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Abstract—Fractional rectangular impedance waveguide has been
studied using fractional curl operator. Behavior of field inside the
fractional rectangular impedance waveguide has been studied with
respect to the original impedance of walls of the guide as well as
fractional parameter. Analysis of the impedance of the walls as
well as power distribution over the cross sectional plane of fractional
impedance rectangular waveguide has been given. It has been found
that fractional curl can be used to control the power distribution
pattern over the cross sectional plane.

1. INTRODUCTION

Applications of fractional calculus in physics, signal processing, fluid
mechanics, viscoelasticity, mathematical biology and electrochemistry
have made it an exciting new mathematical tool for solution of
diverse problems in the field of science and engineering. It is the
branch of mathematics that deals with operators having non-integer
and/or complex order, e.g., fractional derivative and fractional integral.
Fractional derivatives/integrals are mathematical operators involving
differentiation/integration of arbitrary (non-integer) real or complex
orders such as dαf(x)/dxα, where α can be taken to be a non integer
real or even complex number [1]. In a sense, these operators effectively
behave as the so-called intermediate cases between the integer-order
differentiation and integration.

While bringing the tools of fractional calculus and electromagnetic
theory together, Engheta [2–9] has explored and developed the subject
of fractional paradigm in electromagnetic theory. It is the area in
which fractional operators are used to model electromagnetic solutions.
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Curl operation is the basis of Maxwell equations and hence the
electromagnetics. Fractionalization of the curl operator by Engheta
has led us to novel solutions, interpretable as “fractional solutions”,
for certain electromagnetic problems.

In electromagnetics, principle of duality stats that if (E, ηH) is
one set of solutions (original solutions) to Maxwell equations, then
other set of solutions (dual to the original solutions) is (ηH,−E),
where η is the impedance of the medium. The solutions which may
be regarded as intermediate step between the original and dual to the
original solutions can be obtained using the following relations [2]

Efd =
1

(ik)α
(∇×)αE

ηHfd =
1

(ik)α
(∇×)αηH

where (∇×)α means fractional curl operator and k = ω
√

µε is the wave
number of the medium. It may be noted that fd means fractional dual
solutions. It is obvious from above set of equations that

α = 0 ⇒ (Efd, ηHfd) = (E, ηH)
α = 1 ⇒ (Efd, ηHfd) = (ηH,−E)

Hence (E, ηH) and (ηH,−E) are two sets of solutions to Maxwell
equations. The solutions which may be regarded as intermediate step
between the above two sets of solutions may be obtained by varying
parameter α between zero and one.

Various investigations have been made in exploring the role of
fractional duality. Naqvi et al. [10–15] derived the fractional dual
solutions for different unbounded homogeneous media. These include
dielectric, chiral and meta materials as the medium of propagation.
Veliev et al. [17–21] addressed the problems of reflection and diffraction
from the fractional surface boundaries. Hussain and Naqvi has used
the concept of fractional dual solutions to transmission lines and
waveguides which may be termed as fractional transmission lines and
fractional waveguides [22–26]. Some other coworkers of Naqvi have
also contributed towards fractional waveguides [30, 31]. In this work
we have analyzed the fractional solutions of a rectangular waveguide
with impedance walls. This is an extension of the work given in [30]
which is for the perfect electric conductor (PEC) rectangular plates
waveguide. The waveguide has been termed as fractional rectangular
impedance waveguide.

General theory of rectangular waveguides has been given in
Section 2, electric and magnetic fields inside the waveguide with
impedance walls are derived in Section 3 while fractional solutions are
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Figure 1. Geometry of rectangular waveguide.

derived in Section 4. The results have been discussed in Section 5 and
the paper is concluded in Section 6.

2. GENERAL THEORY OF RECTANGULAR
WAVEGUIDE

Consider a waveguide having rectangular cross section of size b× a in
xy-plane while z-axis is the axis of propagation as shown in Figure 1.
The guide has been considered as infinitely long along z-axis and filled
with a dielectric medium of permittivity ε and permeability µ. As a
general recipe, we solve Helmholtz equation for the axial components
and the transverse components are derived from the the axial ones
using Maxwell equations. Let us consider a case of transverse magnetic
mode TM z (Hz = 0) propagating through the guide. Axial component
Ez(x, y) can be written as a product of two independent functions as

Ez(x, y) = X(x)Y (y)

General solutions for X(x) and Y (y) can be written as

X(x) = Am cos(kxx) + Bm sin(kxx) (1a)
Y (y) = An cos(kyy) + Bn sin(kyy) (1b)

where Ai and Bi, (i = m,n) are constants which can be found from the
boundary conditions while kx and ky are the components of the wave
number k = ω

√
µε in the direction of x-axis and y-axis respectively.

Once axial component of electric field is found as Ez = X(x)Y (y), we
can write the other field components using Maxwell curl equations as

Ez(x, y) = X(x)Y (y) (2a)

Ex(x, y) = − 1
k2

c

(
iβ

∂Ez(x, y)
∂x

)
= − iβ

k2
c

Y (y)X ′(x) (2b)



104 Hussain and Naqvi

Ey(x, y) = − 1
k2

c

(
iβ

∂Ez(x, y)
∂y

)
= − iβ

k2
c

X(x)Y ′(y) (2c)

Hx(x, y) = − 1
k2

c

(
− ik

η

∂Ez(x, y)
∂y

)
=

1
k2

c

ik

η
X(x)Y ′(y) (2d)

Hy(x, y) = − 1
k2

c

(
ik

η

∂Ez(x, y)
∂x

)
= − 1

k2
c

ik

η
Y (y)X ′(x) (2e)

Here β is the propagation constant, kc =
√

k2
x + k2

y and η =
√

µ/ε is
the impedance of the medium inside the guide. Prime means derivative
w.r.t. the argument.

3. RECTANGULAR WAVEGUIDE WITH IMPEDANCE
WALLS

Let walls of the waveguide shown in Figure 1 has impedance Zw. Fields
inside the guide must satisfy the impedance boundary conditions as
given below

Ez = −ZwHy at x = 0 (3a)
Ez = ZwHy at x = a (3b)
Ez = ZwHx at y = 0 (3c)
Ez = −ZwHx at y = b (3d)

Using these boundary conditions and the general solution given in
Equation (2), we can write the field solution as

Ex(x, y) =
Amn

2

(
βkx

k2
c

)
[{− (1− FxFy) iSx−y + (Fx − Fy) Cx−y}

+ {(1 + FxFy) iSx+y − (Fx + Fy) Cx+y}] (4a)

Ey(x, y) =
Amn

2

(
βky

k2
c

)
[{(1− FxFy) iSx−y − (Fx − Fy) Cx−y}

+ {(1 + FxFy) iSx+y − (Fx + Fy) Cx+y}] (4b)

Ez(x, y) =
Amn

2
[{(1− FxFy) Cx−y − (Fx − Fy) iSx−y}

−{(1 + FxFy)Cx+y − (Fx + Fy)iSx+y}] (4c)

ηHx(x, y) =
Amn

2

(
kky

k2
c

)
[{(1− FxFy) iSx−y − (Fx − Fy) Cx−y}

+ {(1 + FxFy)iSx+y − (Fx + Fy)Cx+y}] (4d)
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ηHy(x, y) =
Amn

2

(
kkx

k2
c

)
[{(1− FxFy)iSx−y − (Fx − Fy)Cx−y}

−{(1 + FxFy)iSx+y − (Fx + Fy)Cx+y}] (4e)

where Amn are constants that depend upon initial conditions. Other
parameters are as given below

Fx = zw

(
kkx

k2
c

)
, Fy = zw

(
kky

k2
c

)
, zw =

Zw

η

Cx−y = cos (kxx− kyy) , Cx+y = cos (kxx + kyy)
Sx−y = sin (kxx− kyy) , Sx+y = sin (kxx + kyy)

while dispersion relations for the possible values of kx
kc

and ky

kc
can be

written as

i tan(kxa) =
2Fx

1 + F 2
x

, i tan(kyb) =
2Fy

1 + F 2
y

4. FRACTIONAL RECTANGULAR IMPEDANCE
WAVEGUIDE

Fields given in Equation (4) can be written in terms of four independent
plane waves. Re-introducing the z-dependance (eiβz), electric and
magnetic fields of the four plane waves can be written as

E1 =
Amn

4k2
c

B1

(−βkxx̂−βkyŷ−k2
c ẑ

)
exp {i(−kxx−kyy+βz)}(5a)

E2 =
Amn

4k2
c

B2

(
βkxx̂−βkyŷ+k2

c ẑ
)
exp {i(−kxx+kyy +βz)} (5b)

E3 =
Amn

4k2
c

B3

(−βkxx̂+βkyŷ−k2
c ẑ

)
exp {i(kxx−kyy+βz)} (5c)

E4 =
Amn

4k2
c

B4

(
βkxx̂ + βkyŷ − k2

c ẑ
)
exp {i(kxx + kyy + βz)} (5d)

ηH1 =
kAmn

4k2
c

B1 (−kyx̂ + kxŷ) exp {i(−kxx− kyy + βz)} (5e)

ηH2 =
kAmn

4k2
c

B2 (−kyx̂− kxŷ) exp {i(−kxx + kyy + βz)} (5f)

ηH3 =
kAmn

4k2
c

B3 (kyx̂ + kxŷ) exp {i(kxx− kyy + βz)} (5g)

ηH4 =
kAmn

4k2
c

B4 (kyx̂− kxŷ) exp {i(kxx + kyy + βz)} (5h)
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where

B1 = 1 + FxFy + Fx + Fy (6a)
B2 = 1− FxFy + Fx − Fy (6b)
B3 = 1− FxFy − Fx + Fy (6c)
B4 = 1 + FxFy − Fx − Fy (6d)

As a general scheme [2], for a plane wave propagating in an arbitrary
direction k̂l, fractional dual electric and magnetic fields can be written
as [10–35]

Elfd = [(alj)αPljAlj ] ei(kl·r), l = 1, 2, 3, 4, j = 1, 2, 3 (7a)

ηHlfd = k̂l ×Elfd (7b)

where Plj are the coefficients of expansion. alj and Alj are the eigen
values and eigen vectors of the cross product operator (k̂l×) for the
direction vectors k̂l which are given by

k̂1 =
1
k

(−kxx̂− kyŷ + βẑ) (8a)

k̂2 =
1
k

(−kxx̂ + kyŷ + βẑ) (8b)

k̂3 =
1
k

(kxx̂− kyŷ + βẑ) (8c)

k̂4 =
1
k

(kxx̂ + kyŷ + βẑ) (8d)

Hence fractional dual electric and magnetic fields corresponding to the
four plane waves can be written as

E1fd =
Amn

4k2
c

B1 exp(iβz)
[
cos

(απ

2

) {−βkxx̂−βkyŷ−k2
c ẑ

}
+sin

(απ

2

)
{kkyx̂−kkxŷ}

]

exp
[
−i

(
kxx +

απ

2

)]
exp

[
−i

(
kyy +

απ

2

)]
(9a)

E2fd =
Amn

4k2
c

B2 exp(iβz)
[
cos

(απ

2

) {
βkxx̂−βkyŷ+k2

c ẑ
}−sin

(απ

2

)
{kkyx̂+kkxŷ}

]

exp
[
−i

(
kxx +

απ

2

)]
exp

[
i
(
kyy +

απ

2

)]
(9b)
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E3fd =
Amn

4k2
c

B3 exp(iβz)
[
cos

(απ

2

) {−βkxx̂+βkyŷ−k2
c ẑ

}
+sin

(απ

2

)
{kkyx̂+kkxŷ}

]

exp
[
i
(
kxx +

απ

2

)]
exp

[
−i

(
kyy +

απ

2

)]
(9c)

E4fd =
Amn

4k2
c

B4 exp(iβz)
[
cos

(απ

2

){
βkxx̂+βkyŷ−k2

c ẑ
}−sin

(απ

2

)
{kkyx̂− kkxŷ}

]

exp
[
i
(
kxx +

απ

2

)]
exp

[
i
(
kyy +

απ

2

)]
(9d)

ηH1fd =
Amn

4k2
c

B1 exp(iβz)
[
sin

(απ

2

){−βkxx̂−βkyŷ−k2
c ẑ

}−cos
(απ

2

)
{kkyx̂−kkxŷ}

]

exp
[
−i

(
kxx +

απ

2

)]
exp

[
−i

(
kyy +

απ

2

)]
(9e)

ηH2fd =
Amn

4k2
c

B2 exp(iβz)
[
− sin

(απ

2

){
βkxx̂−βkyŷ+k2

c ẑ
}−cos

(απ

2

)
{kkyx̂+kkxŷ}

]

exp
[
−i

(
kxx +

απ

2

)]
exp

[
i
(
kyy +

απ

2

)]
(9f)

ηH3fd =
Amn

4k2
c

B3 exp(iβz)
[
sin

(απ

2

){
βkxx̂−βkyŷ+k2

c )ẑ
}
+cos

(απ

2

)
{kkyx̂+kkxŷ}

]

exp
[
i
(
kxx +

απ

2

)]
exp

[
−i

(
kyy +

απ

2

)]
(9g)

ηH4fd =
Amn

4k2
c

B4 exp(iβz)
[
sin

(απ

2

){
βkxx̂+βkyŷ−k2

c )ẑ
}
+cos

(απ

2

)
{kkyx̂−kkxŷ}

]

exp
[
i
(
kxx +

απ

2

)]
exp

[
i
(
kyy +

απ

2

)]
(9h)

Fractional dual solutions of the total electric and magnetic field inside
the guide can be written as

Efd = E1fd + E2fd + E3fd + E4fd

ηHfd = ηH1fd + ηH2fd + ηH3fd + ηH4fd
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which give

Efdx =
Amn

k2
c

exp(iβz) {−βkxCα − kkySα}
[(Cy+αFx − iSy+α)(Cx+α − FyiSx+α)] (10a)

Efdy =
Amn

k2
c

exp(iβz) {−βkyCα + kkxSα}
[(Cy+α − FxiSy+α)(Cx+αFy − iSx+α)] (10b)

Efdz = −Amn exp(iβz)Cα

[(Cy+αFx − iSy+α)(Cx+αFy − iSx+α)] (10b)

ηHfdx =
Amn

k2
c

exp(iβz) {−βkxSα + kkyCα}
[(Cy+α − FxiSy+α)(Cx+αFy − iSx+α)] (10c)

ηHfdy =
Amn

k2
c

exp(iβz) {−βkySα − kkxCα}
[(Cy+αFx − iSy+α)(Cx+α − FyiSx+α)] (10d)

ηHfdz = −AmnSα exp(iβz)
[(Cy+α − FxiSy+α)(Cx+α − FyiSx+α)] (10e)

where

Cx+α = cos
(
kxx +

απ

2

)
, Cy+α = cos

(
kyy +

απ

2

)

Sx+α = sin
(
kxx +

απ

2

)
, Sy+α = sin

(
kyy +

απ

2

)

It may be noted from Equation (10) that fractional dual fields
satisfy the principle of duality for the limiting values of α, i.e., for
α = 0, (Efd, ηHfd) represents the original solution and for α =
1, (Efd, ηHfd) represents dual to the original solution. For the range
0 < α < 1, (Efd, ηHfd) are the intermediate step between the original
and dual to the original solutions and hence may be called as the
fractional dual solutions. Further from Equation (10), we see that for
α = 0, Ez 6= 0 and Hz = 0 which shows the transverse magnetic
mode, while for α = 1, Ez = 0 and Hz 6= 0 which shows the transverse
electric mode.

In order to validate the dependance on impedance of the walls
(i.e., zw = Zw/η), tangential electric and magnetic fields at the wall
at x = 0 of the fractional rectangular impedance waveguide have
been plotted versus α for different values of the original impedance
of walls, i.e., (zw = 0, 1, 2, 100) as shown in Figure 2. Simulation
data is for the mode which propagate through the guide at an angle
φz = π/6 with z-axis in the yz-plane and φx = π/4 with x-axis in
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(a) (b)

Figure 2. Plots of tangential fractional dual fields, (a) electric field,
(b) magnetic field at x = 0.

the xy-plane. Hence the simulation parameters (kx/kc, ky/kc, β/kc) =
(cos(π/4), sin(π/4), cot(π/6)) may be used. Normalized impedance of
the guide walls zw = 10 has been used. Figure 2(a) shows the plots
for tangential electric fields at an observation point ((kxx, kyy, βz) =
(0, π/4, π/4)) and the corresponding magnetic fields are shown in
Figure 2(b). It can be seen from the figures that tangential electric
field is zero only at ((α, zw) = (0, 0) or (α, zw) = (1, 100)), i.e., PEC
walls while tangential magnetic field is zero at ((α, zw) = (1, 0) or
(α, zw) = (0, 100)), i.e., PMC walls case.

5. RESULTS AND DISCUSSION

5.1. Field Distribution

In order to study the behavior of field lines inside the fractional
rectangular impedance waveguide, the field plots are given in the
transverse xy-plane for different values of fractional parameter, i.e.,
(α = 0, 0.5, 1) and original impedance of walls of the guide, i.e.,
(zw = 0, 1, 10) as shown in Figure 3. Solid lines show the electric
field while magnetic field is shown by the dashed lines. From these
figures, it can be seen that electric field lines are perpendicular and
magnetic field lines are parallel to the guide plates when the walls meet
the conditions of PEC, i.e, ((α, zw) = (0, 0) or at (α, zw) = (1, 10))
while magnetic field lines are perpendicular and electric field lines are
parallel to the guide walls when the walls meet the conditions of PMC,
i.e., ((α, zw) = (0, 10) or at (α, zw) = (1, 0)). This is also in accordance
with [31].
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Figure 3. Field lines; solid lines show electric field and dashed lines
show the magnetic field.

Figure 4. Transverse impedance of guide wall versus α.

5.2. Transverse Impedance

Transverse impedance of walls of the fractional rectangular waveguide
can be found using ratio of the electric and magnetic field components
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transverse to the walls of the waveguide. For a wall at x = 0,
impedance can be defined by using ratio of the y and z components of
the electric and magnetic fields as

z
x

=





[zfdyzŷẑ + zfdzyẑŷ] 0 < α < 1
kx
ky

zw α = 0
ky

kx

1
zw

α = 1
(11)

where

zfdyz =
[−kkx

k2
c

+
βky

k2
c

cot
(απ

2

)]
Fy − i tan

(
απ

2

)

1− iFy tan
(
απ

2

) (11a)

zfdzy =
[
kkx

k2
c

+
βky

k2
c

tan
(απ

2

)]−1 Fy − i tan
(
απ

2

)

1− iFy tan
(

απ
2

) (11b)

The absolute values of the transverse impedance zfdyz and zfdzy have
been plotted versus α for different values of fractional parameter α in
the range of 0 ≤ α ≤ 1 as in Figure 4. The plots are given for the
original impedance of the wall as zw = 0 and zw = 10. Solid lines
are for the impedance components zfdzy while dashed lines show the
impedance component zfdyz. It may be noted that dashed lines do
not exist at α = 0 because the original solution is for the mode TM z

in which Hz = 0 while solid lines do not exist at α = 1 because
at this value only transverse electric mode exist, i.e, Ez = 0. It
can be seen from the plot that at α = 0, transverse impedance is
equal to the original impedance of the wall, i.e., (zw = 0, 10) and for
α = 1, the transverse impedance becomes equal to the admittance of
the original wall of the guide, i.e., (zw = ∞, 0.1). Between these values
of α, transverse impedance is an-isotropic as shown in Figure 4. This
behavior is also according to the published results [19, 26].

5.3. Power Transferred through a Cross Section

The time averaged power density at any point of the transverse plane
(i.e., xy-plane) of the fractional rectangular impedance waveguide can
be obtained using the Poynting vector theorem as

Pav(x, y, z) =
1
2
Re[EfdxH∗fdy − EfdyH∗fdx] (12)

where H∗
fdy shows the complex conjugate of Hfdy and so on. Contour

plots for the power density given by Equation (12) have been plotted
for different values of the fractional parameter as shown in Figure 5.
The variation in the power distribution at the transverse plane may be
noted. Time averaged power density at the center point of the cross
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Figure 5. Time averaged power distribution over the cross section for
different values of α.

sectional face has been plotted in Figure 6 which shows the relative
maxima at α = 0.5. This shows that one may use the fractional
curl operator to control the pattern of the transmitted power through
the waveguide. The average power density at the cross sectional
plane can be obtained by integrating the local power density given
in Equation (13) over the whole cross section as

P(z) =
∫ π

0

∫ π

0

1
2
Re[EfdxH

∗
fdy − EfdyH

∗
fdx]d(kxx)d(kyy) (13)

This power density has been plotted for the entire range of α as in
Figure 7 which shows that the average power density through the
cross sectional plane remains fairly constant for the whole range of
the fractional parameter.
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Figure 6. Time averaged power
density at the center of the trans-
verse plane, i.e., at (kxx, kyy) =
(π/2, π/2).

Figure 7. Average power density
at the transverse plane.

6. CONCLUSION

Fractional rectangular impedance waveguide is the waveguide whose
walls have an-isotropic impedance and the propagation mode is a
hybrid mode. When original model is a rectangular waveguide with
impedance walls for transverse magnetic modes then dual to the
original solution is a rectangular waveguide with admittance walls for
transverse electric modes and vice versa. For a special case of PEC
walls, i.e., zw = 0, this is a generalized model which can represent the
solution of a rectangular waveguide whose walls are intermediate step
of perfect electric conductor (PEC) and perfect magnetic conductor
(PMC) and the propagating mode is also intermediate step of
transverse magnetic mode and transverse electric mode. Field lines
patterns show that electric field lines in the transverse plane are
perpendicular to the guide plates while magnetic field lines are parallel
to the plates at (α, zw) = (0, 0), (1, 10)) which simulate the conditions
of PEC walls. An other observation from the field lines plots is that
electric field lines in the transverse plane are parallel to the guide
plates while magnetic field lines are perpendicular to the plates at
(α, zw) = (0, 10), (1, 0)) which simulate the conditions of PMC walls.
It has been seen that the relative power density distributions at the
the cross sectional plane changes with varying α. For example the
relative power density distribution at center of the cross sectional plane
is maximum at α = 0.5. However, the average power density at the
cross sectional plane remains fairly constant for all values of α between
0 and 1. Hence, it is concluded that fractional curl may be used to
control the power distribution pattern over the cross section of the
guide.
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