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Abstract—This paper presents an efficient and simple approach of
implementing the Landau-Lifshitz-Gilbert (LLG) equation of mag-
netisation motion within the Finite-difference Time-domain (FDTD)
method. This combined electromagnetic-micromagnetic simulation
technique is particularly important for modeling electromagnetic in-
teraction with lossy magnetic material in the presence of current and
magnetic sources, particularly at very high frequencies. The efficient
implementation involves simple two-point spatial interpolations that
are applicable to two and three-dimensional FDTD grids, and uses a
stable iterative algorithm for the time integration of the LLG equa-
tion. A ferromagnetic resonance numerical experiment on a rectangu-
lar Permalloy prism excited through its cross-section by a non-uniform
pulse field from a transmission line was carried out for the purpose
of verifying the combined FDTD-LLG computations. The numerical
results were in good agreement with linearised analytical solutions of
the LLG equation for uniform and non-uniform precession modes. This
paper also presents a brief investigation on the use of non-staggered
FDTD grid schemes to model magnetic material using the LLG equa-
tion, and indicates that the classical FDTD staggered scheme offers
simplicity in implementation and more accuracy for modeling wave in-
teraction with lossy magnetic material than the non-staggered schemes
based on Maxwell’s equations formulation.

1. INTRODUCTION

The Finite-difference Time-domain (FDTD) method is an explicit,
second-order accurate finite-difference method for solving Maxwell’s
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equations. Through its structure and implementation, it provides a
flexible framework for the simulation of a wide range of electromagnetic
phenomena, and provides almost infinite bandwidth due to its time
domain nature [1]. Thus it provides a natural platform for dynamic
and steady-state modelling of the interaction and coupling between
electromagnetic waves from current and charge sources with non-linear
magnetic material. This is of particular importance in the simulation
of devices containing conductive magnetic materials with complex
geometries and multi-layers with other dielectric and conductive
materials operating at high frequencies. Examples include magnetic
record and readout heads and ferrite loaded waveguides.

Two approaches have been adopted to solve electromagnetic
problems involving magnetic materials using the FDTD method.
The first approach involved using a frequency dependent tensor
permeability that relates the magnetic flux density to the field strength
in Maxwell’s equations [2, 3]. This is a frequency domain approach
which requires transformation into the time domain before inclusion
into the FDTD formulation. It is limited to linearised forms of the
equation of magnetisation motion without anisotropy and exchange
fields and associated boundary conditions, and therefore does not yield
information about the magnitude and distribution of magnetisation in
the material.

In the second approach, Maxwell’s equations are augmented
with the Landau-Lifshitz-Gilbert (LLG) equation that describes the
precessional motion of the magnetisation vector in a magnetic material
under the influence of an effective field. Hence this formulation
allows the inclusion of anisotropy and exchange effects, while the
electromagnetic fields due to magnetic and/or electric charges and
currents are evaluated naturally through the solution of Maxwell’s
equations. Hence this approach allows the simulation of complete
magnetic based devices with dielectric and conductive layers, and is
used in this paper. Previous work using this approach was limited to
linear, small signal approximations of the LLG equation with [4, 5] or
without damping [6–8], did not include magnetocrystalline anisotropy
and exchange fields, with no treatment of magnetic boundary
conditions, and used explicit schemes for the time integration of the
LLG equation that were either inappropriate or unstable for small
damping [8]. The previous work also used cumbersome and less
accurate four-point spatial interpolations to evaluate the fields and
magnetisations due to the staggered nature of the FDTD grid [4, 5, 7, 8].
Detailed work by Vacus and Vukadinovic [9] was carried out to
solve the nonlinear system of the LLG equation and Maxwell’s
equations using the FDTD method that incorporated anisotropy and
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exchange fields and using implicit schemes, but used a numerically
dispersive, unstaggered FDTD grid for the implementation, which is
not appropriate for studying dynamic wave interaction with magnetic
material.

The aims of this work are therefore to provide an efficient and
simple implementation of the discretised LLG equation (including
anisotropy and exchange fields) within the FDTD grid, referred
to here as the FDTD-LLG scheme, and to present the complete
stable algorithm for the solution of the nonlinear system of the
LLG and Maxwell’s equations. Driven by the desire to simplify the
staggered spatial discretisation of Maxwell’s equations to conform to
the unstaggered nature of the LLG equation, this paper also presents
a discussion on a brief investigation that was carried out on the use of
unstaggered FDTD schemes for the modeling and simulation of lossy
magnetic material.

Section 2 of this paper presents the mathematical models of the
electromagnetic and micromagnetic equations involved. The finite-
difference discretisation and time marching algorithms for the solution
of Maxwell’s and the LLG equations within the FDTD framework
along with the proposed efficient discretisation scheme are detailed
in Section 3. In Section 4, a numerical experiment is presented
whereby a thin rectangular Permalloy prism is excited by a pulse field
from transmission lines, and compared with approximate analytical
solutions of the problem to validate the numerical computations of
the combined FDTD-LLG scheme. An overview of the outcomes and
possible extensions and improvements to the FDTD-LLG scheme will
be discussed in Section 5, including a discussion on the potential use of
two unstaggered schemes based on Maxwell’s equations for modeling
and simulation of lossy magnetic material.

2. MATHEMATICAL MODELS

2.1. Maxwell’s Equations

In the MKS system of units, Maxwell’s curl equations for a general
lossy, dispersive medium are:

∂B
∂t

= −∇× E (1)

ε
∂E
∂t

= ∇× H − σE (2)

where H is the magnetic field, E is the electric field, ε is the
permittivity of the medium, and σ is the electrical conductivity. The
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magnetic flux density B is related to the magnetisation in a magnetic
medium through the constitutive relation:

B = μ0(M + H) (3)

where μ0 is the permeability of free space.
For simplicity, the electromagnetic fields presented in this paper

are limited to two dimensions in transverse-magnetic mode with
respect to z (TMz). However, the work presented here is directly
applicable to the transverse-electric (TEz) and full three-dimensional
modes. In the TMz mode, Maxwell’s curl equations reduce to:

∂Bx

∂t
= −∂Ez

∂y
(4)

∂By

∂t
=

∂Ez

∂x
(5)

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− σEz (6)

2.2. The Landau-Lifshitz-Gilbert Equation

The Landau-Lifshitz equation of magnetisation motion with the
Gilbert damping term is used in this work and is given by [10]:

dM
dt

= −|γ|(M × Heff (M)) +
α

|M|
(
M × dM

dt

)
(7)

where γ = 1.75882 × 1011μ0 (m·Hz/A) is the gyromagnetic ratio,
α is the Gilbert damping coefficient, |M| = Ms is the saturation
magnetisation and Heff is the effective field given by:

Heff (M) = Happ + H(M) + Hk(M) + Hex(M) (8)

The effective field includes the following field contributions:

2.2.1. Applied Field, Happ

This is a user-defined field inside the magnetic medium and can be
static or transient, uniform or non-uniform.

2.2.2. Maxwell Field, H

Fields generated from the solution of Maxwell’s equations and internal
to the magnetic medium. These include fields due to currents and
magnetic sources such as demagnetising fields and eddy current fields.
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2.2.3. Exchange Field, Hex

These fields try to align neighbouring magnetic spins into the same
direction in the magnetic material. For nearest neighbour interactions,
the exchange field is given by [11]:

Hex =
2A

μ0M2
s

∇2M (9)

where A is the exchange constant, and ∇2 is the Laplacian operator.

2.2.4. Anisotropy Field, Hk

A uniaxial magnetocrystalline anisotropy is assumed in this work with
field:

Hk =
−2Ku

μ0M2
s

(M · u)u (10)

where Ku is the anisotropy constant, and u is a unit vector parallel to
the anisotropy axis.

In the absence of surface anisotropy, the exchange boundary
condition for the LLG equation in (7) is [12]:

∂M
∂n

= 0 (or n · ∇M = 0) (11)

where n is the vector normal to the surface of the magnetic material.

3. NUMERICAL IMPLEMENTATION

3.1. The Finite-Difference Time-Domain (FDTD) Method

In the FDTD method, the fundamental spatial unit is the Yee cell [13],
shown in Fig. 1 with side lengths Δx, Δy, and Δz. Each E field
component in the centre of the Yee cell is evaluated from the curl of
the four surrounding magnetic field components, while each H field
component is evaluated using the curl of the four neighbouring electric
field components. The electric and magnetic field components are
displaced from each other in space by half a cell length. This field
arrangement naturally satisfies the fields’ boundary conditions at the
interfaces of different materials and therefore boundary conditions need
not be enforced [1, 13].

The front face of the unit cell in Fig. 1 represents a TMz structure,
followed by a TEz structure half a cell into the negative z-direction.
As previously indicated, this paper focuses on the TMz mode grid
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Figure 1. Fundamental Yee cell in the FDTD method.

Figure 2. Two-dimensional FDTD grid showing TMz and TEz field
symbols, including the proposed placement of the magnetisation vector
at the cross points of the grid cells.

for simplicity, but nevertheless references to the TEz and three-
dimensional grids will be made, as the proposed implementation is
applicable to these modes. Fig. 2 shows a FDTD grid made from a
number of Yee cells in two dimensions, along with the field components
in the TMz and TEz modes.

The convention used here to represent the discretised field
component f in two dimensions is f |ni,j = f(iΔx, jΔy;nΔdt) where
the subscripts i and j are integers representing spatial grid locations
in the x and y direction respectively, and the superscript n is an
integer representing the increment of the time step Δt. For example,
discretisation of Equation (4) using second-order accurate, central
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differences at time step n yields:

∂Bx

∂t

∣∣∣∣
n

i+1/2,j

≈ −
(

Ez|ni+1/2,j+1/2 − Ez|ni+1/2,j−1/2

Δy

)
(12)

Time integration is achieved using a second-order accurate leapfrog
algorithm [13] where the magnetic flux density B in Equations (4) and
(5) is evaluated at time step n, which is then used to evaluate the
electric field E at time step n + 1/2 in (6) and so forth. Applying this
discretisation scheme and evaluating the time average of the electric
field from:

Ez|n+1/2 =
Ez|n + Ez|n+1

2
yields the explicit, discretised update equations for the TMz field
components of Equations (4), (5) and (6):

Bx|n+1/2
i+1/2,j = Bx|n−1/2

i+1/2,j −
Δt

Δy

[
Ez|ni+1/2,j+1/2 − Ez|ni+1/2,j−1/2

]
(13)

By|n+1/2
i,j+1/2 = By|n−1/2

i,j+1/2 +
Δt

Δx

[
Ez|ni+1/2,j+1/2 − Ez|ni−1/2,j+1/2

]
(14)

Ez|n+1
i+1/2,j+1/2 =

(
1 + σΔt/(2ε)
1 − σΔt/(2ε)

)
Ez|ni+1/2,j+1/2

+
Δt

(1 + σΔt/(2ε))
×
⎡
⎣Hy|n+1/2

i+1,j+1/2 − Hy|n+1/2
i,j+1/2

Δx

−
(

Hx|n+1/2
i+1/2,j+1 − Hx|n+1/2

i+1/2,j

)
Δy

⎤
⎦ (15)

where it is understood that σ and ε are located in space at the same
location as their respective field components. The magnetic field H
in (15) is computed from (13) and (14) using the constitutive relation
in (3):

Hn+1/2 =

⎧⎪⎪⎨
⎪⎪⎩

Bn+1/2

μ0
− Mn+1/2 inside magnetic material

Bn+1/2

μ0μr
outside magnetic material

(16)

where μr is the relative permeability.
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Equation (16) requires M to be located at the same location
in space as H and B (i.e., displaced by half-cell lengths). This
requirement is in contradiction with the localised nature of the LLG
equation where the magnetisation and field components need to be
evaluated at the same location in space. If M is positioned at
the same location in space as H and B then four-point spatial
interpolations would be necessary to determine each magnetisation and
field component at each of the half-cell displaced neighbouring field
locations in the Yee cell for the numerical computations [4, 5, 8]. This
procedure is less accurate, and makes the numerical implementation,
in general, and of magnetic boundary conditions in particular more
complex as the boundary of the magnetic material is not well defined.

A more efficient and simpler approach is proposed here where the
magnetisation vector M is positioned at one point in space: at the
corners of the Yee cell as indicated in Fig. 2. This approach conforms
to the local nature of the LLG equation where all magnetisation
components are evaluated at the same point in space, is easier
to implement as only simple and more accurate two-point spatial
interpolations are required, and the magnetic material boundaries
are well defined. For example, to determine the value of Mx at the
same location as Hx or Bx(i + 1/2, j) in (16), the following two-point
interpolation is used:

Mx|n+1/2
i+1/2,j =

Mx|n+1/2
i+1,j + Mx|n+1/2

i,j

2

Similar interpolations can be carried out to evaluate the remaining
magnetisation components at the same location as the magnetic
field components for the FDTD update equations. Placing the
magnetisation vectors at the corners of the FDTD cells, moreover,
allows the same simple two point interpolations to be used in TEz and
three-dimensional FDTD grids.

Square Yee cells are adopted in this work for simplicity with
Δx = Δy. The spatial increment Δx in the FDTD grid is chosen
to sufficiently sample the shortest wavelength in the system (normally
determined by the bandwidth of the source), and to accurately
model the smallest dimension and/or physical and electromagnetic
phenomenon in the simulated materials (such as skin depth, exchange
length or domain wall width in a magnetic material).

The numerical stability of the FDTD leapfrog time marching
scheme is well understood and imposes the following restriction on
the time step size, known as the Courant limit, for stable time
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integration [1, 13]:

Δt ≤ Δx

c
√

dim
(17)

where c is the speed of light in vacuum, and dim is the dimensionality
of the system and is equal to 2 for the TMz mode considered here.

To absorb outgoing waves and prevent them from reflecting back
into the simulation space and causing errors, the split-field, perfectly
matched layer (PML) formulation of Berenger [14] is implemented
throughout this work.

3.2. Time Integration of the LLG Equation

The time derivatives in the LLG equation in (7) at time step n may
be approximated using central differences yielding:

Mn+1/2 − Mn−1/2

Δt
= −|γ|(Mn × Hn

eff (Mn))

+
α

Ms

(
Mn × Mn+1/2 −Mn−1/2

Δt

)

Rewriting the time derivative term on the right-hand-side as:

Mn+1/2 − Mn−1/2

Δt
=

(Mn+1/2 + Mn−1/2) − 2Mn−1/2

Δt

and expressing the magnetisation on both sides of the LLG equation
at time step n using the average:

Mn =
Mn+1/2 + Mn−1/2

2

yields a second-order accurate update equation for the magnetisation
at time step n:

Mn = Mn−1/2 − Mn ×
( |γ|Δt

2
Hn

eff (Mn) +
α

Ms
Mn−1/2

)
(18)

where the effective field Heff is given by Equation (8).
Equation (18) cannot be solved explicitly since the evaluation of

the effective field requires Mn on the right-hand-side which is not
available. The non-linear system of Maxwell and LLG equations
therefore cannot be solved using an explicit scheme (unless anisotropy
and exchange fields are ignored). An explicit numerical scheme based
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on extrapolation has been proposed in [8], however this scheme was
found to be inherently unstable for small damping and is therefore not
appropriate for dynamic and steady-state simulations.

In this work, an implicit and stable iterative numerical
scheme [9, 15] will be employed to solve the LLG equation in (18).
The complete time stepping algorithm for the solution of the non-
linear system of Maxwell’s and the LLG equations is presented here
in detail including the coupling of the magnetisation to the fields
in Maxwell’s equations using the proposed interpolation scheme, and
implementation of magnetic boundary conditions. The algorithm is:

1) Evaluation of Bn+1/2 from Maxwell’s Equations (13) and (14)
using the previous computed values of the electric field En and
magnetic flux density Bn−1/2. Then the magnetic flux density at time
step n can be computed from the time average:

Bn =
Bn+1/2 + Bn−1/2

2

2) Evaluation of Bn at the locations of the M (i.e., cell corners)
using interpolations. For example, Bx is determined at the cell corner
where Mx is located using the two-point spatial interpolation:

Bx|ni,j =
Bx|ni+1/2,j + Bx|ni−1/2,j

2

Similar interpolation is performed to determine By|ni,j .
3) Iterative solution of the LLG equation in (18) re-written here

in terms of the iteration number r:

[Mn]r = Mn−1/2 − [Mn]r ×
( |γ|Δt

2
Hn

eff ([Mn]r−1) +
α

Ms
Mn−1/2

)

with initial values Mn = Mn−1 and Hn
eff = Hn−1

eff .
Begin iteration r:
i) Solve Equation (18) explicitly for [Mn]r, using previous values

Hn
eff ([Mn]r−1) and Mn−1/2 as constants, from [9]:

[Mn]r =
Mn−1/2 + (a · Mn−1/2)a − a × Mn−1/2

1 + |a|2 (19)

where a = −
( |γ|Δt

2
Hn

eff ([Mn]r−1) +
α

Ms
Mn−1/2

)
ii) Update the magnetic boundary condition described by

Equation (11) at the material interfaces using forward and backward
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differences. For example, on the left hand boundary of the TMz grid
in Fig. 2, the magnetic boundary condition can be approximated by
the forward difference:

∂M
∂x

≈ M|i+1,j − M|i,j
Δx

= 0

and hence at the boundary i:

M|i,j = M|i+1,j (20)

Application to other boundaries in the material involves similar
implementation, and using backward differences for the opposite
interfaces.

iii) Update the effective field Hn
eff ([Mn]r) using the computed

values of Mn for the next iteration. The internal, Maxwell’s field is
computed using:

Hn([Mn]r) = Bn/μ0−[Mn]r

End iterations.
4) Evaluation of Mn+1/2 using extrapolation: Mn+1/2 = 2Mn −

Mn−1/2.
5) Evaluation of Mn+1/2 at the locations of the Bn+1/2 using

two-point spatial interpolations, as described earlier, to evaluate the
magnetic field from:

Hn+1/2 = Bn+1/2/μ0−Mn+1/2

6) Finally, evaluation of the electric field En+1 using Equa-
tion (15).

The number of iterations r in the above algorithm was controlled
to satisfy the convergence criterion that |Mr|/∣∣Mr−1

∣∣ − 1 ≤ ζ where
the overbars indicate spatial averages over the magnetic material, and
ζ is a small number set equal to 1×10−6 in this work. This convergence
criterion was satisfied using 2–6 iterations, and values of ζ less than
1 × 10−6 made negligible difference to the results. This scheme was
found to be stable and limited only by the Courant stability limit of
the FDTD method imposed by Equation (17).

The exchange field is evaluated using the second-order accurate,
central difference approximation:

Hex|i,j ≈
2A

μ0MsΔx2

{
M|i+1,j + M|i−1,j + M|i,j+1
+ M|i,j−1 − 4 M|i,j

}
(21)
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The last term on the right-hand-side is due to the fact that in the
two-dimensional TMz mode the magnetisation does not vary in the
z-direction. Evaluation of the exchange field using Equation (21) at
the magnetic material boundaries requires magnetisation values in free
space on one side of the boundary which do not exist. This would
yield incorrect values of the exchange field at the magnetic material
boundaries. To overcome this, the value of the exchange field at the
boundaries is calculated from extrapolation using the two nearest grid
points inside the magnetic material. For example, the exchange field
on the left-hand boundary in Fig. 2 would be evaluated using:

Hex|i,j = 2Hex|i+1,j − Hex|i+2,j

In the TMz mode, the FDTD method yields two magnetic field
components, while the LLG equation yields all three magnetisation
vector components which are invariant in the z-direction.

4. NUMERICAL EXAMPLE: SUB-NANOSECOND
MAGNETIC SWITCHING IN A THIN RECTANGULAR
FERROMAGNETIC PRISM

To understand the fast switching dynamics in thin ferromagnetic
films, time resolved, magneto-optical pump-probe techniques were
developed [16, 17] where a fast pump laser is used to induce
sub-nanosecond currents in transmission lines upon which a thin
ferromagnetic film is placed. A DC field is applied parallel to the
film plane to pin the slow moving domains and the pulsed fringing
fields of the transmission lines perturb the in-plane magnetisation
in the thin-film sample. A probe laser beam is then used to
sense the magnetisation reorientation through the Kerr effect. The
domain rotation dynamics are complicated not only by the magnetic
properties of the sample including anisotropy and exchange, but also
by the magnetodynamics due to the shape, dimensions, electrical and
dielectric properties of the magnetic and other materials in the film
stack. The spatial and temporal distributions of the source fields
also play an important role in affecting the switching dynamics in
the magnetic sample. Hence modeling and analysis of such systems
would require the simultaneous solution of Maxwell’s equations and
the LLG equation, which is described in this section using the FDTD-
LLG scheme.

The numerical example presented here follows the experimental
work described in Ref. [17] where a 50 nm thick Ni81Fe19 rectangular
prism sample is subjected to a non-uniform pulse field produced by
two Au tracks as shown in Fig. 3. The conductive magnetic material
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is separated from the Au tracks by a 10 nm thick Al2O3 insulating
layer. The ferromagnetic sample has saturation magnetisation Ms =
800 kA/m [17], assumed uniaxial magnetocrystalline anisotropy in the
x-direction with field Hk = 875 A/m [17] (Ku = 440 J/m3), exchange
constant A = 1×10−11 J/m, electrical conductivity σ = 1×107 (Ωm)−1

and relative permittivity εr = 12 [5, 8]. The damping coefficient was
set to α = 0.01 [17]. The Au tracks have electrical conductivity
σ = 4 × 107 (Ωm)−1, relative permittivity εr = 6.9, and relative
permeability of free space, μr = 1. Typical parameters for the Al2O3

insulating layer are σ = 1 × 10−16 (Ωm)−1, εr = 9.9 and μr = 1.
The extended length of the magnetic prism in the z-direction in

Fig. 3 compared to its cross-section produces strong shape anisotropy
and therefore saturates the magnetisation along the z-axis. This means
that the change in magnetisation will mainly be in the x-y plane due
to the pulse field. Moreover, the transmission line tracks normally
extend beyond the magnetic sample. This permits the use of a two-
dimensional TMz grid to model this system as the fields are invariant in
the z-direction. In practice, the transmission line is dispersive causing
variation in the current and hence magnetic field along the length of
the tracks. This leads to variations of the magnetisation along the
length of the magnetic sample. However, the effect of these variations
on the magnetisation dynamics is expected to be negligible due to the
strong shape anisotropy and the pinning DC field. In addition, the
dynamic parameters in such experiments are normally measured over
a volume of the magnetic sample which averages out the variations in
the magnetisation that might occur due to the dispersive transmission
lines [17].

Figure 3. Geometry and dimensions of simulated thin-film Permalloy
structure and transmission line. Points A and B inside the magnetic
material are selected to study the vector magnetisation response to the
non-uniform pulse field.
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For a thin ferromagnetic film, it can be shown, following [18], that
the Bloch and Neel wall widths, D, are given approximately (when
Hk � μ0Ms) by:

D = 2π

√
A

μ0M2
s

(22)

Using the Ni81Fe19 parameters gives a value D = 22 nm. Hence
a Yee cell with square sides of size Δx = 10 nm smaller than the
domain wall width was chosen to discretise the simulation space. The
corresponding time step that satisfies the Courant stability criterion
in (17) is Δt = 1.67 × 10−17 s. The simulation space was terminated
by a 5 cell PML.

A DC field was applied in the positive z-direction of magnitude
17 kA/m (210 Oe), parallel to the direction of initial magnetisation.
The initial conditions for the magnetisation were Mx = My = 0 and
Mz = Ms. The pulse field, generated by the two transmission lines
is non-uniform, and predominately vertical in the middle of the film
plane (point A), and predominately in-plane directly above the centre
of the conductors (point B). This particular magnetisation and field
configurations enable the derivation of linearised analytical solutions
to the LLG equation, which allow the validation and interpretation
for the FDTD-LLG numerical results. The rate of change of the z-
component of the magnetisation is also very small in this configuration
and causes negligible eddy currents, which are not computed in TMz
mode.

The current flowing in the transmission line can be specified as
a z-directed current density in the TMz grid. However, the diverging
electric fields in the FDTD grid deposit a persistent charge on the
surface of the conductors even after the source is removed, thus
producing non-physical fields [19]. To avoid these non-physical fields,
the magnetic fields at the surfaces of the conductor (surrounding the
Ez fields in the TMz grid) are instead specified. The peak field at the
surfaces of the conductors was set to hpeak = 499 A/m (6 Oe). The
corresponding current I flowing in the conductors then follows from
Ampere’s law H =

∮∮∮
I · dL and is equal to 0.1 mA.

The temporal profile of the pulse field generated by the
transmission line was taken as a variant of the Gamma distribution
for simplicity and since it resembles the experimental current profile
in Ref. [17]. This function is shown in Fig. 4 and is given by:

h(t) = hpeak
t

τd
e(1−t/τd) (23)

where τd is the decay time constant of the pulse (rise time constant
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τr = 0.32τd). Evaluating the Fourier transform of (23) and solving
for the frequency at which the magnitude of the spectrum reduces to
10% of its maximum value, provides an estimate of the bandwidth of
this signal as f10 = 3/(2πτd). τd was chosen here to be equal to 65 ps
yielding a bandwidth f10 = 7GHz and hence propagating waves in
space with minimum wavelength of around 41 mm. These waves were
sampled correctly by the choice of Δx = 10 nm. The length of the
simulation was chosen as 1.5 ns to allow the pulse field transients to
die out as shown in Fig. 4.

4.1. Numerical Results

The FDTD-LLG algorithm was programmed in the Matlab�
environment, and the field and magnetisation distributions at 400
time instances were stored over the 1.5 ns simulation length (i.e., every
3.76 ps). Fig. 5 illustrates the calculated magnetisation distribution
(arrow plot) and contours of magnetic field magnitude generated by
current and magnetic sources at three instances of time of the applied
transient field.

As the transient field increases to its maximum value, slight
deviations of the magnetisation from the saturated z-direction occur
over the cross-section of the prism in the x-y plane to follow the
magnetic fields from the transmission lines as shown in Fig. 5(b). The
trajectory of the vector magnetisation at points A and B is shown in

Figure 4. Gamma distribution function used to model the pulsed field
from the transmission lines with decay time of 65 ps (rise time constant
21 ps). Points (a), (b) and (c) are selected time instances where the
magnetisation and magnetic field distributions are plotted in Fig. 5.
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(a)

(b)

(c)

Figure 5. Magnetisation (arrow plot) and magnetic field magnitude
(contour plot) distributions at three time instances: (a) 0.01 ns, (b)
0.064 ns and (c) 1 ns. Two point interpolations were carried out on the
magnetic field components to evaluate them at the same location of
the magnetisation. The PML region is not shown in these plots.
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(a)

(b)

Figure 6. Trajectory of the vector magnetisation at points (a) A and
(b) B, over the length of the simulation (1.5 ns). The ‘×’ marks the
initial state of the magnetisation.

Fig. 6. The strong vertical demagnetising fields force the magnetisation
in the plane of the magnetic material leading to the elliptical trajectory
of the magnetisation at point A as shown in Fig. 6(a). Along with the
vertical demagnetising fields, point B also experiences demagnetising
fields from the poles on the right-hand end of the magnetic material,
leading to reduction of the ellipticity of the magnetisation trajectory
with almost circular precession as indicated in Fig. 6(b).

Figure 5(c) shows evidence of non-uniform spin-waves that
are clearly visible in the x-direction, as the transient fields from
the transmission line diminish. The spin-resonance and spin-wave
frequencies can be analysed from the Fourier transform of the temporal
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change of the magnetisation and will be carried out in the next section
and compared to linearised analytical solutions of the LLG equation.

4.2. Analytical Solutions to the LLG Equation

The aim of this section is to develop an approximate analytical
description of the magnetisation dynamics for the system in Fig. 3.
This is to confirm the validity of the numerical calculations of the
combined FDTD-LLG technique, and help in their interpretation.

The strong shape anisotropy in the magnetic geometry of Fig. 3
forces the magnetisation in the z-direction and hence Mz may be
written as Mz(t) = Ms +mz(t) where mz is a small perturbation of the
magnetisation in the z-direction. The small changes in the remaining
magnetisation components are Mx = mx(t) and My = my(t). By
approximating the rectangular prism in Fig. 3 by an elliptic cylinder
with cross-section defined by W and T , the demagnetising fields can
be evaluated, assuming uniform magnetisation, using H = −NM,
where N is the demagnetising factor given respectively in the x and y
directions by [20]:

Nx = T/(W + T ) (24a)
Ny = W/(W + T ) (24b)

where Nx + Ny = 1.
The magnetic material in Fig. 3 experiences a vector pulse field

h(t) that is approximately vertical or y-directed in the centre of the
magnetic material (between the transmission lines), and approximately
horizontal or x-directed in the region directly above the centre of
each Au track. Each of these cases will be treated separately using
uniform magnetisation in the analytical theory, to predict the dynamic
behaviour of the magnetisation at points A and B.

4.2.1. y-directed Field (Point A)

Considering first the y-directed transient field between the transmission
lines, the effective field components including the applied and demag-
netising fields are (anisotropy field is neglected since 2Ku/μ0M

2
s � 1):

Heff
x (t) = −Nxmx(t)

Heff
y (t) = −Nymy(t) + hy(t)

Heff
z (t) = Hz

Substituting this effective field into the LLG equation in (7) and
ignoring second and higher order perturbation terms (including
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products of m and h) yields the following set of linear differential
equations:

dmx(t)
dt

≈ |γ| {−αHzxmx(t) + Mshy(t) − Hzymy(t)} (25a)

dmy(t)
dt

≈ |γ| {α [Mshy(t) − Hzymy(t)] + Hzxmx(t)} (25b)

dmz(t)
dt

≈ 0 (25c)

where Hzx = Hz + NxMs and Hzy = Hz + NyMs. When the
contribution of the magnetocrystalline anisotropy is not negligible,
then Nx in Equation (25) may be replaced by Nx + 2Ku/μ0M

2
s .

Taking the Laplace transform of the system of equations in (25),
using the initial conditions mx(0) = my(0) = mz(0) = 0, yields
the Laplace transforms of the magnetisation components written in
transfer function notation, with hy(s) being the input field transform,
as:

mx(s)
hy(s)

=
|γ|Mss

s2 + α |γ| (2Hz + Ms)s + ω2
0

(26a)

my(s)
hy(s)

=
|γ|Ms

s + α |γ|Hzy

{
α +

|γ|Hzxs

s2 + α |γ| (2Hz + Ms)s + ω2
0

}
(26b)

where second and higher order values of α were neglected compared to
unity. This transfer function form is convenient as it directly reveals
information about the natural frequency of the system, its stability and
state of damping, independent of the input field. The spin-resonance
frequency in (26) is given by:

ω0 = |γ|√HzxHzy (27)

From the Laplace transform of (25c), the solution for the perturbed
z-component of the magnetisation is mz(t) = mz(0) = 0, and hence
Mz ≈ Ms. Substituting the values of Ms, Hz and Nx and Ny for the
geometry in Fig. 3 yields a resonance frequency ω0 = 7.16× 1010 rad/s
or f0 = 11.4 GHz.

4.2.2. x-directed Field (Point B)

When the transient field is in the plane of the material along the x-
direction in the region above the tracks, the effective field components
are given by (again the anisotropy field is neglected since 2Ku/μ0M

2
s �
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1):
Heff

x (t) = −Nxmx(t) + hx(t)
Heff

y (t) = −Nymy(t)
Heff

z (t) = Hz

Following the same procedure in deriving Equations (25), a linearised
set of ordinary, first-order coupled differential equations can be
produced given by:

dmx(t)
dt

≈ |γ| {α [Mshx(t) − Hzxmx(t)] − Hzymy(t)} (28a)

dmy(t)
dt

≈ |γ| {−Mshx(t) + Hzxmx(t) − αHzymy(t)} (28b)

dmz(t)
dt

≈ 0 (28c)

Taking the Laplace transform of the system of equations in (28), using
the initial conditions mx(0) = my(0) = mz(0) = 0, yields the following
transfer functions:

mx(s)
hx(s)

=
|γ|Ms

s + α |γ|Hzx

{
α +

|γ|Hzys

s2 + α |γ| (2Hz + Ms)s + ω2
0

}
(29a)

my(s)
hx(s)

=
− |γ|Mss

s2 + α |γ| (2Hz + Ms)s + ω2
0

(29b)

The solution to (28c) is mz(t) = mz(0) = 0 and hence Mz ≈ Ms as
expected.

The penetration of the magnetic fields produced by the
transmission lines into the conductive magnetic material (and hence
skin depth) is difficult to estimate due to the dynamic nature of
the susceptibility and non-uniform fields. The complex dynamic
susceptibility tensor ||χ|| may be estimated from the theory in this
section by setting s = jω in Equations (26) and (29). The equivalent
dynamic susceptibility can then be found by setting ||χ||h = ηh
and determining the eigenvalues η [21], which are simply given by
mx(ω)/hx(ω) and my(ω)/hy(ω) for the x-directed and y-directed fields
respectively. The magnitude of this equivalent susceptibility ranges
from unity at low frequencies to 200 at resonance. The skin depth,
d, of the propagating magnetic fields inside the Permalloy can then be
estimated from the classical skin depth equation for a highly conductive
medium d = 1/

√
πf10μ0μrσ using μr over the range of equivalent

susceptibilities and f10 ∼ 7 GHz for the frequency of propagating
fields determined by the field source. This yields skin depths in
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the range 0.1–1 µm which are large compared to the thickness of the
magnetic material. This means that there is negligible attenuation of
the propagating magnetic fields from the transmission lines inside the
Permalloy. This simplifies the process of theoretically determining the
magnitude of the fields at points A and B, and enables comparison to
the numerical calculations of the FDTD-LLG scheme.

The theoretical values of mx(t) and my(t) can be determined
from solving the differential equations in (25) and (28) analytically, or

(a)

(b)

Figure 7. Numerical and theoretical temporal profiles of the y-
component of magnetisation at locations (a) A and (b) B, inside the
magnetic material.
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from inverse Laplace transforms of the transfer functions in (26) and
(29). With the large skin depth compared to the magnetic material
thickness, the Biot-Savart law can be used to determine the magnitude
of the fields at points A and B. Using circular conductors for simplicity,
the fields outside the conductors carrying opposite current I = 0.1 mA
are given by [22]:

Hx(x′, y′) =
−y′I
2π

(
1
ρ2

2

− 1
ρ2

1

)
(30a)

Hy(x′, y′) =
I

2π

(
x′ + ρ/2

ρ2
2

− x′ − ρ/2
ρ2

1

)
(30b)

where ρ1 =
√

(x′ − ρ/2)2 + y′2 and ρ2 =
√

(x′ + ρ/2)2 + y′2. x′ and y′
are the horizontal and vertical distances from the centre line between
the two conductors respectively, and ρ is the horizontal separation
between the centres of the two conductors. Using Equation (30b),
the peak vertical transient field at point A was evaluated to be
270 A/m, and from (30a) the peak horizontal transient field at point
B was calculated to be 260 A/m. For illustration, Fig. 7 shows
only the computed time waveforms for my at points A and B from
the FDTD-LLG scheme, and from Equations (26b) and (29b) using
inverse Laplace transforms. There is good agreement between the
numerical and theoretical values, thus confirming the validity of the
FDTD-LLG computations and the negligible effect of skin depth.
The differences in amplitude and phase between the numerical and
theoretical calculations are due to the non-uniform source fields and the
effects of exchange and demagnetising fields of the rectangular prism
in the numerical simulations, that were either ignored or simplified in
the theoretical treatment.

The uniform and non-uniform precession modes in the FDTD-
LLG calculations were investigated by computing the Fast Fourier
Transform (FFT) of the magnetisation waveform at point A in
Fig. 7(a). The spectrum is shown in Fig. 8 and clearly reveals the spin-
resonance peak at frequency 11.4 GHz, as correctly predicted by (27).
The additional peaks in the spectrum of the FDTD-LLG calculations
can be attributed to non-uniform spin-wave modes which are visible
in Fig. 5(c). The theoretical treatment of spin-waves in ferromagnetic
conductive media is complex and requires the simultaneous solution of
Maxwell’s equations and the LLG equation [23]. A simpler approach
may be used by ignoring dissipation and damping and assuming a wave-
like solution to the perturbed magnetisation in the LLG equation with
no damping in the form [24]:

M = (mx0x + my0y)ej(ωt−kx) + Msz (31)
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where only spatial variations of the magnetisation in the x-direction
were considered for simplicity, with wave vector k. mx0 and my0

are the magnitudes of the magnetisations in the x and y directions
respectively. The effective field components now include exchange
fields, and using (9), are given by:

Heff
x (t) = −Nxmx(t) + 2A

μ0M2
s

∂2mx(t)
∂x2

Heff
y (t) = −Nymy(t) + 2A

μ0M2
s

∂2my(t)
∂x2

Heff
z (t) = Hz

Substituting (31) and the effective fields into the LLG equation with
no damping and eliminating mx0 and my0 yield the dispersion relation:

ω = |γ|
√(

Hzx +
2A

μ0Ms
k2

)(
Hzy +

2A
μ0Ms

k2

)
(32)

where kW = pπ with p being a positive integer representing the
spin-wave mode, and W is the width of the magnetic material
shown in Fig. 3. For the unpinned exchange boundary condition
considered in this work and represented by Equation (11) (i.e., no

Figure 8. Numerical and theoretical spectra of magnetisation my

computed from the Fourier transforms of the waveforms in Fig. 7(a).
The spin resonance peak is shown clearly at 11.4 GHz (p = 0). The
dash-dotted lines indicate the first few spin-wave even harmonics
which occur at frequencies 13.7 GHz (p = 4), 16.6 GHz (p = 6), and
20.34 GHz (p = 8).
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surface anisotropy), p is in general even [25]. The theoretical even
harmonics, including the zeroth or spin-resonance mode, evaluated
using (32) are indicated in Fig. 8 and show good correspondence
with the observed peaks in the calculated spectrum from FDTD-LLG
simulations. This demonstrates the ability of the FDTD-LLG scheme
to model and simulate the spin-wave dynamics of complex structures
with conductive and dielectric losses and different exchange boundary
conditions. Analysis of allowed spin-wave modes for the rectangular
prism in Fig. 3 is beyond the scope of this paper and can be found
elsewhere [26, 27]. The low frequency content of the spectra of my

in Fig. 8 is shaped by the spectrum of the transient field given by
Equation (23).

5. DISCUSSION AND CONCLUSIONS

5.1. The FDTD-LLG Scheme

This paper presents an efficient approach for integrating the LLG
equation into the FDTD grid whereby the vector magnetisation
was located at the grid cell corners. This implementation provides
simple and more accurate two-point interpolations to evaluate the
magnetisation and fields at different locations within the Yee cell, and
applies to two and three-dimensional grids. The complete algorithm for
the solution of the non-linear system of Maxwell’s and LLG equations
was described making use of a stable, iterative numerical scheme for the
implicit time integration of the LLG equation. A numerical example
of ferromagnetic resonance in a Permalloy rectangular prism excited
by a transient field from a transmission line was used to implement
the FDTD-LLG scheme in TMz mode, and produced the dynamic
distribution of magnetisation and magnetic fields inside and outside
the material. The outcomes of the numerical simulations were in good
agreement with simplified theoretical solutions of the LLG equation in
uniform and non-uniform precession modes, indicating the validity of
the numerical simulations.

The good agreement between the numerical simulations and
theory were mainly allowed by the large skin depth of the propagating
fields compared to the thickness of the magnetic material, thus
permitting the use of magnetostatics to theoretically predict the
magnitude of the source fields. When the frequency of the propagating
fields increase and/or the thickness of the conductive magnetic material
becomes comparable to the skin depth, then the use of magnetostatics
to predict the magnitude of source fields, as normally carried out
in pure micromagnetic studies, is no longer appropriate. In this
case, the use of the FDTD method to predict the dynamic interior
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fields becomes necessary, and particularly important for studying
the effects of eddy currents on the switching behaviour of magnetic
devices such as magnetic recording heads operating at very high
frequencies. In addition to the dynamic fields from current sources,
the FDTD method also naturally produces the ‘self’ demagnetising
fields due to the magnetisation distribution inside magnetic materials,
which is a computationally intensive process in pure micromagnetic
calculations [28]. Moreover, fields generated by magnetic layers in
the FDTD-LLG method naturally couple with other conductive and
dielectric structures in the simulation space (which can have frequency-
dependant constitutive parameters) to allow modelling and simulation
of complete devices, with lumped circuit elements [1], which is not
feasible in pure numerical micromagnetics.

One drawback of the FDTD scheme is the very small time
step, and hence long simulation times, dictated by the Courant
stability requirement when modeling small structures similar to those
considered in this paper. The long simulations times may be reduced
by using an implicit time marching scheme for the solution of Maxwell’s
equations that is not sensitive to the Courant limit [29]. Alternatively,
and for the purpose of steady-state micromagnetic computations where
the transient electromagnetic details are not important, larger time
steps can be used within the iterative scheme for the integration of
the LLG equation, while at the same time keeping the Courant limited
time step for the solution of Maxwell’s Equations [9]. This has the
effect of increasing the speed of convergence of the solution to the
LLG equation, and thus allowing the reduction of the simulation time.

A more logical approach to integrating the LLG equation within
the FDTD framework that does not require spatial interpolations
would be to employ an unstaggered, and collocated grid where all
discrete vector fields and magnetisations are located at the same
point in space. Direct discretisation of Maxwell’s equations using
central differences in an unstaggered grid yields, however, a numerically
dispersive grid [30], that is not appropriate for studying dynamic wave
propagation phenomena or wave interaction with magnetic material.

5.2. Unstaggered Schemes

Two non-dispersive unstaggered schemes based on Maxwell’s equations
(compared to schemes based on the vector potential formulation [31, 32]
which are not considered here) were investigated briefly for their
suitability for the FDTD-LLG scheme; the non-symmetric unstaggered
(NS) scheme, and the Fourier based pseudo-spectral time-domain
(PSTD) method. The NS scheme [30] uses forward and backward
finite differences for the spatial derivatives of the electric and magnetic
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fields in Maxwell’s equations, with the nodal weights being calculated
to achieve the required discretisation accuracy. The non-symmetrical
nature of this discretisation scheme, however, causes inaccurate
computation of the fields at interfaces between materials having
relatively large differences in electrical and/or magnetic properties
(for example metal/air interface). This error may be reduced by
increasing the length of the stencils in the forward and backward
differences or by using polynomial grading of the electrical conductivity
at the interfaces, which increases the complexity of the implementation
particularly for thin, multi-layer materials. In the PSTD scheme [33],
spatial derivatives along each direction are approximated by discrete
Fourier and inverse Fourier transforms, and hence all electric and
magnetic field components are collocated in space. The difficulty with
this scheme appear as unwanted oscillations (or Gibbs phenomenon) in
the computed fields in the presence of electrically conducting structures
or interfaces between materials with relatively large differences in
electrical and/or magnetic properties. These field oscillations, even
when small, alter the local fields inside the magnetic material and hence
yield incorrect magnetisation distributions within magnetic structures.
The Gibbs effect may be reduced through the use of non-uniform
grids [34] at the expense of increased difficulty in implementation
particularly for complex geometries.

This brief investigation reveals that the use of unstaggered grids
would require special treatment to the spatial grids to deal with
material structures having relatively sharp changes in their electric
and/or magnetic properties. This would increase the complexity
of the implementation particularly when modeling complex material
structures with multi-layers. Thus the efficient implementation
presented in this paper, while maintaining the advantages of the FDTD
method, provides a simple approach for integrating the micromagnetic
details of magnetic material within the FDTD formulation.
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