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Abstract—This paper proposes a novel subspace projection algorithm
for impulsive interference (IMI) suppression in echo samples received
by an over-the-horizon radar (OTHR). We particularly highlight the
model that the frequency spectrum of IMI component is a complex
cosine signal such that IMI cosine can be filtered out by subspace
projection. Compared with existing algorithms, a more simple clutter
suppression algorithm is used to reject the most powerful clutter
components. Furthermore, this algorithm will neither estimate nor
need the exact temporal position of IMI, which avoids the impact
resulted from the position estimation error. Another advantage is
its little impact on true target signal and no impact on the clutter.
Experimental results based on data from real high frequency surface
wave (HFSW) OTHR systems are also shown to verify the proposed
algorithm.

1. INTRODUCTION

High frequency (HF) over-the-horizon radar (OTHR) has an attractive
ability of radiation propagation beyond the line-of-sight, either by
ground-waves diffracted around the earth curvature (seeing 200–
300 km) or by sky-waves refracted by the ionosphere (seeing 1000–
3000 km). It is widely used in ocean state remote sensing, marine ships
and aircrafts detection for both military and civilian applications [1–
5, 25].

HF OTHR works in a complicated electromagnetic environment
resulted by clutters and impulsive interference (IMI). Firstly, the
echo signal is mixed with strong ground and ocean clutters. The
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ground clutter normally exhibits as a narrow-band signal with Doppler
frequency close to zero. The ocean clutter, on the other hand, is usually
modeled as two Bragg peaks (first-order scattering) and surrounding
continuum (high-order scattering), where the Bragg peaks usually
dominate the ocean clutter since their amplitudes are generally two
orders of magnitude higher than those of the surrounding continuum [7,
8]. Secondly, the IMI brings broadband noise with high-amplitude
into the entire range of Doppler search space, significantly limiting
the target detection performance of the OTHR. Typical external IMI
can be either natural or man-made, including the echo of meteor trail
from the universe [9–11], the air lightning [12], the shortwave radio
communication electromagnetic wave interference [8] and etc. The
IMI-s are usually 20–40 dB stronger than the thermal noise at the
receiver [14], where the former brings the dominant impact on OTHR
performance over the latter and the attentions are usually paid to
the former. The impact arising from external IMI reduces the radar
sensitivity on the order of 10 dB, making it unacceptable for the OTHR
to track small aircrafts [12].

As a major impact on OTHR sensitivity, IMI physics and its
suppression methods have been studied for many years. There are three
categories of detection and suppression methods in existing literatures,
including spatial adaptive processing (SAP) [7, 8, 16, 23], space-time
adaptive processing (STAP) [17, 18, 26, 29] and temporal [12, 19–
21, 24, 27]. Although the STAP or SAP algorithms may reject spatial
structured interference such as radio frequency interference (RFI) [8],
but there still exists a potential that leaking energy of IMI from
sidelobe will exhibit as temporal IMI. In recent papers, a family of
algorithms for temporal IMI suppression have been proposed, where
IMI is detected in temporal waveform after costly clutter suppression,
and restored by linear prediction techniques [12, 19–21].

As a processing with low complexity, Barnum directly masked
the clutter Doppler bins to zero, and took IFFT to transform back
to time domain [12]. After that, the IMI can be detected by means of
RMS threshold updated at every sample within the coherent processing
interval (CPI), and finally be rejected. The Barnum’s algorithm is
simple to implement. However, it uses an ideal high-pass filter without
transitional region to mask the Doppler bins, leading to long temporal
trail. As a result, if one IMI has significantly higher amplitude than
other IMI-s, the long trail from this dominant IMI peak will extend
to almost the whole CPI, submerging the peaks for other IMI-s. This
would make the IMI-s with lower amplitudes effectively undetectable.

Almost all reported temporal methods are based on detection and
suppression focusing on IMI temporal characteristics. Few attentions
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are paid to its frequency detection and suppression methods. As a trial
on this research, this paper models IMI as a common Dirac function
and regards its spectrum as cosine signal.

In this paper, we would first transfer the echo signals into
the Doppler domain by the DFT, or directly extract the Doppler
spectrum from coherent integration result in existing radar system.
Like the Barnum’s algorithm, we remove the low frequency parts
corresponding the ground and ocean clutters. Then IMI is the most
powerful component in the remaining spectrum. When IMI spectrum
is regarded as complex cosine signal and spans the signal subspace, it
can be readily filtered out by projecting the remaining spectrum into
the noise subspace. We highlight that the spectrum of IMI is regarded
as cosine in a new “time domain” in this paper. Unlike many other
approaches, this proposed algorithm does not require complicated
but rather simple clutter suppression pre-processing just as in [12].
This makes it very attractive for practical implementation which
concerns greatly about the complexity. Meanwhile, the suppression
does not need the IMI position estimation provided by other estimation
algorithms. The proposed algorithm can directly use the Doppler from
existing radar system, and does not require the extra DFT and IDFT.
We have intensively tested the proposed algorithm based on the data
from real HFSW OTHR systems. The experimental results show that
this proposed algorithm is suitable for most types of IMI.

2. SIGNAL MODEL

2.1. Radar Echo Model

A column of P scalar echo samples at a certain azimuth-range cell in
one CPI can be modeled as [27]

r (t) = s (t) + c (t) + i (t) + w (t) t = 0, . . . , P − 1 (1)

where s(t) is the target signal of interest, c(t) is the ocean and ground
clutter, i(t) is the external IMI, w(t) is the internal thermal noise
assumed as white. An ideal target of constant reflectivity and radial
velocity over the CPI is modeled as a complex cosine signal:

s (t) = Ase
jωdt (2)

where ωd = 2πfd is the Doppler frequency of target. The dominant
spectral components of OTHR ocean clutter is modeled as two complex
cosine signals [8], whereas the high-order continuum is ignored for two
reasons: 1) the high-order comtinuum is spread over a wider bandwidth
and difficult to filter out; 2) its power is far lower than the first-order
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clutter and bring little impact on the results even without being filtered
out. The ground clutter has a very strong zero-Herz component and
can be modeled as complex number. Therefore, the clutter component
is modeled as

c (t) = cae
jωBt + cre

−jωBt + cg (3)

where ωB = 2πfB is the Bragg frequency, ca and cr are the advance
and recede first-order ocean clutter amplitudes respectively, cg is the
ground clutter amplitude.

The external IMI is usually regarded as an impulse, namely,
modeled as a Dirac function δ (t − t0) with amplitude Ai, and position
parameter t0.

i (t) = Aiδ (t − t0)

So the echo sample is rewritten as

r (t) = cae
jωBt + cre

−jωBt + cg + Ase
jωdt

+Aiδ (t − t0) + w (t) t = 0, . . . , P − 1 (4)

2.2. Pseudo-target and Pseudo-noise

The frequency spectrum of the echo in (4) can be expressed as:

R (ω) = caδ (ω − ωB) + crδ (ω + ωB) + cgδ (ω)

+Asδ (ω − ωd) + Aie
jωt0 + W (ω) (5)

where caδ (ω − ωB) + crδ (ω + ωB) is the spectrum of ocean clutter,
cgδ (ω) spectrum of ground clutter, δ (ω − ωd) spectrum of target
signal, Aie

jωt0 spectrum of external IMI, W (ω) spectrum of noise.
The spectrum of external IMI can be regarded as a generalized complex
cosine signal, where the variable is ω rather than temporal variable t.
For clearly showing its cosine-like characteristics, we make the variable
substitution as

ω → t′, t → ω′

So, (5) can be expressed as

R
(
t′
)

= caδ
(
t′ − t′B

)
+ crδ

(
t′ + t′B

)
+ cgδ

(
t′
)

+Asδ
(
t′ − t′d

)
+ Aie

jω′
0t′ + W

(
t′
)

(6)

The Equation (5) is entirely identical to (6) except for the variable
symbol representing. Signal in (6) may be regarded as in a new “time
domain”. The last component W (t′) is weak and still regarded as
pseudo-noise background. Components with δ ( ) representation in (6)
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are all viewed as noise in the “time domain”, referred to as pseudo-
noise. The complex cosine signal Aie

jω′
0t′ is the “target signal of

interest” or pseudo-target with “frequency” ω′
0. When there are more

IMIs than one, (6) can be generalized to have sum of complex cosine
components

∑
k Aike

jω′
kn′

with different “frequencies” ω′
k.

After a proper pre-processing on (6) to suppress clutter (the first
three components in (6)), the remaining components are

R
(
t′
)

= Asδ
(
t′ − t′d

)
+ Aie

jω′
0t′ + W

(
t′
)

(7)

In the remaining components, there are a strong complex cosine signal
and two weak pseudo-noise components.

3. SUPPRESSION ALGORITHM BASED ON SUBSPACE
PROJECTION

3.1. Projection Filtering

Based on the signal model in (7), a projection-based method for
filtering out pseudo-target is proposed intuitively: when this pseudo-
target component spans the target signal subspace, it can be filtered
out by projecting the echo signal R(t′) in (7) into the noise subspace.

Rewrite Doppler samples in (7) as a column vector

x = [R (0) , R (1) , . . . R (P − 1)]T

Denote its correlation matrix as

Rxx = E
{
xxH

}
(8)

where E ( ) is the statistical expectation, and ( )H denotes the
Hermitian transpose. Define the pseudo-signal-to-noise-ratio as

SNR′ = S′/N ′

where S′ is the power of pseudo-target or IMI, N ′ is the power
of other components in (7). When the SNR′ is high enough, this
correlation matrix Rxx may have two separated parts of eigenvalues.
The eigen-vectors corresponding to bigger eigenvalues construct the
signal subspace Ss, which is spanned by the pseudo-target signals.
Besides, the eigen-vectors corresponding to other eigenvalues construct
the noise subspace Sn, which is spanned by the pseudo-noise signals.

Construct a projector onto Sn [22]

Pn = Vn

(
V H

n Vn

)−1
V H

n (9)
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where Vn is constructed by eigen-vectors corresponding to Sn. Then,
subspace projection techniques can be used to project the Doppler
samples into the noise subspace, and consequently to filter out the
pseudo-targets or IMIs.

3.2. Clutter Suppression

As can be seen in Section 2, the clutter suppression is the required
pre-propose according to the derivation of signal model in (7).
Typical clutter suppression algorithms with perfect performance are
usually characterized by high computational cost. As a classical
one, the iteration-cancellation method is described in [21]. Each
short-time complex Doppler spectrum (at each range and azimuth) is
operated upon separately, and then the clutter cancellation proceeds
by iterations. At each iteration, the largest remaining Doppler
peak (usually clutter) is modeled as a cosine (actually a complex
exponential) and subtracted.

By virtue of clutter characteristics described in (3), Barnum
proposes an extremely simple clutter suppression method [12]. The
Doppler bins ranging −2fB ∼ +2fB are directly masked or set to zero
for the purpose of filtering out dominant clutter energy, that is, the
ground clutter and the first-order ocean clutter.

Through experimental tests, although Barnum’s simple masking
may cause long temporal trail as analyzed in Section 1, a number of
experimental results shows that this shortage brings little impact on
the detection results of the algorithm proposed in this paper.

3.3. Algorithm Steps

According to the above analysis, especially the model in (7) and
projection-based filtering, the proposed algorithm step is described as:

1) Perform the DFT or FFT on the echo r (t) in (1), or directly
extract Doppler samples R (ω), corresponding to a certain
azimuth-range cell;

2) Mask the clutter Doppler bins by setting them into zero value;
3) Construct the Hankel matrix as below where N � S

A =

⎡
⎢⎢⎣

R (0) R (1) · · · R (S − 1)
R (1) R (2) · · ·

...
...

. . .
...

R (N − 1) · · · R (P − 1)

⎤
⎥⎥⎦
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4) Compute the sample autocorrelation matrix Rx = A · AH as an
approximation of Rxx in (8)

5) Perform eigenvalue decomposition (EVD) on Rx, and sort its
eigenvalues as

λ1 > λ2 > . . . λk � λk+1 . . .

The k eigenvalues significantly bigger than others correspond to
k IMIs in the echo signal. The eigenvectors corresponding to the
smaller eigenvalues span the noise subspace Sn, representing as
Vn.

6) Project the original Doppler Spectrum R (ω) in step 1) into the
noise subspace Sn by means of projector

Pn = Vn

(
V H

n Vn

)−1
V H

n

3.4. Improvements

For the purpose of reducing computational cost, we propose two
improvement schemes. Both are concentrated on decreasing the size of
matrix on decomposition. Either can be configured to OTHR system
individually.

1) According to the matrix theory, there is some inherent relationship
between eigen-value decomposition (EVD) and singular value
decomposition (SVD), which can be found in [22]. So the
former is replaced by the latter as an improvement. Specifically,
the eigenvalues in step 5) are only used for sorting, so the
singular value can also serve this sorting task. The singular
vectors are used to construct noise subspace Sn. According to
Golub [28], the numeric SVD computation can be implemented
based on QR decomposition or Jacobi method, where the latter
is recommended. The Jacobi method is based on iteration
computation. Updating is performed iteratively until convergence.
The convergence speed is of two-order [28].

2) The whole Doppler spectrum is divided into two parts: negative
frequency and positive frequency. Or in model in (7), signal R (t′)
is divided into two “temporal” segment t′ = 0, . . . , (P − 1) /2
and t′ = (P − 1) /2 + 1, . . . , (P − 1). Every segment is
individually applied to this proposed algorithm. The noise
subspace computation and projection are performed individually
on one segment. This improvement reduces the elements in Rx

in step 4) as one fourth of original. Another advantage is that a
true-target may only exist on one segment and the filtering impact
on the true-target peak will be smaller.
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4. EXPERIMENTAL RESULTS

4.1. Data Collection

The algorithm described above is tested using experimental data from
a real bistatic HF OTHR system in China. The transmitting system
selects a clean frequency channel with sufficient bandwidth of 50–
100 kHz. Its operation frequency is determined in real-time by a
frequency management system whose mechanism is described in [6].
The receiving system is based on ULA of vertical monopole antenna
elements. The isolation between transmit and receive sites permits
bistatic operation with a linear frequency modulated continuous
waveform (FMCW). Experimental data were collected in a research
for IMI suppression on OTHR during which the interference type was
unknown and possibly arose due to a multiplicity of man-made and
natural sources. Each CPI consists of P = 256 linear FMCW pulses or
sweeps with center frequency determined in real-time by the frequency
management system.

4.2. Suppression Results

We use two groups of detailed experimental results in this paper, with
parameter S = 16, where Fig. 1–Fig. 4 corresponds to the first group
and Fig. 5–Fig. 6 the second group.

Figure 1 shows the original temporal waveform of the first group
which is corresponding to a certain azimuth-range cell. As can
be seen, the dominant waveform energy is produced by the low-
frequency clutter, vibrating slowly and slightly, whereas the target
signal modulated on clutter waveform is weak when compared with
clutter amplitude, vibrating severely. The solid line in Fig. 3 shows
its Doppler spectrum with IMI unsuppressed, where the dominant
energy is concentrated to the center frequency, exhibited as the clutter
components, and a target peak shown at about −0.34 Hz. Here, the
X-axis denotes the normalized frequency, that is, the true frequency
divided by the A/D sample frequency.

This group data contain 256 samples. In this figure, there exists an
obvious sharp peak at about 110-th sweep, which is a potential IMI. Its
duration is about 10 sweeps, and its temporal contour contains a single
peak without other vibration. This IMI brings wider bandwidth noise
into the Doppler spectrum, and consequently raises the noise level.
Fig. 2 shows the temporal waveform results of applying the proposed
projection algorithm, where three maximum eigenvalues are selected
to span the signal subspace, and other eigenvalues the noise subspace
Sn. After projection filtering for IMI suppression, this strongest peak
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has disappeared in the remaining temporal waveform as illustrated in
Fig. 2.

When comparing the Doppler spectrums of suppressed and
unsuppressed, as shown in Fig. 3, we can see that the noise floor
has been dropped down for about 10 dB after suppression by means
of this proposed algorithm. However, this processing brings a little
impact on the true target peak at −0.34 Hz. Another attractive
merit is that it does not change amplitudes in low frequency band,
mainly corresponding to Bragg peaks or ground clutter. Few reported
algorithms have this advantage of no impact on clutter. But a
disadvantage is that when the target falls in the low frequency segment
surrounding the clutter, this proposed algorithm brings no processing
gains or improvement on the noise floor or SNR, either negative or
positive gains. The target peak at near clutter will remain unchanged.

Detailed Doppler spectrum improvements for Fig. 3 is illustrated
in Fig. 4. The improvement above 0 dB means the suppressed spectrum
is lower than that of unsuppressed at a certain Doppler bin, leading to
an expected improvement on floor falling. This figure highlights a fact
that the floor has been dropped down significantly, with the maximum
improvement about 28 dB and the mean 7.1725 dB through accurate
calculation. Furthermore, at the low frequency section, there is no
change, namely 0 dB improvement.

As can be seen, the processed temporal waveform exhibits an
unexpected vibration on the low sweep (0–20 sweeps). The amplitude
vibration may be caused by the projection. At the border or the edge,
the continuity of signal is broken. When we perform DFT or FFT,
we implicitly perform a periodic expanding of this finite segment of
signal into an infinite periodic series signal. So the discontinuity at
the border of every period segment is obvious, which may be regarded
as an unexpected false IMI. Or this discontinuity exhibits as an IMI.
Projection will “smooth” this discontinuity.

Figure 5 shows the experimental results of the second group data.
From the target tracking results, we know that a target should present
at about −0.32 Hz at this cell. Unfortunately, its Doppler spectrum is
mixed with wider bandwidth noise, causing the target to be submerged
and undetectable. This fact is illustrated by the upper solid curve
(unsuppressed). The lower dotted line illustrates the processed results.
From this curve, we can obviously find an improvement of over 10 dB
at the noise floor. Furthermore, a most inspiring result is illustrated at
−0.32 Hz. Before suppression, a expected true target is invisible and
submerged by the noise floor which is mainly resulted from IMI wide
spectrum. But in the suppressed spectrum, this true target is revealed
obviously with about 10 dB peak over the neighbouring floor. This
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Figure 1. Original temporal waveform.

Figure 2. Processed temporal waveform through projection.
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Figure 3. Doppler spectrum comparison.

Figure 4. Doppler spectrum improvement at every Doppler bin.
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Figure 5. Doppler spectrum comparison.

Figure 6. Doppler spectrum improvement at every Doppler bin.
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proves that this projection algorithm has perfect performance for IMI
suppression while brings little impact on the true target signal.

Detailed Doppler spectrum improvements for Fig. 5 are illustrated
in Fig. 6. This figure shows its improvement with the maximum about
36 dB and the mean 12.177 dB through accurate calculation, and no
change at the low frequency section.

5. CONCLUSION

A viable algorithm for temporal IMI suppression for OTHR has been
developed and demonstrated in this paper, where we exploit the fact
that the IMI phase spectrum can be regarded as complex cosine. After
clutter suppression, this cosine signal exhibits as a strong pseudo-
target. Therefore, subspace analysis and projection can be used here
to filter out the IMI as a pseudo-target. Experimental data from real
OTHR system are used to verify its performance. Consequently, this
proposed algorithm can work soundly and efficiently. This proposed
algorithm has the following advantages:

1) Directly use the Doppler data from coherent integration, without
extra DFT or IDFT;

2) No impact on clutter such as clutter peak expanding;
3) A little impact on true target peak;
4) Only need a rather simple clutter suppression.
5) Neither require nor estimate the temporal position of IMI.
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