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Abstract—In this paper, a new technique is proposed for field effect
transistor (FET) small-signal modeling using neural networks. This
technique is based on the combination of the Mel frequency cepstral
coefficients (MFCCs) and discrete sine transform (DST) of the inputs
to the neural networks. The input data sets to traditional neural
systems for FET small-signal modeling are the scattering parameters
and corresponding frequencies in a certain band, and the outputs are
the circuit elements. In the proposed approach, these data sets are
considered as forming random signals. The MFCCs of the random
signals are used to generate a small number of features characterizing
the signals. In addition, other MFCCs vectors are calculated from
the DST of the random signals and appended to the MFCCs vectors
calculated from the signals. The new feature vectors are used to train
the neural networks. The objective of using these new vectors is to
characterize the random input sequences with much more features
to be robust against measurement errors. There are two benefits
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for this approach: a reduction in the number of neural networks
inputs and hence a faster convergence of the neural training algorithm
and robustness against measurement errors in the testing phase.
Experimental results show that the proposed technique is less sensitive
to measurement errors than using the actual measured scattering
parameters.

1. INTRODUCTION

Knowledge of the equivalent circuit of an FET is very useful for the
device performance analysis. Therefore, it is very important to use
efficient tools to predict the small-signal circuit elements. Two major
solution categories have been proposed by researchers to solve the
small-signal modeling problem of transistors. The first trend is based
on the direct extraction of the small-signal circuit elements through
analytic solutions [1–4]. This trend is very complicated because it
depends on finding closed form expressions to relate the scattering
parameters of the FET to the small-signal circuit elements.

The second trend is directed towards optimizing the component
values to closely fit the small-signal microwave scattering parameters
measured or published for the device [5–8]. However, the
equivalent circuit determination needs accurate broad-band S-
parameters measurements. In fact, there are inherent errors in
vector network analyzer measurements, which cannot be avoided easily.
Therefore, there is a need of a new approach which is more robust to
errors in the scattering parameters measurements.

Several modeling approaches based on artificial neural networks
and belonging to the second category of solutions have been presented
in the literature [9–11]. Neural networks have the ability to simulate
nonlinear relations with high accuracy. They can achieve a trade-
off between efficiency and accuracy. Based on these advantages
of neural networks, they found a great popularity in modeling the
nonlinear relations between the measured or published FET scattering
parameters and the values of the small-signal circuit elements. The
traditional approach for this purpose is to build a single neural network
to relate all the measured scattering parameters to the small-signal
circuit elements, but this approach is time consuming and does not
guarantee convergence in the training phase of the neural network.

In this paper, the MFCCs of the neural inputs in the traditional
method and the MFCCs of their DSTs are extracted and concatenated
to form feature vectors to be used as the new neural input vectors. The
paper presents a study of the sensitivity of the traditional and proposed
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neural models to measurement errors in the testing phase. The paper
is organized as follows. Section 2 gives the basics of neural small-
signal modeling. Section 3 gives the small-signal models for two metal
semiconductor field effect transistors (MESFETs), which will be used
throughout the paper. Section 4 presents the proposed technique for
FET small-signal modeling. Section 5 gives the experimental results.
Finally, Section 6 gives the concluding remarks.

2. NEURAL SMALL-SIGNAL MODELLING

Artificial Neural Networks are programming paradigms that seek
to emulate the microstructure of the brain, and they are used
extensively in artificial intelligence problems from simple pattern-
recognition tasks to advanced symbolic manipulation. Generally,
artificial neural networks are basic input and output devices, with the
neurons organised in layers. They have the ability to model nonlinear
relations such as the relations between the scattering parameters and
small-signal circuit elements in FETs. Several neural structures can
be implemented for this purpose. The multilayer perceptron (MLP)
Network is one of such configurations [12, 13]. It is a feed-forward
artificial neural network that maps sets of input data onto a set of
appropriate outputs. A standard MLP neural network is shown in
Fig. 1. It consists of an input and an output layer with one or more
hidden layers of nonlinearly-activated nodes. Each node in a layer
connects with a certain weight wij to every other node in the following
layer, but there are no connections between the same layer neurons.

An MLP with one or more hidden layers can be used for FET
small-signal modeling. The sigmoid function F (u) = 1/(1 + e−u) can
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Figure 1. Standard MLP neural network.
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be used as an activation function for the hidden layers, and the neurons
from the input and output layers can have linear activation functions.
Let X be the input vector to a single hidden layer neural network, the
output vector Y can be obtained according to the following matrix
equation [12, 13]:

Y = W2 ∗ F (W1∗X + B1) + B2 (1)

where W1 and W2 are weight matrices between the input and hidden
layers and between the hidden and output layers, respectively. B1 and
B2 are bias matrices for the hidden and output layers, respectively. The
neural network learns the relationship among sets of input/output data
(training sets) that represents the characteristics of the component
under consideration. First, input vectors are presented to the input
neurons and output vectors are computed. These output vectors are
then compared with desired values, and errors are computed. Error
derivatives are then calculated and summed up for each weight and
bias until the whole training set has been presented to the network.
These error derivatives are then used to update the weights and biases
for neurons in the model. The training process proceeds until errors
become lower than the prescribed values or until the maximum number
of epochs is reached. Once a neural network is trained, its structure
remains unchanged, and it will be capable of predicting outputs for all
inputs whether they have been used for the training or not.

3. FET SMALL-SIGNAL MODELS

Many researchers are interested in FET small-signal modeling. They
introduced several models. Of such models, the model presented by
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(a) Vendelin model for a GaAs MESFET. (b) The model of the CF001-01 MESFET.

Figure 2. Two MESFET small-signal models.
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Vendelin for a GaAs MESFET [14] and the model of the Mimix CF001-
01 MESFET published in its datasheet in 2008. These models are
illustrated in Fig. 2. The Vendelin model is valid up to 12GHz,
and the model of the CF001-01 MESFET is valid up to 26 GHz.
The Mimix CF001-01 MESFET is a 300µm gate in width, sub-half-
micron gate in length GaAs device with Silicon Nitride passivation.
The purpose of using these two models in the paper is to prove
that the proposed technique for FET small-signal modeling is valid
for different device types such as MESFETs and for different circuit
configurations. Application of the proposed technique for other devices
can be performed in the future work.

4. PROPOSED NEURAL MODELLING TECHNIQUE

A direct approach to generate a neural model for a MESFET is to
use the frequency values, magnitude and phase of the S-parameters
as inputs to a single MLP neural network and circuit elements as the
outputs. In the proposed technique, we take the parameters of the
GaAs MESFET shown in Table 1 or the CF001-01 MESFET as inputs
to several neural networks and circuit elements as outputs for each
network, separately. A training process can be performed with these
data sets or other data sets.

Using all the data in any of Tables 1 or 2 as inputs for the neural
network and circuit elements as outputs in a single neural structure as
in the traditional method causes two problems. The first problem is
that the amount of data will be very large. The second one is that the
convergence will not be guaranteed. Thus, the proposed technique will
be used to achieve convergence and reduce the amount of input data.

Table 1. Published S-parameters for which, the Vendelin small-signal
elements are given by Rf = 100Ω, Ro = 192 Ω, Cf = 0.018 pF,
Ci = 0.5 pF, Co = 0.16 pF, Ri = 6.5Ω, and gm = 43 mS.

f

(GHz)
S11 S21 S12 S22

Mag. Angle Mag. Angle Mag. Angle Mag. Angle
2 0.96 −36◦ 2.95 151◦ 0.61 −15◦ 0.021 73◦

4 0.89 −65.3◦ 2.49 128◦ 0.6 −28.56◦ 0.036 61◦

6 0.83 −87.8◦ 2.05 109.7◦ 0.6 −40.34◦ 0.043 55.6◦

8 0.78 −104.4◦ 1.69 95◦ 0.6 −51.18◦ 0.047 54.8◦

10 0.75 −116.9◦ 1.41 83◦ 0.61 −61◦ 0.049 57◦

12 0.73 −126◦ 1.2 73.55◦ 0.63 −70.13◦ 0.052 63.4◦
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Table 2. Published S-parameters for which, the values of the small-
signal elements of the CF001-01 MESFET are given by Lg = 0.19 nH,
Rg = 1 Ω, Cgs = 0.32 pF, Ri = 1.9Ω, Cgd = 0.023 pF, Gm = 66 mS,
τ = 2.7 ps, Cds = 0.12 pF, Rds = 161 Ω, Rd = 1.3Ω, Ld = 0.21 nH,
Rs = 1.1Ω, Ls = 0.04 nH.

f

(GHz)
S11 S21 S12 S22

Mag. Angle Mag. Angle Mag. Angle Mag. Angle
2 0.98 −24◦ 4.56 156◦ 0.02 73◦ 0.53 −10◦

4 0.93 −51◦ 4.31 136◦ 0.04 62◦ 0.5 −25◦

6 0.88 −72◦ 3.83 118◦ 0.05 51◦ 0.48 −35◦

8 0.84 −98◦ 3.47 100◦ 0.06 38◦ 0.43 −51◦

10 0.79 −122◦ 2.99 82◦ 0.06 23◦ 0.38 −68◦

12 0.79 −140◦ 2.64 67◦ 0.07 18◦ 0.38 −83◦

14 0.78 −154◦ 2.41 55◦ 0.07 10◦ 0.39 −93◦

16 0.78 −166◦ 2.27 44◦ 0.07 5◦ 0.36 −101◦

18 0.77 178◦ 2.16 30◦ 0.08 −2◦ 0.32 −113◦

20 0.76 159◦ 2.04 15◦ 0.09 −13◦ 0.27 −131◦

22 0.79 141◦ 1.82 −2◦ 0.09 −20◦ 0.27 −163◦

24 0.78 132◦ 1.52 −13◦ 0.09 −21◦ 0.3 176◦

26 0.81 129◦ 1.31 −21◦ 0.09 −19◦ 0.39 168◦

The steps of the proposed technique can be summarized as follows:
1. Calculate the MFCCs for the original input data considering it as

a random signal.
2. Calculate the DST for the original data.
3. Calculate the MFCCs for the output of step 2.
4. Make a concatenation between the two vectors obtained from

steps 1 and 3 and use them as input for multiple neural networks
to estimate each circuit element, separately.

5. In the training phase, use the output of step 4 with each circuit
element of the training set to train a neural network belonging to
this element.

6. In the testing phase, the measured S-parameters with measure-
ment errors are used to predict the circuit elements with their
neural networks.
The MFCCs technique is used to reduce the amount of input

data as all the inputs are replaced by a small number of MFCCs.



Progress In Electromagnetics Research B, Vol. 18, 2009 191

Measurement errors are similar in nature to random noise. It is known
in speaker identification, that the MFCCs can be used to characterize
speech signals in the presence of noise rather than using all the signal
samples in the identification process. The same idea is exploited
here considering the measurement errors as noise. Extracting the
MFCCs from the DST of the neural inputs can add more features to
characterize the neural inputs in the presence of measurement errors
leading to more robust modeling.

4.1. The Discrete Sine Transform

The DST is a mathematical transform that uses sine functions
oscillating at different frequencies to transform time signals into a

Table 3. Number of epochs required in the training phase for
modelling the relation between each circuit element in the Vendelin
model and the published device parameters with the different
modelling methods.

Method of
Estimation

R0 gm Rf Ri Ci Co Cf
Avg.

Epoches
Traditional

Method
single layer

119 1668 1308 3780 333 2079 1027 1473

Traditional
Method
two layers

9844 959 355 154 552 2705 3434 2572

MFCC
Method

single layer
138 78 1092 7 4 135 22 211

MFCC
Method

two layers
2984 329 465 12 10 8 8 545

MFCC+DST
Method

single layer
5 46 478 572 140 198 155 228

MFCC+DST
Method
two layers

10 71 297 21 345 15 10 110
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Table 4. Number of epochs required in the training phase for
modelling the relation between each circuit element of the intrinsic
elements in the model of the CF001-01 and the published device
parameters with the different modelling methods.

Method of
Estimation

Cgs Ri Cgd gm τ Cds Rds
Avg.

Epoches
Traditional

Method
single layer

57 93 647 1264 137 82 694 425

Traditional
Method

two layers
256 257 606 4746 843 934 3389 1576

MFCC
Method

single layer
39 19 272 727 4 12 1057 304

MFCC
Method

two layers
9 22 9 21 12 7 8585 1238

MFCC+DST
Method

single layer
753 95 2918 225 15 28 251 612

MFCC+DST
Method

two layers
77 8 127 9 10 21 13 38

different domain. If features are extracted from signals in more than
one domain, this can help in an accurate characterization of that signal.
The DST is defined by the following equation [15–17]:

X(k) =
N−1∑

n=0

x(n) sin
(

πkn

N + 1

)
k = 0, . . . , N − 1 (2)

where x(n) is a 1-D signal representing the neural inputs, and X(k) is
the 1-D DST of that signal. The MFCCs will be extracted from X(k)
to add more features to those extracted from x(n). The concatenation
of the feature vectors extracted from x(n) and X(k) will give a more
robust feature vector to characterize x(n), even in the presence of
measurement errors in the testing phase.
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Table 5. Number of epochs required in the training phase for
modelling the relation between each circuit element of the extrinsic
elements in the model of the CF001-01 and the published device
parameters with the different modelling methods.

Method of
Estimation

Lg Rg Rd Ld Rs Ls
Avg.

Epoches
Traditional

Method
single layer

64 92 6793 58 5818 1365 2365

Traditional
Method

two layers
598 8846 8325 473 10000 1756 5000

MFCC
Method

single layer
6 6 6 138 13 226 66

MFCC
Method

two layers
285 10 198 8 36 19 93

MFCC+DST
Method

single layer
23 511 4 36 57 1655 381

MFCC+DST
Method

two layers
243 747 11 215 22 141 230

4.2. Extraction of the MFCCs

The MFCCs of a data sequence are a representation of the short-
term coefficients derived from a type of cepstral transformation of this
data sequence. The calculation of the MFCCs is based on a linear
cosine transform of a log power spectrum on a nonlinear Mel-scale of
frequencies [14]. The MFCCs of a signal are commonly derived as
follows:

1. Take the Fourier transform of the signal.
2. Map the powers of the spectrum obtained above onto the Mel-

scale, using triangular overlapping windows.
3. Take the logs of the powers at each of the Mel-frequencies.
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4. Take the DCT of the list of Mel log powers, as if they constitute
a signal.

5. The MFCCs are the amplitudes of the resulting spectrum.

The Mel scale is calculated as follows:

Mel(f) = 2595 log10

(
1 +

f

700

)
(3)

where Mel(f) gives the Mel-scale frequency corresponding to the actual
frequency f . If the energy of the mth Mel-filter output is S̃(m), the
MFCCs will be given as follows [2]:

cj =

√
2

Nf

Nf∑

m=1

log
(
S̃(m)

)
cos

(
jπ

Nf
(m− 0.5)

)
(4)

where j = 0, 1, . . . J − 1, J is the number of MFCCs; Nf is the number
of Mel-filters; cj are the MFCCs. The number of resulting MFCCs
is chosen between 12 and 20, since most of the signal information is
represented by the first few coefficients. The 0th coefficient represents
the average log energy of the data sequence. We will choose 13
coefficients in our experiments.

5. EXPERIMENTAL RESULTS

In this section, several experiments are carried out to test the proposed
technique for FET small-signal modeling. The published S-parameters
at certain frequencies for two small-signal models are used in these
experiments. The models used are the Vendelin small-signal model of
a GaAs MESFET and the small-signal model of the Mimix CF001-
01 GaAs MESFET. The published S-parameters for these models are
tabulated in Tables 1 and 2.

Three methods are tested for creating neural models to estimate
the small-signal circuit elements from the published parameters. These
methods are the traditional neural network modeling method using all
published data as inputs, the proposed method using the MFCCs of
the published data, and the proposed method using a concatenation
of the MFCCs obtained from the original data and MFCCs obtained
from the DST of this data. For all the experiments, a neural network
is created through training to relate each circuit element to the neural
inputs, whether they are the published data or features extracted from
this data.

Two types of neural networks are considered and compared to
create the neural models with different three methods for each circuit
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element, single and two hidden layer networks. The error back-
propagation algorithm is used in the network training phase for each
case. The average numbers of epochs required in the training phase
for each neural network are tabulated in Tables 3 to 5. From these
tables, it is clear that the number of epochs required for creating the
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Figure 3. Estimation errors for the circuit elements of Vendelin model
for random measurement errors in the case of single hidden layer neural
networks.
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Figure 4. Estimation errors for the circuit elements of Vendelin model
for random measurement errors in the case of two hidden layers neural
networks.
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Figure 5. Estimation errors for the intrinsic circuit elements of
CF001-01 MESFET for random measurement errors in the case of
single hidden layer neural networks.
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Figure 6. Estimation errors for the extrinsic circuit elements of
CF001-01 MESFET for random measurement errors in the case of
single hidden layer neural networks.
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neural networks is lower for the two proposed methods than that for
the traditional method in most cases, which reveals that the proposed
methods are time saving.

In the testing phase, the neural networks are tested with input
data subject to measurement errors. The measurement errors are
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Figure 7. Estimation errors for the intrinsic circuit elements of
CF001-01 MESFET for random measurement errors in the case of two
hidden layers neural networks.

simulated as uniformly distributed random errors added to the
published data. A comparison study is held between the sensitivity
of the three methods to the measurement errors in the published
parameters. The results of this comparison study for all elements
are given in Figs. 3 to 8. In these experiments, each circuit element
is estimated using its created neural networks for all methods with
errors having a uniform distribution added to the neural inputs. Since
the errors in all neural inputs are not fixed, the maximum percentage
error among the neural inputs is taken as the horizontal axis, and the
percentage error in the estimated value of the circuit element is taken
as the vertical axis.

Figures 3 to 8 show that the method based on the MFCCs of
the inputs and MFCCs of DSTs of the inputs is more robust to
measurement errors than the traditional method and in most cases
better that using the MFCCs only based on the error pattern used.
The studied cases for single and two hidden layers neural networks
reveal that the use of two hidden layers does not add an advantage in
the performance of the proposed method. So, single hidden layer neural
networks are preferred for the task of small-signal modeling because of
their simplicity.
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Figure 8. Estimation errors for the intrinsic circuit elements of
CF001-01 MESFET for random measurement errors in the case of two
hidden layers neural networks.
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6. CONCLUSION

This paper has presented a new neural technique for small-signal
modeling of FET transistors. This technique is based on estimating the
MFCCs of the available data sets of S-parameters and frequencies and
MFCCs of DSTs of these dataset. The advantages of this technique
are the reduction in the neural networks size and storage capacity, a
reduction in the training time and a large immunity to measurement
errors in the testing phase. The proposed technique has been tested
on published data and succeeded to avoid the effect of measurement
errors on the estimated values of the circuit elements. Although two
MESFET models have been used for the validation of the proposed
technique, all circuit models proposed for FETs and HEMTs can also
be used as the method is independent on the configuration of the small-
signal circuit.
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