
Progress In Electromagnetics Research M, Vol. 9, 53–64, 2009

SPATIAL SOLITON PAIRING OF TWO CYLINDRICAL
BEAMS IN SATURABLE NONLINEAR MEDIA

R. K. Sarkar

Department of Applied Physics
Birla Institute of Technology
Extension Centre
Jasidih, Deoghar 814142, India

S. Medhekar

Department of Applied Physics
Birla Institute of Technology
Mesra, Ranchi 835215, India

Abstract—In this paper, we have extended the recently introduced
theory of coupled propagation of two coaxially co-propagating and
mutually incoherent bright 1-D beams to coupled propagation of
two 2-D (cylindrical) bright beams and investigated the propagation
behavior and spatial soliton pair formation of such beams by a recently
introduced simple approach. We have considered saturable form of the
nonlinear medium in this paper as 2-D spatial solitons are unstable in
Kerr type media. We found that many of the propagation features of
two 2-D beams in saturable media are same that of 1-D beams in Kerr
type media. However, many features are different and to the best of
our knowledge, reported in this paper for the first time. The present
version of the theory is applicable in all possible physical situations
and parameters.

1. INTRODUCTION

Formation of optical spatial soliton has attracted a lot of interest
following the progress on photorefractive solitons [1], quadratic
solitons [2], solitons in saturable nonlinear media [3] and topological
solitons with time dependent coefficients [4]. Investigations of soliton
formation, interaction and soliton induced wave guide are of high
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interest due to their potential applications in all-optical switching, all-
optical interconnects [5] and wave guide applications [6, 7]. Coupled
spatial soliton pairs are obtained using two co-propagating beams in
nonlinear media and such pairing has always been an intriguing issue
among spatial soliton interactions. Possibility of bright and/or dark
soliton pairs has already been discussed in many papers, for example,
References [8–12].

The present paper is the extended version of the theory developed
in [12] for 1-D soliton pairing in Kerr type media. The present theory
deals with 2-D soliton pairing in saturable media. Saturable form of
nonlinearity is considered in the present paper as cylindrical beams are
unstable and lead to either diffraction or collapse in Kerr type media.
In [12] detailed investigations of the two coaxially co-propagating 1-D
beams were carried out. In the present paper, we have carried out
similar investigations on two cylindrical (2-D) beams. We found that
many of the copropagation features of two 1-D beams are similar to
two co-propagating 2-D beams, however, many are different and are
reported here for the first time.

It is important to be mentioned here that using present approach,
the evolution of the co-propagating 2-D beams with the distance of
propagation could be obtained in a little time, for example, the figures
like 2, 5–8 have been obtained in the time of the order of a minute
with an ordinary processor, moreover, it requires ignorable memory
space. Investigation of the same problem using Beam Propagation
Method (BPM) would require time of the order of several hours and
memory space that can overwhelm even a powerful computer. The
results presented in this paper are not verified using (BPM), however,
one can safely believe in these results as the 1-D version of the present
theory has been tested using coupled Nonlinear Schrödinger equation
in [12].

2. MUTUAL PROPAGATION OF BEAMS

We start by considering propagation of two cylindrically symmetric
coaxial laser beams along the z-axis of a cylindrical coordinate system.
The initial intensity distributions for the two beams (at z = 0) are
assumed to be Gaussian and expressed as A2
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2) respectively, where A1 and A2

are the real amplitudes of the electric vectors of two beams of
angular frequencies ω1 & ω2 respectively, r the radial coordinate of
the cylindrical coordinate system and r1, r2 represent dimensions
of these beams. The effective dielectric constant of the medium
corresponding to the two frequencies may respectively be written as
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ε(ω1) = ε10 + ϕ1(A1, A2) and ε(ω2) = ε20 + ϕ2(A1, A2), where ε10 and
ε20 are the dielectric constants at frequencies ω1 and ω2 respectively
and ϕ1 and ϕ2 are the nonlinear dielectric constants may be expressed
by the saturating profile ϕ1 = εs1X/(1 + X);X = (α1A

2
1 + κα2A

2
2)/2

and ϕ2 = εs2Y/(1 + Y );Y = (κα1A
2
1 + α2A

2
2)/2 respectively. Here α1

and α2 are constants with their ratio equal to the ratio of the nonlinear
coefficients of the medium at frequencies ω1 and ω2 respectively
(αjA

2
j ; j = 1, 2, is the dimensionless electric field intensity), κ is the

coupling coefficient of the two beams that depends on the experimental
conditions and εs1 and εs2 are the saturated values of ϕ1 and ϕ2

respectively.
As done in [12], (Assuming the beams maintain their Gaussian

shape while the widths vary along propagation), i.e., following WKB
and paraxial ray approximation, we obtain two coupled equations that
govern beam width parameters f1, f2 of the two beams with the
propagation distance.
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For self-trapped beams (spatial solitons), we must have ∂fj

∂z =
∂2fj

∂z2 = 0; (where: j = 1, 2). One can assume ∂fj

∂z = 0 as the

initial condition of the beams. To have ∂2fj

∂z2 = 0, we must have from
Equations (1) and (2).

D =
2

(κ)2

[
−(A)±

√
(A)2 − (κ)2

(
1 + C +

C2

4
− εs1Ck2

1r
2
1

2ε10

)]
(3)

and

D = 2

[
−(B)±

√
(B)2 −

(
1 + Cκ +

1
4
(Cκ)2 − εs2κCk2

2r
4
2

2ε20r2
1

)]
(4)

respectively.
Here A = κ + Cκ

2 − εs1κk2
1r4

1

2ε10r2
2

and B = 1 + Cκ
2 − εs2k2

2r2
2

2ε20
.



56 Sarkar and Medhekar

3. NUMERICAL APPRECIATION AND DISCUSSION

We appreciate derived Equations (1)–(4) numerically by choosing
following set of parameters ω1 = ω2 = 2.7148 × 1015 rad/s, ε10 =
ε20 = (1.6276)2, εs1 = εs2 = 0.73 × ε10, and r1 = r2 = 10 µm. The
parameters chosen in this paper are just for the numerical appreciation
of the derived equations, the approach given here is valid for any other
set of parameters.

We investigate coupled beam propagation for different coupling
coefficients. As mentioned earlier [12], coupling coefficient κ depends
on the experimental conditions and the present approach is applicable
for arbitrary value of the coupling coefficient. However, in the present
paper, we have investigated coupled beam propagation for κ = 2,
κ = 2/3 and κ = 1 as these values of coupling coefficient have been
discussed in earlier literature (see [9, 13, 14]).

3.1. Coupled Beam Propagation for Coupling Coefficient
κ = 2

In Figure 1, we plot D with C for κ = 2 and above mentioned
parameters and using Equations (3) and (4). Point P1 corresponds
to the power of the first beam required to self-trap itself in absence
of the second beam (single soliton), similarly, point P2 corresponds to
the power of the second beam required to self-trap itself in absence of
the first beam. The point of intersection S is the common solution of
Equations (3) and (4) and provides the condition on beam powers of the
two beams for mutual self-trapping (spatial soliton pairing). We verify
mutual trapping by choosing beams’ powers of the two beams from the
point of intersection S which correspond to C = D = 4.2103 × 10−5.

Figure 1. Using Equations (3) and (4) and parameters mentioned in
the text, D with C has been plotted for κ = 2.
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Figure 2. Evolution of the beams’ widths with the propagation
distance is obtained using Equations (1) and (2) as shown by solid
lines in the figure. The chosen beams’ widths are same, however,
0.9 × b2(= r2f2) has been plotted just to resolve b1(= r1f1) and
b2(= r2f2). The figure shows solitonic pairing.

Figure 3. An arc of the circle
that passes through P1, S and
P2 has been drawn intuitively as
shown in the figure. This arc has
been identified as the existence
curve of trapped breather pairs.

Figure 4. Trapped breather
pair is obtained using beam pow-
ers correspond to point u(C =
0.755 × 10−5, D = 1.0 × 10−4) of
Figure 3.

Evolution of the beams’ widths with the propagation distance obtained
using Equations (1) and (2) is shown in Figure 2. We have plotted
0.9 × b2(= r2f2) to resolve b1(= r1f1) and b2(= r2f2). Clearly both
beams are mutually self-trapped or they form a spatial soliton pair. It
can be observed in the Figure 1 that the beam power of each beam
(corresponds to point S) in the soliton pair is one third of the power
of the beam (correspond to points P1, P2) required to form a single
soliton, moreover, there exists only one solution for soliton pairing.
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Figure 5. Trapped breather
pair is obtained using beam pow-
ers correspond to point v(C =
2.111× 10−5, D = 6.9753× 10−5)
of Figure 3.

Figure 6. Trapped breather pair
is obtained using beam powers
correspond to point w(C =
3.4859× 10−5, D = 5.0× 10−5) of
Figure 3.

We go further and as done in [12], draw an arc of the circle that
passes through P1, S and P2 as shown in Figure 3. We confirmed
that as in case of 1-D beams, this arc represents the existence curve of
trapped breather pair. To show trapped breather pairs, we use beams’
powers corresponding to points u(C = 0.755× 10−5, D = 1.0× 10−4),
v(C = 2.111×10−5, D = 6.9753×10−5) and w(C = 3.4859×10−5, D =
5.0× 10−5). The beam pairs form trapped breather pairs as shown in
Figures 4–6 respectively. As we shift our point of interest on the arc
towards point S, amplitude of breathing of the trapped breather pair
decreases. In fact, at point S, amplitude of breathing becomes zero
that leads to the soliton pairing. In other words, soliton pairing is just
a special case of trapped breather pairing.

So far, propagation behavior of two co-propagating 2-D beams
appears to be same that of the propagation behavior of two co-
propagating 1-D beams of [12]. However, our detailed investigations
with 2-D beams revealed some very interesting features of co-
propagation which are different from the co-propagation of 1-D beams.
We found that instead of just two regions (I and II) of distinct type
of coupled propagation in case of 1-D beams, there exist four regions
of distinct type of coupled propagation in case of 2-D beams. Those
regions could be described as below.

(i) Region DB is below the dashed arc. It is basically of two parts
as shown in Figure 3. One part is bounded by the dashed arc and
the solutions of Equation (3), while, the other part is bounded by the
dashed arc and the solutions of Equation (4). (ii) Similarly region FB
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is the region above the dashed arc. One part of FB is bounded by the
dashed arc and the solutions of Equation (3), while, the other part is
bounded by the dashed arc and the solutions of Equation (4). (iii)
Region MD is the region below the solutions of Equations (3) and (4).
(iv) Region MF is the region above the solutions of Equations (3)
and (4).

Co-propagating beams with beams’ powers corresponding to any
point of region DB (of Figure 3) form a breather pair that diffracts
with the propagation distance as shown in Figure 7. In the figure,
the diffracting breather is obtained using Equations (1) and (2) and
by choosing beams’ powers correspond to the point m of Figure 3.
Co-propagating beams with beams’ powers corresponding to all points
of region FB form a breather pair that focuses with the propagation
distance as shown in Figure 7. The focusing breather is obtained
by choosing beams’ powers correspond to the point n of Figure 3.
If beams’ powers are chosen from Region MD, both beams mutually
diffract without breathing and if those are chosen from the region MF ,
both mutually focus and form an oscillatory wave guide as seen in
Figure 8. One can see the clear distinction between the focusing of co-
propagating beams of region FB and the focusing of the beams of region
MF . In the prior case, breathing is superimposed on the formation of
oscillatory wave guide (focusing), while in later case, only oscillatory
wave guide is formed and breathing is absent.

Figure 7. Co-propagating beams corresponding to all points of
region DB (of Figure 3) form a breather pair that diffracts with the
propagation distance and beams corresponding to all points of region
FB form a breather pair that focuses with the propagation distance.
In the figure, diffracting breather pair corresponds to the point m of
Figure 3, while focusing breather pair corresponds to point n.
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Figure 8. Both beams mutually diffract without breathing if beams’
powers are chosen from Region MD of Figure 3. If those are chosen
from the region MF , both mutually focus and form an oscillatory wave
guide.

We must mention here that to avoid repetition, we have
given only one example from each region to show the distinct
type of propagation, however, we have confirmed through detailed
numerical experimentation that two copropagating beams with powers
corresponding to any one point of a given region show same
propagation features to the co-propagating beams with powers
corresponding to any other point of the same region.

3.2. Coupled Beam Propagation for Coupling Coefficient
κ = 2/3

In case of κ = 2/3, Figure 3 modifies as Figure 9. Following two
propagation features of two co-propagating 2-D beams could be seen;

(i) Beam power of each beam required for soliton pair is 60% of the
power of the beam required to form a single soliton.

(ii) Only one solution exists for soliton pairing.

We confirmed that here also four regions DB, MD, MF and FB of
distinct type of coupled propagation and propagation characteristics
of co-propagating beams corresponding to these regions are exactly
same as in the case of κ = 2.

3.3. Coupled Beam Propagation for Coupling Coefficient
κ = 1

In case of κ = 1, solutions of Equations (3) and (4) merge and form a
single existence line of solitonic pairing [11] as shown in the Figure 10.
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Figure 9. In case of κ =
2/3, Figure 3 modifies as shown.
In this case the beam power of
each beam required for soliton
pair is 60% of the power of the
beam required to form a single
soliton. Only one solution exists
for soliton pairing.

Figure 10. Interesting situation
arises for κ = 1. The solutions of
Equations (3) and (4) merge and
form a single existence line of soli-
ton pair as shown in the figure.
Each point of existence line pro-
vides one soliton pair. Infinite so-
lutions for solitonic pairing exist
in this case.

Each point of this line is a common solution of Equations (3) and (4),
and therefore, corresponds to one soliton pair as shown by solid lines
in Figure 11 which has been obtained using Equations (1) and (2). If
beams’ powers are chosen from a point below the existence line, both
beams mutually diffract and if those are chosen from a point above
the existence line, they mutually focus as shown by dotted and dashed
curves respectively in the Figure 11.

3.4. Bistability

In Figures 3, 9 and 10, we have shown only a small portion of solutions
of Equations (3) and (4) that lye in the positive quadrant of x and y
axes. The real solutions of Equations (3) and (4) in the entire range
for κ = 2 is shown in Figure 12. Bistability of solitonic pairing of
2-D beams in saturable nonlinear media is revealed from the figure as
two common solutions of Equations (3) and (4) exist in the positive
quadrant, one corresponding to very high beam powers and other
corresponding to lower beam powers. Entire real solutions of Equations
(3) and (4) for κ = 2/3 and 1 are shown in Figures 13 and 14
respectively. It is evident from these figures and interesting to note
that in case of κ = 2/3, two solutions exist similar to the case of κ = 2,
while, there exist infinite solutions for solitonic pairing for κ = 1.
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Figure 11. A point on the ex-
istence line of Figure 10 provides
one soliton pair as shown by solid
lines in the figure. If beams’ pow-
ers are chosen from a point be-
low the existence line, both beams
mutually diffract and if those are
chosen from a point above the
existence line, they mutually fo-
cus shown by dotted and dashed
curves respectively.

Figure 12. The real solutions of
Equations (3) and (4) in the en-
tire range are shown in the fig-
ure for κ = 2. Bistability of soli-
tonic pairing of 2-D beams in sat-
urable nonlinear media is reaveled
from the figure as two common so-
lutions of Equations (3) and (4)
exist in the positive quadrant,
one corresponding to very high
beams’ powers and other corre-
sponding to lower beams’ powers.

Figure 13. The real solutions of
Equations (3) and (4) in the entire
range is shown for κ = 2/3 in
the figure. In this case, only two
solutions exist similar to the case
of κ = 2.

Figure 14. The real solutions of
Equations (3) and (4) in the entire
range for κ = 1 is shown in the
figure. An infinite solution exists
for solitonic pairing.
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It is worth to be mentioned here that bistability never exists in
the case of soliton pairing of two 1-D beams in Kerr type media, and
also only one solution exists for solitonic pairing when κ = 2 and 2/3.

4. CONCLUSION

In conclusion, coupled propagation of two coaxially co-propagating
and mutually incoherent bright 2-D (cylindrical) beams in saturable
nonlinear medium has been investigated in detail in this paper. Many
of the propagation features of two 2-D beams in saturable media are
same that of 1-D beams in Kerr type media, for example, beam power
of each beam in a soliton pair is one third of the power of the beam
required to form a single soliton when κ = 2. However, many features
are different like instead of just two regions of distinct type of coupled
propagation in case of 1-D beams, there exist four regions of distinct
type of coupled propagation in case of 2-D beams, moreover, two
solutions of pairing exist in contrast to one solution in case of 1-D
beams.
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