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Abstract—A novel approach for logic state dependent generation of
polarized photon is proposed, where the logic states ‘0’ and ‘1’ are
represented by two sub-spaces in the Hilbert space of the hyperfine
states of rubidium atom (87Rb). Each subspace consists of a ground
state, an intermediate state and an excited state. The atom is placed
at the center of a two-mode cavity, and the cavity modes correspond
to frequencies of the generated photon. Photon generation process
involves raising the atom to the excited state within the corresponding
subspace and letting it decay back to the initial (ground) state,
emitting thereby a photon of logic state dependent polarization. In
order to keep the driving laser frequencies far off from the cavity mode
frequencies, the atom is raised to the excited state in two steps —
first from the ground state to the intermediate state and then from
the intermediate state to the excited state. Polarization states of the
photon represent the logic states, and can be used to transport logic
from one node to another of the quantum network.

1. INTRODUCTION

Photon has been identified as an ideal carrier for logic transport from
one node to another of the envisioned quantum network. Right- and
left-circular polarization states of photon can effectively represent logic
states of the flying qubit. These polarization states are binary in
nature and can be propagated over long distances without significant
degradation.

Recently, transferring quantum state from one quantum node to
another using photon as a carrier has drawn considerable attention of
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the relevant R & D community. This is evident from the research
reports appearing in the literature [1–12]. Investigators have put
much effort to find suitable quantum structures and processes for the
generation of photons as flying qubits. At the state-of-the-art, photon
is generally emitted as a result of transition from a higher energy level
to a lower one of an atom or a nanodot. In the case of information
transmission through optical fibers (or waveguides) or special type of
fibers [13–17], photons are identified as such qubits [18].

Several approaches for the generation of photon as a flying qubit
have been put forward. Gardinar [19] and Carmichael [20] proposed
two-atom systems for using photon output from the first atom to drive
the second atom. While the system proposed by Gardinar [19] was
based on quantum Langevin equations and the fundamental equation
for the two-atom system, Carmichael [20] described a quantum
trajectory based theory.

A well-accepted approach for communicating spin-state of an atom
to a spatially separated atom was proposed by Cirac et al. [8]. In
their scheme, a quantum node consisted of an atom and a coupled
cavity. They formulated Hamiltonian for describing the interaction
between the atom and the corresponding cavity mode. A cavity
assisted Raman process generated the photon wavepacket which, in
their scheme, must be time-symmetric, in order to reproduce the spin
state of the transmitting atom into the receiving one.

The time-symmetry requirement of the generated photon
wavepacket in Ref. [8] was eliminated in the proposition made by
Yao et al. [21]. In this proposition, photon transmission and reception
processes could be independently controlled. Under the Weisskopf-
Wigner approximation, the authors derived the equation of motion for
resonant Raman process for a Λ-type three-level system. Their major
achievement was the technique of designing a laser pulse shape for a
desired shape of the output photon wavepacket.

The present work is motivated by the fact that, in spite of
photon polarization state being potential representation of flying qubit
logic state, attempts to generate and utilize photon polarization
state for quantum state transfer between quantum nodes are hardly
seen. Secondly, comprehensive simulation scheme for transmission of
quantum states between quantum nodes is hardly available. As such,
in the present communication, we focus on the simulation of polarized
photon generation depending on the logic state of the transmitting
node. However, Rahman and Choudhury [22] previously presented
a simulation scheme for the cavity-assisted Raman interaction at
the spin-photon interface of the transmitting node. The Raman
interaction based conversion of spin qubit to photon was demonstrated
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in the simulation, and the obtained results revealed that, for a
designed shape of the input laser pulse, a corresponding output photon
wavepacket shape could be produced. In our work, flying qubit logic
states are represented by right- and left-circular polarization states of
photon. This representation has the advantage that, as mentioned
above, circular polarization states are binary in nature, and can
be communicated to long distances without much degradation. We
propose a novel approach for utilizing atomic states and processes
to generate circularly polarized photon for transporting quantum
state, and validate the approach through a closed-system simulation
technique.

2. OVERVIEW

The transmit interface in the proposed approach consists of a multi-
level atom (87Rb) placed at the center of a two-mode cavity. Two
subspaces ||0〉〉 and ||1〉〉 are identified in the Hilbert space of the atomic
states. These two subspaces, as defined by Eqs. (1a) and (1b) for the

Figure 1. Selected hyperfine states of rubidium 87Rb [17].



252 Mijanur Rahman and Choudhury

hyperfine states (Fig. 1) of 87Rb atom [23], represent the logic ‘0’ and
the logic ‘1’ states, respectively. That is, when the atom is in one of
the states of the subspace ||0〉〉, it is in the logic state ‘0’, and when it
is in one of the states of the subspace ||1〉〉, it is in the logic state ‘1’.

||0〉〉 ≡ {(52S1/2, F = 1,mF = 1), (52P1/2, F = 1,mF = 1),

(52P1/2, F = 2,mF = 2)} (1a)

||1〉〉 ≡ {(52S1/2, F = 1,mF = −1), (52P1/2, F = 1,mF = −1),

(52P3/2, F = 2,mF = −2)} (1b)

Intra-subspace transitions (Fig. 2) are initiated by the application of
lasers. The laser L0 0 excites the atom from |0〉0 ≡ (52S1/2, F =
1,mF = 1) to |0〉1 ≡ (52P1/2, F = 1,mF = 1) and the laser L0 1 drives
the atom from |0〉1 to |0〉2 ≡ (52P1/2, F = 2,mF = 2). Similarly,
L1 0 and L1 1 lasers drive the transitions from |1〉0 ≡ (52S1/2, F =
1,mF = −1) to |1〉1 ≡ (52P1/2, F = 1,mF = −1) and from |1〉1 to
|1〉2 ≡ (52P3/2, F = 2,mF = −2), respectively. During the transitions
|0〉0 → |0〉1 and |1〉0 → |1〉1, π-polarized photons are absorbed. During
the |0〉1 → |0〉2 and the |1〉1 → |1〉2 transitions, respectively, photons
with right-circular and left-circular polarizations are absorbed. Finally,
the cavity-coupled transitions |0〉2 → |0〉0 and |1〉2 → |1〉0, respectively,
emit photons with right-circular and left-circular polarizations into the
cavity. The two modes of the cavity correspond to these last two
transitions.

Figure 2. Subspaces of 87Rb state space corresponding to the logics
states ‘0’ and ‘1’.
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It is to be noted down that, while transferring the quantum state
from one node to another, the exact cyclic transitions |0〉0 → |0〉1 →|0〉2 → |0〉0 and |1〉0 → |1〉1 → |1〉2 → |1〉0 are forbidden [24].
However, the transitions back to the neighborhoods of |0〉0 and |1〉0
are possible. Thus, the subspaces ||0〉〉 and ||1〉〉, respectively, consist
of three neighborhoods around the states |0〉0, |0〉1 and |0〉2, and
|1〉0 , |1〉1 and |1〉2. These neighborhoods are pictorially illustrated in
Fig. 3.

Figure 3. Neighborhoods in the subspaces ||0〉〉 and ||1〉〉 of the Hilbert
space.

3. WORKING PRINCIPLE

The rubidium atom at the transmit interface is initially prepared to
be at the ground states |0〉0 or |1〉0 corresponding to logic states ‘0’
or ‘1’, respectively. The basic idea is to raise the atom to the state
|0〉2 for the logic ‘0’ or to the |1〉2 state for the logic ‘1’, and then to
let it decay to the states |0〉0 or |1〉0 with the emission of right- or
left-circularly polarized photon. The two cavity modes correspond to
the transitions |0〉2 → |0〉0 and |1〉2 → |1〉0, and thus, accelerate the
emission processes.

Two laser beams corresponding to the transitions |0〉0 → |0〉2 and
|1〉0 → |1〉2 could be directly used to raise the atom to |0〉2 and |1〉2
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states, respectively. However, that would introduce Rabi oscillations
with multi-photon states in the cavity, which is clearly undesirable.
Instead, first, lasers L0 0 and L1 0 are applied simultaneously. If the
atom is in the state |0〉0, it absorbs a photon from the laser L0 0,
and jumps to the state |0〉1. On the other hand, if the atom is in
the state |1〉0, it absorbs a photon from the laser L1 0, and jumps to
the state |1〉1. Then, lasers L0 1 and L1 1 are simultaneously applied
on the atom. If the atom is in the logic state ‘0’, it absorbs a right-
circularly polarized photon from the L0 1 laser, and jumps to the |0〉2
state. Similarly, for logic state ‘1’, the atom absorbs a left-circularly
polarized photon, and makes a transition to the state |1〉2. Then,
through spontaneous emission and cavity modes coupling, the atom
comes back to |0〉0 or |1〉0 state. During the atomic decay |0〉2 → |0〉0, a
right-circularly polarized photon is emitted, and during the |1〉2 → |1〉0
transition, a left-circularly polarized photon.

Because the laser frequencies corresponding to the transitions
|0〉0 → |0〉1, |0〉1 → |0〉2, |1〉0 → |1〉1 and |1〉1 → |1〉2 are far off
from the cavity mode frequencies, Rabi oscillations with multi-photon
states are thus avoided.

The generated photon leaks out of the cavity, and reaches the
other end through the connecting physical medium. The polarization
detectors at the receiving end detect the photon polarization state
implying the atomic state at the sending end.

4. SYSTEM MODEL

The Jaynes-Cumming (JC) model [25] is traditionally used to analyze
two-level atom coupled to a cavity with or without a driving laser.
This model provides a system Hamiltonian, which is of the following
form,

_

Htotal =Ĥatom+Ĥfield+ĤJC =
1
2
~ωaσ̂z+~ωâ∗â−i~g(âσ̂+−â∗σ̂−) (2)

where ω and ωa are, respectively, the atomic transition frequency and
the cavity mode frequency, and â and â∗ are the bosonic annihilation
and creation operators, respectively. Also, g is the atom-cavity mode
coupling constant, and σ̂+, σ̂− and σ̂z are, respectively, the atomic
raising, lowering and inversion operators.

However, the JC model is not adequate for the present system
owing to the following reasons — (i) the present system involves two
separate subspaces in the Hilbert space, (ii) each subspace contains a
three-level sub-system with hyperfine atomic structure, and (iii) the
system involves two pairs of lasers and lasers within each pair are
simultaneously applied on the atom.
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In order to accommodate the hyperfine energy levels, the atomic
raising and lowering operators, σ̂+ and σ̂−, are modified into new
operators, Ŝ∗±,0 and Ŝ±,0. Ŝ∗+ and Ŝ∗− are, respectively, raising operators
with increased and decreased magnetic sub-levels. Similarly, Ŝ+ and
Ŝ− are lowering operators with increased and decreased magnetic
sublevels, respectively. Finally, Ŝ∗ and Ŝ are raising and lowering
operators, respectively, without change in magnetic sub-level. In
particular, lowering operators are defined as

Ŝ+ =
∑
mF,g

C(Fg,mF,g, Fe,mF,g + 1) |FgmF,g〉 〈FemF,g + 1| (3a)

Ŝ− =
∑
mF,g

C(Fg,mF,g, Fe,mF,g − 1) |FgmF,g〉 〈FemF,g − 1| (3b)

and Ŝ =
∑
mF,g

C(Fg,mF,g, Fe,mF,g) |FgmF,g〉 〈FemF,g| (3c)

In Eqs. (3a), (3b) and (3c), Fg and Fe are total atomic angular
momentums at the ground and excited states, respectively, and mF,g

is the magnetic quantum number at the ground state. The Clebsch-
Gordan coefficient C(Fg, mF,g, Fe,mF,g +d), d = ±1, 0 is defined as [26]

C(Fg, mF,g, Fe,mF,g + d)
= 〈Fg,mF,g;∆F = Fe−Fg, ∆mF = +d|Fe,mF, e = mF,g+∆mF 〉 . (4)

where ∆mF is the change in the magnetic quantum number. The
system Hamiltonian can now be written as follows:

Ĥ = ~ωaâ
∗â + ~ωbb̂

∗b̂ +
∑

i

(Ei + gFimFiβ) |Ji Fi mFi〉 〈Ji Fi mFi |

+~η10

(
ω

(0)
10 â

(0)∗
10 â

(0)
10 +ω

(1)
10 â

(1)∗
10 â

(1)
10

)
+~η21

(
ω

(0)
21 â

(0)∗
21 â

(0)
21 +ω

(1)
21 â

(1)∗
21 â

(1)
21

)

−i~g(âŜ∗+ − â∗Ŝ+)− i~g(b̂Ŝ∗− − b̂∗Ŝ−)

−i~η10 g
(0)
10 (â(0)

10 Ŝ
(0)∗
10 − â

(0)∗
10 Ŝ

(0)
10 )− i~η10 g

(1)
10 (â(1)

10 Ŝ
(1)∗
10 − â

(1)∗
10 Ŝ

(1)
10 )

−i~η21 g
(0)
21 (â(0)

21 Ŝ
(0)∗
21 − â

(0)∗
21 Ŝ

(0)
21 )− i~η21 g

(1)
21 (â(1)

21 Ŝ
(1)∗
21 − â

(1)∗
21 Ŝ

(1)
21 ) (5)

In Eq. (5), Ei represents the energy of the atomic level |JiFimFi〉, gFi

is the Lande g-factor, β = µBB/~, µB is the Bohr magneton and B

is the strength of the external magnetic field. Also, â and b̂ are the
annihilation operators of the two cavity modes, and â

(0)
10 and â

(1)
10 are,

respectively, the annihilation operators corresponding to the L0 0 and
L1 0 laser modes. Similarly, â

(0)
21 and â

(1)
21 are the annihilation operators

corresponding to the L0 1 and L1 1 laser modes, respectively. Also,
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ω
(0)
10 and ω

(1)
10 represent, respectively, frequencies of laser modes L0 0

and L1 0. S
(0)∗
10 and S

(0)
10 are, respectively, the atomic raising and

lowering operators in the |0〉0 → |0〉1 transition, and S
(1)∗
10 and S

(1)
10

represent raising and lowering operators, respectively, in the transition
|1〉0 → |1〉1. Similarly, ω

(0)
21 and ω

(1)
21 represent frequencies of laser

modes L0 1 and L1 1, respectively. S
(0)∗
21± and S

(0)
21± are, respectively,

the atomic raising and lowering operators in the |0〉1 → |0〉2 transition,
and S

(1)∗
21± and S

(1)
21± are the raising and lowering operators, respectively,

in the transition |1〉1 → |1〉2. Finally, η10 and η21 are defined as follows.

η10 =
{

1 when lasers L0 0 and L1 0 are turned on
0 otherwise

η21 =
{

1 when lasers L0 1 and L1 1 are turned on
0 otherwise .

For simplicity, the Hamitonian is generally transformed into the
frame rotating at the frequency of the laser. However, as there are
four different lasers in the present case with different frequencies and
polarizations, the transformation is not done. Instead, in order to
avoid the dealings with too big or too small numbers, all the terms in
the Hamitonian are converted into the atomic unit.

5. SYSTEM EVOLUTION

We deal with the state of the system described above using the density
matrix formalism, and adopt the von Neumann equation [27] for the
evolution of the density matrix. The evolution equation is given as
follows:

d

dt
ρ(t) =

1
i~

[
Ĥ, ρ(t)

]
(6)

where, ρ(t) is the density matrix of the system. For simplicity of the
analysis, we have not included terms describing the interaction of the
system with the environment. Therefore, Eq. (6) essentially describes
a closed system evolution.

6. SIMULATION AND RESULTS

In order to perform a closed system investigation, we developed a
simulation program. While Eq. (6) provides equation of motion for the
simulation, Eq. (5) provides the Hamiltonian. Our simulation approach
includes a control module to provide the timing update trigger after
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every small time interval ∆t, and an execution module to update ρ(t)
after every interval of ∆t. The rate of change of ρ(t) is calculated
according to Eq. (6), and ρ(t) is updated using the following numerical
approximation:

ρ(t0 + ∆t) = ρ(t0) +
d

dt
ρ(t)

∣∣∣∣
t0

∆t (7)

The Hilbert space for the system is obtained by taking the tensor
product of the Hilbert spaces for atom, cavity modes and laser modes
as follows:

H = Hatom ⊗Hcav0 ⊗Hcav1 ⊗HL0 0 ⊗HL1 0 ⊗HL0 1 ⊗HL1 1 (8)

where H is the combined Hilbert space, Hatom is the atomic Hilbert
space, and Hcav0 and Hcav1 are, respectively, the Hilbert spaces (Fock
spaces) for cavity modes. Also, HL0 0, HL1 0, HL0 1 and HL1 1 are the
Hilbert spaces (Fock spaces) for the laser modes.

For simplicity of computation, we have considered two laser modes
L0 1 and L1 1 in the simulation. It is assumed that at the start of the
simulation, the atom is pre-excited by the other two laser modes (L0 0
and L1 0) to state |0〉1 or |1〉1 depending on the logic state.

Simulation results with the initial state |0〉1 (that is, the logic state
‘0’) are shown in Figs. 4, 5 and 6. In these figures, the horizontal axes
represent time in the atomic unit (a.u.) and the vertical axes show the
probability of occupation of the three states within the subspace ||0〉〉.
Figs. 4 and 5 show that, as the laser modes L0 1 and L1 1 are applied,
the 87Rb atom makes a rapid transition from the state |0〉1 to the |0〉2
state. Figs. 5 and 6 together show that afterwards the atom makes
relatively slow transition from the |0〉2 state to the state |0〉0. Because
the system under consideration is essentially a closed one, the right-
circularly polarized photon, emitted during the transition |0〉2 → |0〉0,
remains in the cavity and causes the |0〉0 → |0〉2 transition. Figs. 5
and 6 clearly illustrate the resulting oscillations between the states |0〉2
and |0〉0.

Similar results were obtained when started with the initial state
|1〉1 (i.e., the logic state ‘1’). The results are shown in Figs. 7, 8 and 9.
It is clear from Figs. 7 and 8 that the application of laser modes L0 1
and L1 1 has caused the atom to make transition |1〉1 → |1〉2. From
Figs. 8 and 9, we notice that, afterwards, the atom makes relatively
slow transition from the state |1〉2 to the state |1〉0. As the system
is isolated from the environment, the emitted left circularly polarized
photon remains in the cavity and causes the |1〉0 → |1〉2 transitions.
The resulting oscillations between states |1〉0 and |1〉2 are seen in Figs. 8
and 9.
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Figure 4. Probability of occupation of the state |0〉1.

Figure 5. Probability of occupation of the state |0〉2.

Figure 6. Probability of occupation of the state |0〉0.

Figure 7. Probability of occupation of the state |1〉1.
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Figure 8. Probability of occupation of the state |1〉2.

Figure 9. Probability of occupation of the state |1〉0.

7. CONCLUSION

From the foregoing discussions, it may be inferred that a novel
approach is proposed for generation of polarized photons for transport
of quantum state from one node to another in a quantum network.
The logic states have been represented by the two subspaces within
the Hilbert space in such a way that during photon absorption and
emission for quantum state transfer, the atom remains in the same
subspace. A simulation platform has been presented for the evolution
of the density matrix. A system Hamiltonian has been formulated for
the purpose. The simulation results show the efficacy of the approach,
where the probability of occupation of the ground and the excited
states are determined, and it is expected that the obtained results
will be found much applicable in further investigation of the photon
wavepacket transmission in quantum networks.
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