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Abstract—An efficient approach is utilized for extracting the modal
parameters of high frequency structures and their sensitivities with
respect to all the design parameters. Using one FDTD simulation, the
modal parameters of all the guided and leaky modes are extracted
over the frequency band of interest. An adapted version of the
matrix pencil method is utilized for efficient extraction of the modal
parameters. In addition, using no extra simulations, the sensitivities
of the propagation constants with respect to all the design parameters
of the structure are extracted regardless of their number. The
computational time is a small fraction of the cost of similar approaches.

1. INTRODUCTION

Efficient extraction of the modal parameters of electromagnetic
structures is considered as an essential step for accurate modeling [1–
6]. Studying the dispersion characteristics of any structure and
the impact of the design parameters on these characteristics is also
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desired. The design parameters can be utilized to achieve the required
dispersion characteristics as shown in [3]. In addition, the modal
parameters can be utilized for calculating key design parameters
such as the coupling length of microstrip and optical directional
couplers [7]. It is also utilized to obtain the imaging length of
multimode interference devices with different index profiles [8]. The
beating length of polarization converters is determined using the modal
parameters [9]. These modal parameters are also incorporated in
the mode matching technique for modeling microwave and optical
structures with multiple discontinuities [10]. Obtaining the sensitivities
of the modal parameters or the dispersion characteristics with respect
to all the design parameters is thus of prime importance. This
sensitivity information is essential for tolerance and yield analysis of
different devices. It also enables efficient gradient-based optimization
of the behavior of these characteristics.

In the last two decades accurate calculation of the dispersion
characteristics using different numerical techniques attracted numerous
attentions. These numerical methods include finite difference time
domain (FDTD) [1], the transmission line method (TLM) [2], the
method of lines [3], and the finite difference frequency domain (FDFD)
method [4]. None of these techniques, however, propose a specific
approach to efficiently estimate the sensitivities of the dispersion
characteristics with respect to the design parameters. The classical
finite difference approximations are mainly utilized for this purpose.
This technique, however, is inefficient and requires many extra
simulation especially for a large number of design parameters. For
example, the central finite difference approximation (CFD) requires
2N additional simulations to obtain the sensitivities for a structure
with N design parameters. This computational cost of the sensitivity
calculations motivates research for alternative approaches.

Recently, an efficient approach for sensitivity calculations of the
dispersion characteristics has been introduced [11]. This technique
requires one FDTD simulation to obtain the propagation constants
and their sensitivities with respect to all the design parameters
for all the guided modes over the desired frequency band. The
computational efficiency of this approach has been demonstrated for
different lossless structures. This approach consists of two main parts.
The first part extracts the modal parameters efficiently using only
one FDTD simulation. The second part calculates the sensitivities
of the propagation constants with respect to all the design parameters
using the same simulation. Similar sensitivity analysis approaches have
been recently utilized with the FDTD method for efficient design of
microwave and optical components [12–14].
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In the first part of the technique described in [11], the fast Fourier
transform (FFT) is utilized for the extraction of the propagation
constants. This technique, however, is not suitable for obtaining the
modal losses. In addition, the accuracy of the obtained results is mainly
governed by the number of samples in the propagation directions. This
in turn increases the computational cost of the FDTD simulation.

In this paper, we propose a modified approach to obtain the modal
parameters and their sensitivities using only one FDTD simulation.
We utilize the matrix pencil method (MPM) for extracting the modal
parameters. This method is not only capable of extracting the complex
propagation contestants but it also requires fewer data samples. As
a result, the propagation length of the structure can be significantly
shortened. This reduces the computation cost of the FDTD simulation
dramatically. Using this approach, the computational time is only a
small fraction of that reported in [11]. This significant reduction in
the computational cost makes it possible to apply this technique for
a wide range of applications in both microwave and optical frequency
regimes.

We start by briefly describing the approach for efficient extraction
of the propagation constants in Section 2. In Section 3, the
MPM adapted for efficient extraction of the propagation constants
is described. The efficient sensitivity extraction approach of the
propagation constants is given in Section 4. The numerical validation
examples are given in Section 5. Finally, we give our conclusion in
Section 6.

2. MODAL PARAMETERS EXTRACTIONS

In this Section, we briefly describe the proposed technique for
extracting the modal parameters of all the guided and leaky modes
inside the electromagnetic structure over the desired frequency band
using only one FDTD simulation. The FDTD method is one of the
well known techniques in computational electrodynamics. It has been
applied to the modeling of many high frequency structures, see for
example [15–26].

Our derivation follows a similar approach to that in [11]. We
start by decomposing the input excitation of the FDTD simulation
into guided and leaky modes of the structures as follows:

ψinp = ψ(x, y, 0) =
M∑

m=0

ai
mΦi

m(x, y) (1)

where Φi
m(x, y) is the modal field of the mth mode of the structure
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at frequency fi, and ai
m is the coefficient of the mth mode. M in (1)

is the number of modes supported by the structure. After a specific
propagation distance z, the harmonic field at a specific frequency fi

can be calculated as follows:

ψ̃i
t(x, y, z) =

∑
m

ai
mΦi

m(x, y)e−γi
mz (2)

where γi
m is the propagation constant of the mth mode at frequency

fi and is given by:
γi

m = αi
m + jβi

m. (3)

βi
m and αi

m are the phase and the attenuation terms of the propagation
constant γi

m, respectively.
We define an auxiliary function in the frequency domain [27]:

P̃ i(z) =
∫∫

Ω

ψH
inpψ̃

i
t(x, y, z) dxdy =

∑
m

ci
me−γi

mz (4)

where
ci
m =

∣∣ai
m

∣∣2
∫∫

Ω

ΦiH

m Φi
mdxdy (5)

and ΦiH
m is the Hermitian of the mth modal field. In (4) and (5) Ω

is the cross sectional area. The complex propagation constants can be
obtained from (4) using different approaches. These approaches include
curve fitting techniques in the z-domain such as Prony’s method [28].
They can also include smart digital signal processing approaches such
as the matrix pencil method [29, 30]. For propagation constants with
negligible attenuation, the FFT can be utilized as in [11]. However,
this technique requires many samples in the propagation directions
which increase the total simulation time.

3. THE MATRIX PENCIL METHOD

In this section, we use the matrix pencil method developed in [29]
for efficient extraction of the propagation constants. This method has
been originally developed for high resolution spectral estimation.

Here, we aim at obtaining the complex propagation constant γi
m

for each mode and the amount of power coupled to this mode through
the coefficients ci

m. For this purpose, we first assume that the sequence
of P̃ i(z) given by (4) is readily available from the FDTD simulation.
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We also assume that the obtained sequence is contaminated with
numerical noise v(z), i.e.,

yi(z) = P̃ i(z) + v(z) (6)

Using (4), we can rewrite (6) as:

yi
n =

M∑

m=1

ci
mwn

i,m + vn (7)

where wn
i,m = e−γi

m(nδz), vn = v(nδz), yi
n = yi(nδz), and δz is the

sampling interval in the z direction. This sample interval is an integer
multiple of the step size ∆z used in the FDTD simulation.

Suppose we have N samples and the number of modes M is known,
then we can construct the (N −M) × M matrices Yi

1 and Yi
2 given

by [29]:

Yi
1 =




yi
o yi

1 . . . . yi
M−1

yi
1 yi

2 . . . . yi
M

: : : :
yi

N−M−1 yi
N−M . . . . yi

N−2


 , and

Yi
2 =




yi
1 yi

2 . . . . yi
M

yi
2 yi

3 . . . . yi
M+1

: : : :
yi

N−M yi
N−M+1 . . . . yi

N−1


 (8)

By defining

Wi
1

=




1 1 . . . . 1
wi,1 wi,2 . . . . wi,M

: : : :
wN−M−1

i,1 wN−M−1
i,2 . . . . wN−M−1

i,M


 , and

Wi
2

=




1 1 . . . . 1
wi,1 wi,2 . . . . wi,M

: : : :
wM−1

i,1 wM−1
i,2 . . . . wM−1

i,M


 , (9)

we can write

Yi
1 = Wi

1C
iWi

2 + V1 and Yi
2 = Wi

1C
iWi

oW
iT
2 + V2 (10)
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where Ci = diag(ci
1, . . . , c

i
M ), Wi

o = diag(wi,1, . . . , wi,M ), and the noise
matrices are given by

V1 =




vo v1 . . . . vM−1

v1 v2 . . . . vM

: : : :
vN−M−1 vN−M . . . . vN−2


 , and

V2 =




v1 v2 . . . . vM

v2 v3 . . . . vM+1

: : : :
vN−M vN−M+1 . . . . vN−1


 (11)

For the noiseless case, one can show that the generalized eigenvalue
of the matrix pencil (Yi

2,Y
i
1) [29] is equal to wi,k. In the noisy case

this does not hold in general. However, when the numerical noise is
relatively small, the generalized eigenvalues of (Yi

2,Y
i
1) provide a good

approximation of wi,k.
From (9) it can be seen that the exponent in each row in the

matrices Wi
1 and Wi

2 increases linearly with the order of the sample.
In our particular application where γi

m is complex, the rows which
have high order n will approach zero. On the other hand, the first row
contains only ones. Hence, using a large number of data samples to
construct the matrices Yi

1 and Yi
2 results in an ill-conditioned pencil

(Yi
2,Y

i
1). This suggests that, from a practical perspective, using a

moderate number of samples is recommended.
To avoid potential sources of further ill-conditioning, we should

guarantee that the rows of Yi
1 and Yi

2 are linearly independent. In the
noiseless case, the value of P (nδz) can be utilized at each propagation
step, i.e., δz = ∆z. However, due to the smooth variation in P (z) in
the presence of the numerical noise, the data at some ∆z can be close
to being linearly dependent. In order to avoid this dependence, we
propose to choose δz as a multiple of ∆z. In particular, we propose to
choose δz such that 1/δz is close to the Nyquist rate of the sequence
P (z) [31]. That is, close to twice the maximum frequency of the
sequence P (z).

4. SENSITIVITY ANALYSIS OF THE PROPAGATION
CONSTANTS

Once the propagation constants and the coupling coefficients of all the
modes over the desired bandwidth have been calculated as described in
Section 3, the sensitivities of the modal characteristics can be estimated
by following a similar approach to the one shown in [11]. Here, we
briefly describe this approach.
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We start by differentiating (4) with respect to the kth design
parameter pk at a propagation distance z1 to obtain

∂P̃ i(z1)
∂pk

=
M∑

m=1

∂ci
m

∂pk
e−γi

mz1 − z1c
i
me−γi

mz1 · ∂γi
m

∂pk
(12)

By evaluating the sensitivities of the auxiliary function at different
propagation steps (z1, . . . , zK), the following system of equations can
be constructed:

Ax = b (13)

where

A=




e−γi
1z1 . . . e−γi

Mz1

: . . .

e−γi
1zK . . . e−γi

MzK

−z1c
i
1e
−γi

1z1 . . . −z1c
i
Me−γi

Mz1

. . . :
−zKci

1e
−γi

1zK . . . −zKci
Me−γi

MzK




x=
[

∂ci
1

∂pk
..

∂ci
M

∂pk

∂γi
1

∂pk
..

∂γi
M

∂pk

]T
, and

b=
[

∂P̃ i(z1)
∂pk

... ∂P̃ i(zK)
∂pk

]T

(14)

As described in [11], the vector b can be obtained using the adjoint
variable method (AVM) [12] which allows for efficient estimation of
the derivatives of the auxiliary function P̃ i(zk) with respect to all the
design parameters without any extra simulations. Once b is calculated,
the sensitivities of the propagation constants and coefficients x can be
obtained by solving (13).

5. NUMERICAL EXAMPLES

In order to illustrate our approach three examples are given. In these
examples, a uniaxial perfectly matched layer is utilized to terminate
the computational domain [32].

5.1. Single Dielectric Post Loaded Waveguide

The first example is a single post partially loaded dielectric waveguide
as shown in Fig. 1. The dimensions of the structure are a = 10.16mm,
b = 5.588mm, W = 5.08mm, and L = 3.048mm. The length of
the structure is 40.0 mm. The constitutive parameters are εr1 = 1,
σ1 = 0, εr2 = 8.0, and σ2 = 0.1 S/m. We utilize our approach to
extract the complex propagation constants of all the modes over the
required bandwidth. The results obtained for the fundamental TE
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mode using our method and those obtained using Ansoft-HFSS [33]
are shown in Figs. 2 and 3. Very good agreement is obtained between
the two techniques. The modal field distribution of the fundamental
mode at 19 GHz is also shown in Fig. 4.

The phase constants obtained using our approach and shown in
Fig. 3 have a very good agreement with the ones obtained using the
approach given [11]. However, the total computational time of our
approach including the post processing of the MPM represents only
9% of the total computational time reported in [11]. This significant
saving is mainly due to the utilization of MPM which requires less
number of samples. This in turn reduces the length of the structure in
the z directions to a small fraction of its length for the former approach.

For this example, we also extract the sensitivity of these constants
with respect to all the design parameters. The vector of design
parameters is p = [a b L W εr1 σ1 εr2 σ2]T . Due to space

Figure 1. Schematic diagram of the single post loaded dielectric
waveguide.

11 12 13 14 15 16 17 18 19 20
7

7.5

8

8.5

9

9.5

10

α
(N

p
/m

)

HFSS
Our Method

Frequeny in GHz

Figure 2. The attenuation
coefficients of the dominant mode
for the single post partially loaded
dielectric waveguide.

11 12 13 14 15 16 17 18 19 20
300

400

500

600

700

800

900

1000

β
(r

a
d

/m
)

HFSS
Our Method

Frequeny in GHz

Figure 3. The phase constants of
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limitation, we show only a part of these results. The sensitivity of the
attenuation coefficient α of the fundamental TE mode with respect to
the permittivity of the loaded region εr2 and the conductivity of the
loaded region σ2 and its permittivity εr2 are shown in Figs. 5 and 6,
respectively. The results obtained using our approach are compared
to those obtained using the CFD. Good match is obtained between
both approaches. Using the CFD, 16 extra simulations are required.
However, using our approach no extra simulation is required.

5.2. Double Post Dielectric Loaded Waveguide

In this example, a double post dielectric loaded waveguide shown in
Fig. 7 is analyzed using our approach. The dimensions of the structure
are a = 20.0mm, b = 11.0mm, W1 = 5.0mm, L1 = 3.00mm,
W2 = 5.0mm, and L2 = 3.0mm. The constitutive parameters are
εr1 = 1, σ1 = 0, εr2 = 8.0, σ2 = 0.1 S/m, εr3 = 6.0, and σ3 = 0.5 S/m.
The length of the structure is taken to be 40.0 mm. The dispersion
characteristics of the fundamental TE mode over a frequency band
from 10 GHz to 20 GHz are obtained using our approach and compared
with the HFSS results as shown in Figs. 8 and 9.

The sensitivity of the propagation constant with respect to all the
design parameters is also obtained using our approach. The vector of

0

0.002

0.004

0.006

0.008

0.01

0
1

2
3

4
5

6

x 10
-3

0

0.2

0.4

0.6

0.8

1

Y(m)X(m)

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

Figure 4. The modal field profile of the fundamental mode of the
single post partially loaded waveguide calculated at 19 GHz.
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the design parameters is p = [a b L1 W1 L2 W2 εr1 σ1 εr2 σ2 εr3 σ3]T .
The results obtained using our approach have a very good agreement
with those obtained using CFD technique. As an example, the
sensitivities of the attenuation coefficient and phase constants of the
fundamental TE mode with respect to εr3 are shown in Figs. 10 and
11, respectively. The CFD approach requires 24 additional simulations
to obtain the sensitivity with respect to all the design parameters. On
the other hand, our approach requires no additional simulation.

Figure 7. Schematic diagram of the double post loaded dielectric
waveguide.
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5.3. W-Shape Leaky Waveguide

The third example is a W-shape leaky waveguide as shown in Fig. 12.
For this structure, the fundamental mode has a complex propagation
constant where the attenuation term is mainly affected by the design
and material parameters [34]. The width of the main guiding region W1

and the cladding region W2 are taken to be 1.014µm and 5.096µm,
respectively. The refractive indexes are n1 = 1.45 and n2 = 1.39.
The results obtained using our approach have a very good agreement
with those reported in [34]. To further verify the results, a mode
solver with PML included is developed as given in [35]. The results
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Figure 12. Refractive index distribution of W-shape leaky waveguide.
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using our approach have very good agreement with those obtained
using the mode solver with PML as shown in Figs. 13 and 14. The
vector of design parameters in this example is p = [W1 W2 n1 n2]T .
The obtained results have good agreement with those obtained using
the CFD technique applied directly at the level of response. For
illustration, the sensitivity of the phase and attenuation terms of the
propagation constants with respect to the variation in W1 is shown in
Figs. 15 and 16, respectively.

6. CONCLUSION

We propose an efficient approach to extract the modal parameters
and their sensitivities with respect to all the design parameters. Our
approach is general and can be utilized for lossless, lossy, and leaky
structures. The exploitation of the adopted MPM allows for significant
reduction in the computational time and memory requirements. Our
technique requires no extra simulation for extracting the modal
parameters and their sensitivities with respect to all the design
parameters over the whole band of frequencies. The efficiency
and versatility of our technique have been shown through different
examples.
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