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Abstract—Coaxial magnetic gears are a new breed of magnetic
devices, which utilize the interaction of permanent magnet fields to
enable torque transmission. Apart from using a numerical approach
for their magnetic field analysis, an analytical approach is highly
desirable since it can provide an insightful knowledge for design and
optimization. In this paper, a new analytical approach is proposed to
calculate the magnetic field distribution in coaxial magnetic gears. A
set of partial differential equations in terms of scalar magnetic potential
is used to describe the field behavior, and the solution is determined by
considering the boundary constraints. The accuracy of the proposed
approach is verified by comparing the field distribution results with
those obtained from the finite element method.

1. INTRODUCTION

Coaxial magnetic gear is an emerging magnetic device which can
achieve torque transmission and speed variation by the interaction of
permanent magnets (PMs) [1–3]. Due to its non-contact mechanism,
it can offer some distinct advantages over the mechanical gearboxes,
namely the minimum acoustic noise, free from maintenance, improved
reliability, inherent overload protection, and physical isolation between
input and output shafts. Moreover, since it adopts coaxial topology,
the utilization of the PMs can be greatly improved, thus it can offer
much higher torque density than the parallel-axis magnetic gears [4].
Also, the coaxial topology makes it readily be integrated with electric
machinery to meet the demands arising from wind power generation [5]
or electric vehicles [6].
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Figure 1. Coaxial magnetic gear.

Figure 1 shows the topology of a typical coaxial magnetic gear. It
consists of three main parts: the inner rotor, the stationary ring and the
outer rotor. Two airgaps are formed to separate them from each other.
PMs are mounted on the surfaces of the two rotors. The stationary ring
consists of ferromagnetic segments to modulate the magnetic field built
up by the two rotors. For this magnetic gear, the pole-pair numbers of
the inner and outer rotors are 1 and 4, respectively. The number of the
ferromagnetic segments is 5. Thus, the gear ratio of 4 : 1 is resulted.

An insightful knowledge of the magnetic field distributions in
coaxial magnetic gears is vitally important for their design and
optimization. As a popular technique for analyzing electromagnetic
devices [7, 8], the finite element method (FEM) is also employed to
analyze coaxial magnetic gears. However, such numerical method can
provide neither closed-form solution nor physical insight for designers.
In recent years, the development of analytical approaches to calculate
the magnetic field in PM materials [9–12] and PM machines [13] has
taken on an accelerated pace.

The purpose of this paper is to propose a new analytical approach
to calculate the magnetic field distribution of coaxial magnetic gears.
In order to give accurate prediction for both the radial magnetic flux
density and the tangential magnetic flux density in the two airgaps,
the modulation effect arising from the stationary ring will be modeled
by a set of partial differential equations in terms of scalar magnetic
potential. The accuracy of the proposed analytical calculation will
be verified by comparing the corresponding numerical results with the
FEM results.



Progress In Electromagnetics Research, PIER 92, 2009 3

2. ANALYTICAL MODEL

In order to formulate the analytical model, the permeabilities of the
iron yokes of the two rotors and the ferromagnetic segments are
assumed to be infinite. Hence, the nonlinear factors are absent, and
the magnetic field excited by the two rotors can be considered as
superposition of the fields excited by individual rotors. With the
outer rotor PMs removed, the magnetic gear illustrated in Fig. 1 can
be represented in pseudo-polar coordinates as shown in Fig. 2. The
calculation region can be classified into four regions: PMs (Region I),
inner airgap (Region II), outer space (Region III), and slots (Region j,
j = 1 − 5).

Figure 2. Analytical model.

In various regions, the flux density and field intensity are expressed
as:

In Region I:
B = μ0μrH + μ0M (1)

In Regions II, III and j:

B = μ0H (2)

where μr is the relative permeability and M is the residual
magnetization vector of PMs. By using the scalar magnetic potential ϕ,
the field behavior can be governed by a set of 2-rank partial differential
equations:

In Region I:

∇2ϕI(r, θ) =
divM

μr
(3)

In Region II:
∇2ϕII (r, θ) = 0 (4)
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In Region III:
∇2ϕIII (r, θ) = 0 (5)

In Region j:
∇2ϕS

j (r, θ) = 0 (6)

In order to solve the above equations, the following boundary
conditions need to be taken into account:

When r = r1:
ϕI(r1, θ) = 0 (7)

When r = r2:

ϕI(r2, θ) = ϕII (r2, θ) (8)

μr
∂ϕII

∂r

∣∣∣
r=r2

= μr
∂ϕI

∂r

∣∣∣
r=r2

− Mr (9)

When r = r3 and θ ∈ [αj , βj+1]:

ϕII (r3, θ) = ϕS
j (r3, θ) (10)

∂ϕII

∂r

∣∣∣
r=r3

=
∂ϕS

j

∂r

∣∣∣
r=r3

(11)

When r = r3 and θ ∈ [βj , αj ]:

ϕII (r3, θ) = ϕF
j (12)

When θ = αj and r ∈ [r3, r4]:

ϕS
j (r, αj) = ϕF

j (13)

When θ = βj and r ∈ [r3, r4]:

ϕS
j (r, βj) = ϕF

j (14)

When r = r4 and θ ∈ [αj , βj+1]:

ϕIII (r4, θ) = ϕS
j (r4, θ) (15)

∂ϕIII

∂r

∣∣∣
r=r4

=
∂ϕS

j

∂r

∣∣∣
r=r4

(16)

When r = r4 and θ ∈ [βj , αj ]:

ϕIII (r4, θ) = ϕF
j (17)
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When r = r5:
ϕIII (r5, θ) = 0 (18)

where r1, r2, r3, r4 and r5 are the radii of the inner rotor yoke, inner
rotor PM surface, stationary ring inside surface, stationary ring outside
surface, and outer rotor yoke, respectively; αj, βj+1 are the left border
and right border of the jth slot; θS, θF are the width of the slot and
the ferromagnetic segment. Because of the infinite permeability, each
ferromagnetic segment can be considered as an equipotential object,
and the scalar magnetic potential of the jth segment is denoted by
ϕF

j . It should be noted that the 6th and the 1st segments are actually
identical, thus having the same potential.

3. MAGNETIC FIELD SOLUTION

3.1. Field Distribution in Airspaces

The scalar magnetic potentials in Region II and III are governed by
Laplace’s equations given in (4) and (5). By separating the variables
r and θ, the general solution in polar coordinates can be written as:

ϕII =
∞∑

n=1

[(
Enrn+Fnr−n

)
cos nθ+

(
Gnrn+Hnr−n

)
sin nθ

]
+E0 ln r+F0

(19)

ϕIII =
∞∑

n=1

[(
Inrn+Jnr−n

)
cos nθ+

(
Knrn+Lnr−n

)
sinnθ

]
+I0 ln r+J0

(20)
It should be noted that the zero harmonic terms have to be taken

into account because of the non-uniformity along the circumference
arising from the ferromagnetic segments. Moreover, considering the
periodicity, the zero harmonic terms should not be related to θ.

3.2. Field Distribution in PMs

The scalar magnetic potentials in Region I is governed by Poissonian
equation given in (3). According to the superposition law, the general
solution of Poissonian equation is the sum of the general solution of
the corresponding Laplace’s equation and one special solution of its
own. Fig. 3 shows the magnetization distribution of the PM on the
inner rotor, where p is the number of pole-paris and θ0 is the initail
phase angle. In polar coordinates, the magnetization is given by:

M = Mrr + Mθθ (21)
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Figure 3. Magnetization distribution.

where Mθ = 0, Mr =
∞∑

n=1
(Mn cos nθ0 cos nθ + Mn sin nθ0 sin nθ) and

Mn =
{

4Br sin(iπ/2)/(μ0iπ) if n = ip, i = 1, 3, 5, . . .
0 otherwise . Then, it

is easy to find a special solution of (3) as given by:

φI =
∞∑

n=1

[Wn(r) cos nθ0 cos nθ + Wn(r) sin nθ0 sinnθ] (22)

where

Wn(r) =

⎧⎨
⎩

Mnr/
(
μr

(
1 − n2

))
if n = ip

⋂
p �= 1, i = 1, 3, 5, . . .

M1r ln r/(2μr) else if n = p = 1
0 otherwise

.

Thus, the general solution of the scalar magnetic potential in
Region I can be expressed as:

ϕI=
∞∑

n=1

[
(Anrn+Bnr−n+Wn(r) cos nθ0) cos nθ
+(Cnrn+Dnr−n+Wn(r) sin nθ0) sin nθ

]
+A0 ln r+B0 (23)

For the same reason as aforementioned, the zero harmonic terms
have been taken into account.

3.3. Field Distribution in Slots

The scalar magnetic potential in Region j (the jth slot) is governed by
Laplace’s equation in (6). Considering the boundary conditions given
by (13) and (14), the general solution can not be directly obtained
by using the method of separating variables. In order to figure out
its general solution, the problem described by (6) and (10)–(17) is
separated into the following two cases:

Case 1: Find the solution of the following equation:

∇2ϕS
j1(r, θ) = 0 (24)
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subject to following boundary conditions:

ϕS
j1

∣∣∣
θ=βj

= ϕF
j (25)

ϕS
j1

∣∣∣
θ=αj

= ϕF
j+1 (26)

ϕS
j1

∣∣∣
r=r3

= ϕS
j1

∣∣∣
r=r4

= ϕj (27)

∂ϕS
j1

δr

∣∣∣
r=r3

=
∂ϕS

j1

δr

∣∣∣
r=r4

= 0 (28)

where ϕj = ajθ + bj, aj = (ϕF
j+1 − ϕF

j )/θS and bj = (ϕF
j βj+1 −

ϕF
j αj)/θS .

Case 2: Find the solution of the following equation:

∇2ϕS
j2(r, θ) = 0 (29)

subject to following boundary conditions:

ϕS
j1

∣∣∣
θ=βj

= ϕS
j1

∣∣∣
θ=αj

= 0 (30)

ϕS
j2

∣∣∣
r=r3

= ϕII
∣∣∣
r=r3

− ϕj (31)

ϕS
j2

∣∣∣
r=r4

= ϕIII
∣∣∣
r=r4

− ϕj (32)

∂ϕS
j2

∂r

∣∣∣
r=r3

=
∂ϕII

∂r

∣∣∣
r=r3

(33)

∂ϕS
j2

∂r

∣∣∣
r=r4

=
∂ϕIII

∂r

∣∣∣
r=r4

(34)

These two cases are illustrated in Fig. 4. For Case 1, it is easy to
find the general solution as given by:

ϕS
j1 = ajθ + bj (35)

For Case 2, the method of separating variables is suitable for
finding its general solution. The corresponding result is given by:

ϕS
j2 =

∞∑
m=1

[(
Xjmrλm + Yjmr−λm

)
sin nλm (θ − αj)

]
(36)

where λm = mπ/θS.
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Therefore, the general solution of the scalar magnetic potential in
Region j can be expressed as:

ϕS
j =ϕS

j1 + ϕS
j2 =ajθ + bj +

∞∑
m=1

[(
Xjmrλm +Yjmr−λm

)
sin nλm(θ− αj)

]
(37)

3.4. Boundary Conditions

Firstly, on the surface of the inner rotor yoke, from (7) and (23), it
yields:

Anrn
1 + Bnr−n

1 + Wn(r1) cos nθ0 = 0 (38)
Cnrn

1 + Dnr−n
1 + Wn(r1) sin nθ0 = 0 (39)

A0 ln r1 + B0 = 0 (40)

Secondly, on the surface of the inner rotor PM, from (8), (9), (19)
and (23), it yields:

Anrn
2 + Bnr−n

2 + Wn(r2) cos nθ0 = Enrn
2 + Fnr−n

2 (41)
Cnrn

2 + Dnr−n
2 + Wn(r2) sin nθ0 = Gnrn

2 + Hnr−n
2 (42)

A0 ln r2 + B0 = E0 ln r2 + F0 (43)

nEnrn
2 − nFnr−n

2 =
[

nAnrn
2 − nBnr−n

2 + r2W
′
n(r2) cos nθ0

−r2Mn cos nθ0/μr

]
(44)

nGnrn
2 − nHnr−n

2 =
[

nCnrn
2 − nDnr−n

2 + r2W
′
n(r2) sin nθ0

−r2Mn sin nθ0/μr

]
(45)

A0 = E0 (46)

(a) (b)

Figure 4. Decomposition of magnetic field in slot: (a) Case 1, (b)
Case 2.
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Thirdly, on the surface of the outer rotor yoke, from (18) and (20),
it yields:

Inrn
5 + Jnr−n

5 = 0 (47)
Knrn

5 + Lnr−n
5 = 0 (48)

I0 ln r5 + J0 = 0 (49)

Fourthly, on the inside surface of the stationary ring, from (10)
and (12), the scalar magnetic potential on this surface can also be
expressed as:

ϕII (r3, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕF
1 if −π ≤ θ < α1

ϕS
j (r3) if αj ≤ θ < βj+1

ϕF
j if βj ≤ θ < αj

ϕF
1 if β6 ≤ θ < π

(50)

Expanding (50) into Fourier series over [−π, π], it yields:

ϕII (r3, θ) =
c0

2
+

∞∑
n=1

[cn cos nθ + dn sin nθ] (51)

where

c0 =

⎡
⎢⎢⎢⎣

NS∑
j=1

∞∑
m=1

(1 − cos mπ)
(
Xjmrλm

3 + Yjmr−λm
3

)
/λm

+T
NS∑
j=1

ϕF
j

⎤
⎥⎥⎥⎦ /π,

cn =

⎡
⎢⎢⎢⎣

NS∑
j=1

∞∑
m=1

τnmj

(
Xjmrλm

3 + Yjmr−λm
3

)

−
NS∑
j=1

2 sin(nγj) sin(nθS/2)(ϕF
j+1 − ϕF

j )/(n2θS)

⎤
⎥⎥⎥⎦ /π,

dn =

⎡
⎢⎢⎢⎣

NS∑
j=1

∞∑
m=1

ωnmj

(
Xjmrλm

3 + Yjmr−λm
3

)

+
NS∑
j=1

2 cos(nγj) sin(nθS/2)
(
ϕF

j+1 − ϕF
j )/(n2θS

)
⎤
⎥⎥⎥⎦ /π,

T = θS + θF , γj = (αj + βj+1)/2,

τnmj =

{
λm(cos mπ cos nβj+1−cos nαj)

n2−λ2
m

if n �= λm
cos nαj−cos mπ cos nβj

2(n+λm) − θS sin λmαj

2 if n = λm

, and
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ωnmj =

{
λm(cos mπ sinnβj+1−sin nαj)

n2−λ2
m

if n �= λm
sin nαj−cos mπ sinnβj

2(n+λm) + θS cos λmαj

2 if n = λm

.

Thus, from (19) and (51), it yields:

E0 ln r3 + F0 = c0/2 (52)
Enrn

3 + Fnr−n
3 = cn (53)

Gnrn
3 + Hnr−n

3 = dn (54)

Moreover, (11) denotes that the continuity of the flux density
through this surface should be satisfied. So, after conducting
integration with a factor of sin λm(θ − αj) for both sides of (11), it
yields:∫ βj+1

αj

∂ϕS
j

∂r

∣∣∣
r=r3

sin λm(θ−αj)dθ=
∫ βj+1

αj

∂ϕII

∂r

∣∣∣
r=r3

sinλm(θ−αj)dθ

(55)
Substituting (19) and (37) into (55), it yields:

mπ

2

(
Xjmrλm

3 − Yjmr−λm
3

)
=

∞∑
n=1

n
[(

Enrn
3 −Fnr−n

3

)
τnmj

+
(
Gnrn

3 −Hnr−n
3

)
ωnmj

]
+

(1−cos mπ)E0

λm
(56)

Fifthly, on the outside surface of the stationary ring, the following
equations can be similarly deduced:

I0 ln r4 + J0 = e0/2 (57)
Inrn

4 + Jnr−n
4 = en (58)

Knrn
4 + Lnr−n

4 = fn (59)

mπ

2

(
Xjmrλm

4 −Yjmr−λm
4

)
=

∞∑
n=1

n
[(

Inrn
4 −Jnr−n

4

)
τnmj

+
(
Knrn

4 −Lnr−n
4

)
ωnmj

]
+

(1−cos mπ)I0

λm
(60)

where

e0 =

⎡
⎢⎢⎢⎣

NS∑
j=1

∞∑
m=1

(1 − cos mπ)
(
Xjmrλm

4 + Yjmr−λm
4

)
/λm

+T
NS∑
j=1

ϕF
j

⎤
⎥⎥⎥⎦ /π,
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en =

⎡
⎢⎢⎢⎣

NS∑
j=1

∞∑
m=1

τnmj

(
Xjmrλm

4 + Yjmr−λm
4

)

−
NS∑
j=1

2 sin(nγj) sin(nθS/2)
(
ϕF

j+1 − ϕF
j

)
/(n2θS)

⎤
⎥⎥⎥⎦ /π, and

fn =

⎡
⎢⎢⎢⎣

NS∑
j=1

∞∑
m=1

ωnmj

(
Xjmrλm

4 + Yjmr−λm
4

)

+
NS∑
j=1

2 cos(nγj) sin(nθS/2)
(
ϕF

j+1 − ϕF
j

)
/(n2θS)

⎤
⎥⎥⎥⎦ /π.

Finally, the continuity of flux across the ferromagnetic segments
should also be taken into consideration. Fig. 5 illustrates the flux across
the stationary ring and each ferromagnetic segment. In Fig. 5(a), the
flux flowing through the inside surface and the outside surface should
be equal: ∮

∂ϕII

∂r

∣∣∣
r=r3

rdθ =
∮

∂ϕIII

∂r

∣∣∣
r=r4

rdθ (61)

Substituting (19) and (20) into (61), it yields:

E0 = I0 (62)

In Fig. 5(b), the flux flowing into the ferromagnetic segment
should be equal to that flowing out of it. So, it yields:

∫ αj

βj
−∂ϕII

∂r

∣∣∣
r=r3

dθ +
∫ r4

r3
−∂ϕS

j−1

r∂θ

∣∣∣
θ=βj

dθ

=
∫ αj

βj
−∂ϕIII

∂r

∣∣∣
r=r4

dθ +
∫ r4

r3
−∂ϕS

j

r∂θ

∣∣∣
θ=αj

dθ
(63)

Substituting (19), (20) and (37) into (63), it yields:

∞∑
n=1

2 sin
(

nθF

2

)[(
Enrn

3 −Fnr−n
3 −Inrn

4 +Jnr−n
4

)
cos(nηj)

+
(
Gnrn

3 −Hnr−n
3 −Knrn

4 +Lnr−n
4 ) sin(nηj

)]=

∞∑
m=1

⎡
⎣(Xjm−X(j−1)m cos mπ

)(
rλm
4 −rλm

3

)
+(

Yjm−Y(j−1)m cos mπ
)(

r−λm
4 −r−λm

3

)
⎤
⎦+(αj− αj−1) ln

(
r4

r3

)
(64)

where ηj = (αj + βj)/2.
Therefore, the unknown quantities An, Bn, Cn, Dn, En, Fn, Gn,

Hn, In, Jn, Kn, Ln, A0, B0, E0, F0, I0, J0, Xjm, Yjm and ϕS
j that are

involved in the scalar magnetic potential solutions can be determined
by (38)–(49), (52)–(54), (56)–(60), (62) and (64). It should be noted
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that, although (64) can deduce five subequations (j = 1−5), only four
of them are independent of the others.

After solving the magnetic field distribution built up by the inner
rotor PMs, the same process can be conducted to obtain the solution
of that excited by the outer rotor PMs. Hence, according to the
superposition law, the magnetic field distribution built up by both
rotors can be obtained. Then, the flux density distributions can be
deduced from the scalar potential by using:

Br = −μ0
∂ϕ

∂r
(65)

Br = −μ0

r

∂ϕ

∂θ
(66)

4. CALCULATION RESULTS

Figure 6 gives the scalar magnetic potential distributions along the
inside and outside surfaces of the stationary ring excited by individual
rotors. The initial phase angle θ0 equals zero.

Figure 7 shows the flux density waveforms at the middle of both
airgaps produced by the inner rotor PMs. In order to assess the validity
of the analytical method, the corresponding results obtained from the
FEM are provided for comparison. For the FEM results, they include
the FEM (unsat) case that the saturation effect of iron yokes and
ferromagnetic segments is neglected, and the FEM (sat) case that the
corresponding saturation effect is depicted by the B-H characteristic
of the laminated silicon steel (Type 50H470). It can be seen that

(a) (b)

Figure 5. Flux continuity across stationary ring: (a) Whole ring, (b)
single ferromagnetic segment.
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(a) (b)

Figure 6. Scalar magnetic potential distributions in stationary ring
excited by individual rotors: (a) Inner rotor, (b) outer rotor.

(a) (b)

(c) (d)

Figure 7. Flux density distributions in both airgaps excited by
inner rotor PMs: (a) Radial component in inner airgap, (b) tangential
component in inner airgap, (c) radial component in outer airgap, (d)
tangential component in outer airgap.

the analytical results agree well with the FEM (unsat) results. On
the other hand, the saturation of the ferromagnetic segments has a
significant effect on the radial flux density, whereas the effect is less
significant on the tangential flux density.

Similarly, the results excited only by the outer rotor PMs are
shown in Fig. 8. It can be seen that the analytical results agree well
with the FEM (unsat) results. Different from the results excited only
by the inner rotor PMs, the saturation of the ferromagnetic segments
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(a) (b)

(c) (d)

Figure 8. Flux density distributions in both airgaps excited by
outer rotor PMs: (a) Radial component in inner airgap, (b) tangential
component in inner airgap, (c) radial component in outer airgap, (d)
tangential component in outer airgap.

(a) (b)

(c) (d)

Figure 9. Flux density distributions in both airgaps excited by both
rotors: (a) Radial component in inner airgap, (b) tangential component
in inner airgap, (c) radial component in outer airgap, (d) tangential
component in outer airgap.
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has a little effect on both the radial flux density and the tangential flux
density. It is due to the fact that the outer rotor has more PM poles
than the inner rotor, and the magnetic path is shorter. By summing
up these two groups of results, the magnetic field distribution in both
airgaps caused by the two rotor PMs together are shown in Fig. 9.

In order to assess the difference of computational resources
between the proposed analytical calculation algorithm and the FEM
algorithm, they are run by a standard PC (Pentium 4, 3.4 GHz,
1GB RAM) to generate the required flux density distributions. The
corresponding computational time for the proposed algorithm takes
only 1.9 s, whereas that for the FEM algorithm is 21 s which is 11
times longer than the proposed one. It should be noted that the
required computational time for the FEM calculation has already
ignored the time for pre-processing such as mesh generation; otherwise,
the required time is much longer.

5. CONCLUSIONS

In this paper, an analytical approach to calculate the magnetic field
distribution in coaxial magnetic gears has been proposed and verified.
Firstly, a set of partial differential equations in terms of scalar magnetic
potential is used to describe the field behavior. Then, the scalar
magnetic potentials in different regions are determined by considering
the boundary constraints. Consequently, the airgap flux densities are
derived from the scalar magnetic potentials. All the analytical results
agree well with that obtained from the FEM, which makes the proposed
analytical approach be a useful tool for design and optimization of the
coaxial magnetic gears.
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