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Abstract—Electromagnetic fields in a cavity filled with double
negative dispersive medium and bounded by a closed perfectly
conducting surface is studied in the Time Domain. The sought
electromagnetic fields are found in a closed form by using
decomposition over cavity modes and solving in TD the differential
equations for the time varying mode amplitudes. Some features of
frequency response of such an electromagnetic system are presented.
Waveforms of electromagnetic fields excited by a wideband pulse are
considered.

1. INTRODUCTION

Recently many researchers develop and create new materials with
special electromagnetic properties not met in nature, known as
metamaterials. Among such media an important place occupies so-
called left-handed or double negative (DNG) media [1–7]. As an
example of possible application of DNG medium in cavity devices
we can mention a subwavelength resonator that comprises of double
positive (DPS) and DNG slabs that compensate each other to provide
zero total phase shift [3, 6, 8–10]. Such resonators exhibit interesting
spectrum properties that among others create some problems for
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numerical analysis [11]. In order to treat DNG media properly one
should always take into account dispersion of the refractive index.

A cavity filled with dispersive medium is an oscillating system
composed of oscillating charges in medium and oscillating fields
bounded by the cavity walls. Interaction of these oscillators within
the cavity results in some interesting phenomena that we are going to
study in this paper.

We consider a cavity homogeneously filled with dispersive DNG
medium. For an oscillator it is important to have low losses at
resonances. Since of interest is the frequency range with negative
refractive index we choose such dispersion in medium so that the
losses in this range are small. The dispersion models that can
be easily presented both in FD and TD are based on rational
fractions presentation in FD that corresponds to damping harmonic
functions in TD. Among simplest models of this kind are constant
conductivity, Drude, Debye, Lorentz, and their linear combinations.
Drude model yields negative real part of the constitutive parameter
in frequency band from 0 to some zero-crossing frequency, in the
vicinity of which losses are rather small. This model properly describes
permittivity behavior of many metals (conductors) in low frequency
region (up to infrared). Meanwhile Drude model yields nonzero
conductivity currents at DC that’s why it is not appropriate for
modeling permeability. That’s why we choose Lorentz model for
permeability. Such a model consisting of Drude permittivity and
Lorentz permeability is frequently used in modeling DNG media [4].
In the Frequency Domain (FD) these dispersions can be expressed as
follows

ε(ω) = 1 +
χeω

2
e

iω (iω + γe)
, (1)

µ(ω) = 1 +
χmω2

m

ω2
m − ω2 + iωγm

. (2)

The model parameters are given in Fig. 1. They were chosen rather
arbitrary within physical constraints so that to provide double negative
refractive index n′(f) < 0 in some frequency region around 6–12GHz
with relatively low losses.

This medium can be described in TD by the following constitutive
relations in the form of ordinary differential equations (ODE) relating
electric P and magnetic M dipole moments per unit volume with the
corresponding field quantities E and H

∂2
tP + γe∂tP = ε0χeω

2
eE , (3)

∂2
tM+ γm∂tM+ ω2

mM = χmω2
mH (r, t) . (4)



Progress In Electromagnetics Research M, Vol. 8, 2009 53

Frequency, GHz

2

1

0

-1

-2

0 4 8 12

30

15

0

-15
0 10 20 30

P
e

rm
it
ti
v
it
y

ε' (f)

ε'' (f)

2000

1000

0

-1000

P
e

rm
e

a
b

ili
ty

20

10

0

-10

0 10 20 30

µ' (f)

µ'' (f)

Frequency, GHz
0 10 20 30

3

0

-3

-6

-9

-20

-40

Frequency, GHz

0 10 20 30

30

15

0

Frequency, GHz

0 10 20 30

(a) (b)

(c) (d)

n' (f)

n'' (f)

Figure 1. Frequency dependencies of permittivity, permeability and
refractive index for model parameters χe = 5, γe/2π = 6 × 108 s−1,
fe=ωe/2π = 5 GHz, χm = 20γm/2π = 4× 108 s−1, fm=ωm/2π = 6.5GHz.

We are going to study electromagnetic fields in a cavity with such
medium and consider frequency response of this system as well as some
transient effects occurring under pulse excitation in the cavity.

2. CLOSED-FORM SOLUTION TO THE PROBLEM BY
MODE EXPANSION IN TIME DOMAIN METHOD

The cavity under study is bounded with a singly-connected closed
PEC surface. Within the frame of Evolutionary Approach to
Electromagnetics in TD [12–14] (Mode Expansion in TD) the sought
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electromagnetic fields E(r, t), H(r, t), dielectric polarization P(r, t),
and magnetization M(r, t) are expanded into series in terms of cavity
modes:

E(r, t) =
∞∑

n=1

en(t)En(r)−
∞∑

α=1

aα(t)∇Φα(r), (5)

H(r, t) =
∞∑

n=1

hn(t)Hn(r)−
∞∑

β=1

bβ(t)∇Ψβ(r), (6)

ε−1
0 P(r, t) =

∞∑

n=1

pn(t)En(r)−
∞∑

α=1

qα(t)∇Φα(r), (7)

M(r, t) =
∞∑

n=1

mn(t)Hn(r)−
∞∑

α=1

gβ(t)∇Ψβ(r). (8)

The solenoidal cavity modes can be found as solutions to the following
boundary eigenvalue problems




∇×Hn (r) = −iωnε0En (r)
∇×En (r) = iωnµ0Hn (r)
n×En (r)|S = 0 or n ·Hn (r)|S = 0

(9)

Irrotational modes occurring in the expansions correspond to transient
Coulomb and Ampère fields in the bounded cavity that are closely
coupled with charges and currents. They are defined by the following
eigenvalue problems
(∇2+ η2

α

)
Φα = 0, Φα|S = 0 and

(∇2+ ν2
α

)
Ψβ = 0, ∂

∂NΨβ

∣∣
S

= 0. (10)

Time dependences of the fields are described by the mode
amplitudes en(t), hn(t), pn(t), mn(t), aα(t), bβ(t), qα(t), gβ(t). In
the same way one can expand the initial fields as well as the impressed
electric and magnetic currents Je(r, t) and Jh(r, t)

E0(r) =
∞∑

n=1

e0
nEn(r)−

∞∑

α=1

a0
α∇Φα(r), (11)

H0(r) =
∞∑

n=1

h0
nHn(r)−

∞∑

β=1

b0
β∇Ψβ(r), (12)

ε−1
0 Je(r, t) =

∞∑

n=1

je
n(t)En(r)−

∞∑

α=1

je
α(t)∇Φα(r), (13)
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µ−1
0 Jh(r, t) =

∞∑

n=1

jh
n(t)Hn(r)−

∞∑

β=1

jh
β(t)∇Ψβ(r), (14)

By substituting expansions (5)–(8) and (11)–(14) into Maxwell
equations and constitutive relation (3) and (4), and further applying
the orthogonality conditions

ε0
V

∫
V

En (r) ·E∗m (r) dV = µ0

V

∫
V

Hn (r) ·H∗
m (r) dV = δnm, (15)

− ε0
V

∫
V

En(r) · ∇Φ∗α(r)dV = −µ0

V

∫
V

Hn(r) · ∇Ψ∗
β(r)dV = 0, (16)

one can obtain a system of ODEs for the mode amplitudes (known as
evolutionary equations [12–14]). It can be written in a matrix form as
follows:

d

dt
X(t) + Qsol ·X(t) = Fsol(t), X(t)|t=0 = X0, (17)

d

dt
Ye(t) + Qe

irr ·Ye(t) = Fe
irr(t), Ye(t)|t=0 = Ye

0, (18)

d

dt
Yh(t) + Qh

irr ·Yh(t) = Fh
irr(t), Yh(t)

∣∣∣
t=0

= Yh
0 , (19)

where

X (t) = col
(
en, ihn, p′n, imn, im′

n

)
,

X0 = col
(
e0
n, ih0

n, p′n (0) , im0
n, im′

n (0)
)
,

p′n(t) = ∂tpn(t), m′
n = ∂tmn, q′α = ∂tqα, g′β = ∂tgβ,

Fsol(t) = col
(
−je

n,−ijh
n, 0, 0, 0, 0

)
,

Ye(t) = col
(
aα, q′α

)
, Yh(t) = col

(
bβ, g′β

)
,

Ye
0 = col

(
a0

α, q′α (0)
)
, Yh

0 = col
(
b0
β, g′β (0)

)
,

Fe
irr(t) = col (−je

α, 0) , Fh
irr (t) = col

(
−jh

β , ω2
m

∫ t

0
jh
β(t′)dt′

)
,

Qsol =




0 ωn 1 0 0
−ωn 0 0 0 1
−χeω

2
e 0 γe 0 0

0 0 0 0 −1
0 −χmω2

m 0 ω2
m γm




Qe
irr =

(
0 1

−χeω
2
e γe

)
, Qh

irr =
(

0 1
−µmω2

m γm

)
, µm = 1 + χm.

(20)
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This system of ODEs with constant coefficients (17)–(19) can be solved
in a closed form [15]. Solenoidal mode amplitudes are obtained as

X(t) =
5∑

k=1

K
(
λsol

k

)


e−t·λsol

k X0 +

t∫

0

e−(t−t′)·λsol
k Fsol

(
t′
)
dt′



,

K
(
λsol

k

)
=

s=1...5∏

s 6=k

λsol
s I−Qsol

λsol
s − λsol

k

. (21)

where λsol
k are eigenvalues of matrix Qsol that can be found as roots

of the characteristic equation

λ5 − (γm + γe) λ4 +
(
γmγe + χeω

2
e + µmω2

m + k2
n

)
λ3

− k2
n (γm + γe) λ2 − (

χeω
2
eγm + µmω2

mγe

)
λ2

+
(
χeµmω2

eω
2
m + k2

n

(
ω2

m + γmγe

))
λ− k2

nω2
mγe = 0. (22)

The irrotational mode amplitudes are found asb

Ye(t)=
2∑

k=1

K
(
λ

irr(e)
k

)


e−t·λirr(e)

k Ye
0 +

t∫

0

e−(t−t′)·λirr(e)
k Fe

irr(t
′)dt′



, (23)

where

λ
irr(e)
1,2 =

γe

2
∓ iωe

irr, ωe
irr =

√
χeω2

e −
γ2

e

4
,

K
(
λ

irr(e)
1

)
=

1
2


−

iγe

2ωe
irr

+ 1 i
ωe

irr

− iχeω2
e

ωe
irr

iγe

2ωe
irr

+ 1


 ,

K
(
λ

irr(e)
2

)
=

1
2




iγe

2ωe
irr

+ 1 − i
ωe

irr

iχeω2
e

ωe
irr

− iγe

2ωe
irr

+ 1


 ;

and

Yh(t)=
2∑

k=1

K
(
λ

irr(h)
k

)


e−t·λirr(h)

k Yh
0 +

t∫

0

e−(t−t′)·λirr(h)
k Fh

irr(t
′)dt′



, (24)
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where

λ
irr(h)
1,2 =

γm

2
∓ iωh

irr, ωh
irr =

√
µmω2

m − γ2
m

4

K
(
λ

irr(h)
1

)
=

1
2



− iγm

2ωh
irr

+ 1 i
ωh

irr

− iµmω2
m

ωh
irr

iγm

2ωh
irr

+ 1


 ,

K
(
λ

irr(h)
2

)
=

1
2




iγm

2ωh
irr

+ 1 − i
ωh

irr

iµmω2
m

ωh
irr

− iγm

2ωh
irr

+ 1


 .

By substituting any specific initial conditions and time dependences
for the impressed sources into this general form solution one can easily
calculate the corresponding time dependences of the mode amplitudes
and hence the sought electromagnetic fields.

Before calculating transient fields let us first study properties of
the eigenfrequencies of the physical system under study.

3. EIGENFREQUENCIES OF SOLENOIDAL MODES

The first question of interest is the eigenvalues of the coefficient matrix
Qsol in the evolutionary equations — they are the eigenfrequencies of
free oscillations in the cavity. The matrix 5× 5 yields five eigenvalues
— two complex conjugated pairs and one real eigenvalue. Imaginary
parts of the eigenvalues (Fig. 2(a)) characterize frequencies of field
oscillations; while the real parts (Fig. 2(b)) characterize damping of the
corresponding oscillation component. The eigenfrequencies are plotted
as functions of the cavity size expressed in terms of the empty cavity
eigenfrequency (inverse proportional to its size).

There are two frequency ranges where free oscillations cannot
exist — these are marked with gray strips in Fig. 2(a). Within these
ranges n′(f) < n′′(f), the field have non-oscillating spatial distribution
and can’t satisfy zero boundary conditions at the cavity walls. The
frequency marked as “1” in Fig. 2(a) can be defined as a ‘cavity’
frequency; it tends to the eigenfrequency of an empty cavity at high
frequencies. The frequency marked as “2” can be defined as a ‘medium’
one, it corresponds roughly to the resonance frequency of the Lorentz
permeability. This frequency lies in the negative refractive index
frequency range. It corresponds to the area of anomalous dispersion,
where the group velocity is positive, while the phase velocity is negative
(Fig. 3). In contrast to the ‘cavity’ eigenfrequency the ‘medium’
eigenfrequency decreases with cavity size decrease. At this the cavity
boundary doesn’t affect the eigenfrequency significantly, especially it
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is prominent at the low frequency limit around 6 GHz, where the
group velocity tends to zero (Fig. 3). Oscillations at this frequency
correspond to a wave that is bound to the place of excitation. That is
the oscillating fields are formed as a “standing wave”. This standing
wave is formed not as interference of two opposite traveling waves
rebouncing at the cavity walls but as a wave that travels at zero group
velocity and thus doesn’t care where the walls are placed.

It should be noted that in multimode regime all the higher
modes have almost equal ‘medium’ eigenfrequencies (see Fig. 4). That
is why quite arbitrary spatial distribution can be created at this
frequency. The reason for this is near zero group velocity that prevents
energy from spreading along the cavity, so almost any spatial energy
distribution in initial conditions remains unchanged oscillating at the
‘medium’ frequency.

4. FREQUENCY RESPONSE OF THE CAVITY

Besides the eigenfrequencies the oscillating system can be characterized
by its frequency response that describes amplitude of forced oscillations
for a unit excitation at given frequency. The frequency response
shows not only the position of the resonances but also their relative
strength. In order to obtain it let us consider the governing equation

(a) (b)

Figure 2. Imaginary and real part of eigenvalues of the filled cavity
(1, 2, 4). Eigenfrequency of the empty cavity (3).
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Figure 3. Dispersion characteristics of the medium. Real parts of the
group and phase velocities is shown on left, while imaginary parts are
shown on right. The group velocity loses its meaning in the regions
with significant imaginary part.

Figure 4. ‘Cavity’ and ‘medium’ frequency in multimode regime.

for solenoidal modes (17) written in the FD:

(iωI + Qsol) · X̃(ω) = F̃sol(ω), X̃(ω) = R(ω) F̃sol(ω),
R(ω) = (iωI + Qsol)

−1 (25)

where the frequency response matrix R(ω) was introduced that relates
complex amplitudes of the harmonic oscillations of the fields X̃(ω)
with those of the sources F̃(ω). The first row of this matrix describes
response to excitation by electric currents (see sources definition (20)).
Some of these responses are shown in Fig. 5. One can clearly see
two ridges on the plots that correspond to the ‘cavity’ and ‘medium’
eigenfrequencies discussed in the previous section. Peak amplitudes of
these ridges for electric field response are shown separately in Fig. 5(c).
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It can be seen that at large cavity size (low “Eigenfrequency of empty
cavity”) the ‘medium’ resonance is excited with much larger amplitude
than the ‘cavity’ one, while with decrease of the cavity size the situation
changes and the ‘cavity’ resonance becomes dominant for a small
cavity.

An interesting feature can be observed at 30 GHz where neither
electric field nor polarization can be excited for any cavity size (see
valleys at Figs. 5(a) and 5(d)) while magnetic field and magnetization
are though small but nonzero at this frequency. At this point the
frequency derivatives of refractive index become infinite (see Figs. 2
and 3). A similar situation occurs for magnetic field at around 7 GHz:
at Fig. 5(e) a valley exists at this frequency that doesn’t depend on
the cavity size. In contrast to situation with polarization that shares
the valley with electric field, the magnetization response has no such
valley at 7 GHz (Fig. 5(f)).

5. FORCED TRANSIENT OSCILLATIONS IN A CAVITY
WITH DISPERSIVE DOUBLE NEGATIVE MEDIUM

Now let us consider transient processes that occur in the cavity under
pulse excitation by electric currents with the following waveform

je
α(t) = je

n(t) =
(

t

T

)2 (
1− t

3T

)
e−t/T ×Heaviside(t). (26)

This waveform is shown in Fig. 6. In numerical calculations we used
two such signals with parameter T set so that signal spectrum was
allocated around the ‘medium’ frequency for the first signal and around
the ‘cavity’ frequency for the second one (see Fig. 7).

By substituting time dependence (26) into (21)–(24) a closed-form
waveforms for the solenoidal mode amplitudes is obtained as:

X(t) =
5∑

k=1

I
(
λsol

k , t
)
K

(
λsol

k

) · col (1, 0, 0, 0, 0)

K
(
λsol

k

)
=

s=1...5∏
s6=k

λsol
s U−Qsol

λsol
s −λsol

k

.
(27)

where λsol
k are the roots of (22), the function I(λ, t) is defined as

I(λ, t) =
−Te−t/T

λT − 1

{
1
3

(
t

T

)3

− λT
(

t
T

)2

λT − 1
+

2λt

(λT − 1)2
− 2λT

(λT − 1)3

}

− 2λT 2e−λt

(λT − 1)4
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Electric irrotational mode amplitudes are found as

aα(t) =
1
2

(
1− iγe

2ωe
irr

)
I (λe

irr1, t) +
1
2

(
1 +

iγe

2ωe
irr

)
I (λe

irr2, t) (28)

q′(t) =
iχeω

2
e

2ωe
irr

(I (λe
irr2, t)− I (λe

irr1, t)) (29)

λe
irr1,2 =

γe

2
∓ iωe

irr, ωe
irr =

√
χeω2

e −
γ2

e

4

Since the sources (26) are chosen to be only of electric type (jh
n(t), jh

β(t)
are assumed to be zero) the magnetic irrotational part of the field is
not excited.

The cavity size is chosen such that its ‘empty’ eigenfrequency is
10.7GHz, at this the resulting ‘medium’ eigenfrequency is the same
(Fig. 7). ‘Cavity’ eigenfrequency is 31.8 GHz. Quality factors were
found to be 1127 for the ‘cavity’ frequency and 216 for the ‘medium’
frequency. In spite of higher Q-factor one can see from Fig. 5(c) that

(a) (b)

(c) (d)



62 Antyufeyeva, Butrym, and Tretyakov

(e) (f)

Figure 5. Frequency responses of the cavity as function of cavity
size (given by “Eigenfrequency of empty cavity”) for excitation by
electric current. (a) Magnitude of the response for electric field mode
de amplitude ẽ(ω). (b) Phase of the frequency response for electric
field mode amplitude ẽ(ω). (c) Peak magnitudes of the resonances
at the response for ẽ(ω) (peak values of the ridges at plot a). (d)
Magnitude of the frequency response for electric polarization mode
amplitude p̃(ω). (e) Magnitude of the frequency response for magnetic
field mode amplitude h̃(ω). (f) Magnitude of the frequency response
for magnetization mode amplitude m̃(ω).

Figure 6. Time dependence of
the excitation signals.

Figure 7. Power spectrum
density of the excitation signals.
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(a) (b)

Figure 8. Time oscillations of the mode amplitude en(t), for a long
pulse with T = 0.06 ns.

(a) (b)

Figure 9. Time oscillations of the mode amplitude en(t), for a short
pulse with T = 0.012 ns.

the ‘cavity’ resonance has much smaller response than the ‘medium’
one. Though the two excitation signals are chosen to have maximum
spectral density at two distinct resonances but in the time evolution we
can observe that at early time only ‘medium’ frequency is excited due
to much higher response (Figs. 8 and 9). Only at late time the ‘cavity’
eigenfrequency becomes visible at background because it decays at
smaller rate due to higher Q-factor.

6. CONCLUSION

A cavity with double negative medium has been considered both in
Frequency and Time Domains. The solution has been carried out based
on mode decomposition of the fields. A closed-form solution in TD
has been obtained for transient oscillations in the cavity. Frequency
responses for mode amplitudes have been analyzed and the following
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features have been revealed:

¦ there are two complex eigenfrequencies for a mode that correspond
to ‘cavity’ and ‘medium’ resonances;

¦ ‘medium’ eigenfrequency has very little dependence on the cavity
size, it corresponds to the frequency band where medium has
double negative properties;

¦ there are frequency bands where resonances do not occur for any
cavity size;

¦ there are specific frequencies where either electric or magnetic
field response is close to zero for any cavity size, these two
frequency points correspond to very high frequency derivatives
of refractivity;

¦ at large cavity size the peak amplitude of the ‘cavity’ resonance
tends to zero, while at small cavity size it significantly dominates
over the ‘medium’ resonance.

¦ the ‘medium’ resonance frequency slightly decreases with decrease
in cavity size in contrast to close to linear increase in the ‘cavity’
eigenfrequency;

¦ The ‘medium’ oscillation occurs at almost the same frequency for
all modes and any cavity size. It can be explained by locality of
energy due to close to zero group velocity, so the oscillations occur
locally and depend only on the medium properties but not on the
cavity boundaries.

In spite of high losses supposed to be observed in the region of
anomalous dispersion a relatively high quality factor Qm ≈ 200 was
obtained at DNG frequency band within a rather realistic dispersion
model used in calculations.

The main intent of this paper was to show that dispersion should
be taken into account when analyzing resonance structures with DNG
medium because behavior of such systems is determined by complex
interaction of medium and structure resonances that can bring in some
new unexpected effects.
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