the corresponding equation

0 =
∞∑

m=−∞
fmeγmdP ′

mn N < n (24)

for the opposite side describe the absence of incident evanescent waves
on either side of the MUT. Based on the reasoning that these equations
span all degrees of freedom except the 2N propagating modes in the
surrounding medium, we assume that they can be used to eliminate
all of the modes in the material except 2N ones, i.e., all higher
order expansion coefficients {fm}|m|>N can be expressed in terms
of {fm}N

m=−N . This means Equation (20) and the corresponding
equation for the {B−n}N

n=1 coefficients represent two N × 2N systems
of linear equations, from which {fm}N

m=−N can be determined from
{An, B−n}N

n=1. The coefficients {fm}N
m=−N can then be inserted in (21)
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and (22) (and the corresponding equations for the B-coefficients)
to give the coefficients of the scattered field. Considering only the
propagating modes in the surrounding medium, this corresponds to a
matrix equation

{A−n, Bn}N
n=1 = S{An, B−n}N

n=1 (25)

where S is a 2N × 2N matrix. Any linear scattering problem can be
represented in this way, and this section has provided an outline to
how the S-matrix can be computed, although it may in practice be
very difficult to find closed form expressions for it. In the two-port
network case (N = 1), this matrix can be measured with a network
analyzer.

6. THE INVERSE SCATTERING PROBLEM

In the inverse scattering problem the aim is to infer information of the
scattering system from scattering data. In our case, the ultimate goal
is to determine the material matrix M from reflection and transmission
coefficients, corresponding to the S-matrix in (25). To solve this
problem completely is indeed a challenge, but we can at least obtain
partial information on the wave propagation characteristics.

Assume that in the full problem, the interfaces are so widely
separated that only the first M modes in the MUT contribute to the
coupling between the interfaces. At the left interface, Equation (23)
can then be written

∞∑
m=M+1

fmP
′
mn = −

M∑
m=−M

fmP
′
mn (26)

the key point being that in the left hand side there are only ‘plus’
modes, hence these can be determined as functions of {fm}M

m=−M not
depending on the sample length d. A corresponding equation exists for
the right interface, where instead only the higher order ‘minus’ modes
occur. The interpretation of this is that the higher order modes, i.e.,
the evanescent modes in the material, only exist around the interfaces.
This means Equations (20) and (21) can be represented as the matrix
equation

{An}N
n=−N = K1{fm}M

m=−M (27)

where the 2N×2M coupling matrix K1 does not depend on the sample
length d. The corresponding equation for the right interface is

{fmeγmd}M
m=−M = K2{Bn}N

n=−N (28)
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Figure 3. A box representation of the scattering situation. The
coupling matrices K1 and K2 connect the propagating modes inside
the material to the propagating modes in the surrounding medium,
and the transmission matrix TM(d) models the propagation inside the
material. The total transmission matrix from right to left, taking
into account the possible mismatch at the material boundaries, is the
product T (d) = K1TM(d)K2.

where the 2M × 2N coupling matrix K2 does not depend on d. Since
we have

{fm}M
m=−M =diag

(
e−γmd

)
{fmeγmd}M

m=−M =TM(d){fmeγmd}M
m=−M

(29)

where diag(e−γmd) denotes a 2M × 2M diagonal matrix with the
propagation factors e−γmd on the diagonal, we obtain the full
transmission matrix as the product

{An}N
n=−N = K1TM(d)K2{Bn}N

n=−N = T (d){Bn}N
n=−N (30)

where the only dependence on the sample length d is via the diagonal
matrix TM(d). The situation is depicted in Figure 3.

So far, we have not touched upon the subject of the relation
between M and N , i.e., the number of propagating modes in the
material and the surrounding medium, respectively. For the inverse
problem to be well posed, we require that the scattering situation can
be arranged so that M ≤ N (this can be done by controlling the cut-
off frequencies via the geometry, see Section 7). This is based on the
reasoning that each propagating mode represents a degree of freedom,
and in order to determineM degrees of freedom inside the material, we
need to be able to control at least as many degrees of freedom outside
the material.

The T -matrix is not directly accessible from measurement data,
but the S-matrix in (25) can be deduced by varying the input
coefficients {An, B−n}N

n=1 and measuring the response coefficients
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{A−n, Bn}N
n=1. The T -matrix is then found by rearranging the S-

matrix to obtain the mapping {Bn, B−n}N
n=1 → {An, A−n}N

n=1. An
example of this procedure for the single-mode case is given in Section 7.

Performing this procedure for two different sample lengths d1 and
d2, we can determine two matrices T (d1) and T (d2). We assume that
M = N and that all matrices are invertible. We find

T (d2)−1T (d1) = K−1
2 TM(d2)−1TM(d1)K2 = K−1

2 TM(d1 − d2)K2 (31)

where we made use of the diagonal representation of the matrix TM(d)
in (29). This new matrix is a similarity transformation of the matrix
TM(d1 − d2), which has eigenvalues {e−γm(d1−d2)}N

m=−N . Thus, the
matrix T (d2)−1T (d1) has the same eigenvalues, and with knowledge
of the two lengths d1 and d2 the propagation constants γm can be
determined.

The same procedure can be applied to the matrix T (d1)T (d2)−1 =
K1TM(d1 − d2)K−1

1 . The eigenvectors can also be extracted and used
to find the matrices K1 and K2, however, it remains an open problem
how to utilize this information in order to obtain more data on the
material.

We finally note that the reference plane for the measurement does
not need to be at the material boundary. This is due to the fact that
a shift of reference plane in a lossless waveguide simply corresponds to
T → UTV H, where U and V are unitary matrices. This means

T (d2)−1T (d1) → V T (d2)−1UHUT (d1)V H = V T (d2)−1T (d1)V H (32)

which does not change the eigenvalues, only the eigenvectors. Thus, if
we are only interested in the propagation constants, the reference plane
on each side of the sample is arbitrary as long as it is the same for
both samples. But if we want information related to the eigenvectors,
it is necessary to calibrate the reference plane to be at the material
boundary.

The same reasoning also applies to the circumstance that if the
equipment is not calibrated, we do not really measure the mode
coefficient, but rather how this mode couples to a probe and is fed
back in a cable; such circumstances are modeled by transformations of
the form T → FTG−1, where F and G are matrices (or error boxes)
modeling the probes at each end. Obviously, this does not change the
situation compared to the previous paragraph.

7. NUMERICAL EXAMPLES

To illustrate the algorithm for the inverse scattering problem, we
apply it to numerically simulated data. The algorithm determines
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Figure 4. The geometry and mesh of the numerical examples. The
two surrounding waveguides are designed for X-band operation (8.2–
12.4 GHz, cutoff frequency 6.55 GHz), with cross section 2.29×1.02 cm
and length 5.00 cm. Each open end is used as a port for the TE10

mode. A waveguide section of cross section 1.25 × 1.02 cm and length
4.00 cm or 5.00 cm is filled with the material under test. The mesh
uses 3514 tetrahedral elements.

propagation constants, but in order to deduce material parameters
from the propagation constants, it is necessary to have an explicit
relation between them. The examples in this section are chosen among
the very few such results that can be found in the literature. The
results in this section can be transformed to other frequency regions
by simultaneously scaling the dimensions of the waveguide and the
frequency.

The waveguide setup is shown in Figure 4. The center part of
the waveguide, containing the MUT, has different physical dimensions
from the surrounding waveguides. This is in order to limit the
number of propagating modes in the MUT, and achieve the condition
M = N . We need two central waveguide sections with different
lengths, corresponding to the different lengths of the material samples.
The simulations were made with the program Comsol Multiphysics
version 3.3, which is based on the Finite Element Method. Note that
this means the forward problem generating the data for the inverse
problem is not the mode-matching formulation in Section 5, but rather
a numerical method for general problems.

The cutoff frequency for the TE10 mode of the air-filled waveguides
is 6.55 GHz, and the frequency interval for simulation was chosen as
7–15 GHz. In a first test, the central waveguide part was filled with
a non-magnetic isotropic material with relative permittivity εr = 4
and conductivity σ = 0.1 S/m, implying a dispersive complex relative
permittivity ε(ω) = εr + σ

iωε0
, where ε0 is the permittivity of vacuum.

The calculations were made for the two lengths d1 = 4.00 cm and
d2 = 5.00 cm. The program generates S-parameters for the structure
with reference planes at the ports, where the S-parameters are defined
from (

A−1

B1

)
=

(
S11 S12

S21 S22

) (
A1

B−1

)
(33)
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However, we want to use the relation(
A1

A−1

)
=

(
T11 T12

T21 T22

) (
B1

B−1

)
(34)

in the algorithm determining the propagation constants. The relations
between these parameters are [13]

T11 = 1/S21 (35)
T12 = −S22/S21 (36)
T21 = S11/S21 (37)
T22 = (S12S21 − S11S22)/S21 (38)

After using this transformation, we can find the propagation constants
from the eigenvalues of the matrix T (d2)−1T (d1). In this procedure,
it is necessary to unwrap the phase (remove discontinuities ≥ π in the
imaginary part) in order to avoid discontinuities in the propagation
constants as functions of ω. The complex permittivity is then
determined by inverting the relation β2 = ε(ω)ω2/c20 − λ, where
λ = (π/a)2, with a being the width of the center waveguide. The
resulting quantity is plotted in Figure 5. The code doing this procedure
on given S-parameter data is only a few ten lines in Matlab.

It is seen that the method can determine the complex permittivity
rather accurately. The errors can be attributed to the numerical
accuracy of the FEM program generating the data. A full-blown
stability analysis of the algorithm is beyond the scope of this paper,
and we settle for the following simple numerical test. We perturbed the
S-parameters from the simulations by adding noise generated by the
Matlab command randn multiplied by three different factors 0.1, 0.01,
and 0.001, representing different noise levels. The relative error in the
calculated permittivity was of the same order as the perturbation in
all these cases, demonstrating that the algorithm is reasonably stable.

To extend the results, we turn to the anisotropic case. A
non-magnetic, anisotropic dielectric material with its principal axes
aligned with the walls of a rectangular waveguide is described by the
permittivity

ε = ε0

(
εx 0 0
0 εy 0
0 0 εz

)
(39)

where ε0 is the permittivity of vacuum and the coordinates are the
natural ones in a rectangular waveguide. It is shown in [10] that the
same dispersion relation applies for the fundamental TE mode for this
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Figure 5. The complex permittivity computed from the S-parameters
by the algorithm in this paper. The circles indicate 10 linearly
distributed frequencies in the interval 7–15 GHz, smallest frequencies
farthest to the left. Notice that the imaginary part (the y-axis) is
scaled by the factor ωε0, making it correspond to the conductivity σ.
Also observe the tight scales. The relatively large deviation for high
frequencies is probably due to multimode propagation.
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Figure 6. Results for an anisotropic material. In this case, the
narrow section of the waveguide has principal values εx = 2+iσ/(ωε0),
εy = 3 + iσ/(ωε0), and εz = 4 + iσ/(ωε0), where σ = 0.1 S/m.
The mesh and the frequency range, 7–15 GHz, are the same as in
the other examples, and the errors are largest for higher frequencies.
The curve for εx − 2 starts off with a relatively large error at around
(0.0024, 0.0928) for f = 7 GHz in the figure. This is due to that for
this principal value the midsection waveguide is then operating below
its cutoff frequency, which is 8.5 GHz.
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Figure 7. Reconstructing an isotropic material in a circular
waveguide, where the air part has radius 2.5 cm and the MUT part
has radius 1.25 cm, resulting in two propagating TE11 modes in the
frequency range 3.6 GHz ≤ f ≤ 4.6 GHz. The MUT is lossless, with
εr = 4. The ends of the circular waveguides are terminated by PEC
surfaces, and the four ports are defined in the coaxial cables. The two
curves correspond to different eigenvalues/propagation factors. Note
the very small numbers on the y-axis.

material as for an isotropic material, i.e., γ2 = λ−ω2εx,y,zε0µ0. In order
to deduce all three principal values, the material sample is rotated so
that each principal direction is aligned with the polarization of the
fundamental TE mode in the waveguide. The results are very accurate,
and are given in Figure 6.

To conclude this section and demonstrate that the algorithm holds
also in the multiport setting, we present a case where M = N = 2.
This is realized in a circular waveguide geometry as in Figure 7, where
the circular waveguide is fed by four pins, two on each side of the MUT,
with the ports defined in the coaxial cables. The error is larger in this
case than for the rectangular waveguide, which can be attributed to a
poor resolution of the fine structure in the coaxial cables.

8. CONCLUSIONS

In this paper, we have analyzed the forward and inverse scattering
problems of a bianisotropic material sample in a metallic waveguide.
Under the assumption that there are as many modes inside the MUT
as outside, measurements on two samples with different lengths are
enough to determine the propagation constants inside the MUT.
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Additional information on the modes is available, but the utilization
of this information remains a problem for further research.

Since the algorithm primarily determines propagation constants
and not material data, it is necessary to have a precise characterization
of the mode problem (6) in order to extract material data. This is
possible for a few special cases, especially isotropic media in waveguides
with arbitrary cross section and anisotropic media in rectangular
waveguides, where there is an explicit expression connecting the
propagation constant to frequency and material data. To extend the
results to more general materials, a more detailed investigation of the
mode problem is necessary.

The analysis leading to the determination of propagation
constants is very general, and holds for any linear material.
For instance, nothing in the analysis changes if the material is
heterogeneous in the (x, y)-plane, but does not depend on the z
variable. Indeed, this has been utilized in the numerical example in
Section 7, where we used a different cross section of the waveguide
containing the sample. Actually, the analysis is applicable to any
structure in which the electromagnetic field can be described by an
expansion in propagating and evanescent modes. In particular, this
includes Bloch waves in periodic structures.

There is probably a large range of special cases where the proposed
formalism reduces significantly in complexity. Most prominently, in
waveguides filled with isotropic materials, there is almost no coupling
between different modes. Also, there are significant simplifications for
materials where an optical axis is along the waveguide axis.

The major assumption in this paper is that the number of
propagating modes is the same inside and outside the MUT, or possibly
a smaller number inside the MUT. The main reason for this assumption
is that it is necessary to be able to explore the degrees of freedom
available inside the material by varying the degrees of freedom outside
the material. This is not always easy to achieve: if the surrounding
medium is air, the cutoff frequencies inside the MUT are usually
lower, implying that there may be more propagating modes inside
the material. In order to achieve the same number of propagating
modes, we may choose the surrounding material parameters M0 to
obtain a small contrast to the MUT parameters M, or place the MUT
in a somewhat narrower waveguide than its surrounding material. The
latter strategy was employed in Section 7 of this paper.
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