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Abstract—In this paper, we propose a novel genetic algorithm (GA)
called immunity GA (IGA) for array pattern synthesis with interference
suppression using digital amplitude only control. The IGA is based
on crossover evolution where the crossover operator is a variant of
the known GA operator. A new formulation of the array factor
transform for a specific number of elements N is expressed by a discrete
cosine transform (DCT) with pre-computed DCT matrix. Evaluating
thousands of candidate solutions generated by the IGA using the
precomputed DCT matrix will result in a high speed computation.
This high performance allows us to find a good approximation of the
absolute minimum SLL of synthesized arrays with digital amplitude
control. Simulation results show the effectiveness of this new algorithm
for pattern synthesis with low SLL and null steering.

1. INTRODUCTION

Antenna-based signal processing that suppress the interfering signals
from prescribed directions while receiving the desired signal from a
chosen look direction are still a challenging problem to date [1–4].
Through array antenna signal processing algorithms, sidelobe jammers
can be attenuated by modifying some of the array-element amplitude
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weights to cause deep pattern nulls in the jamming or interfering signal
direction. The determination of the appropriate set of amplitudes
is the main role of the anti-jam signal processing algorithms. These
amplitudes (weights) must be determined adaptively, since a jammer
may move from one part of the sidelobe region to another, and therefore
the amplitudes must be readapted. The cost of carrying out the
amplitude-adaptation algorithm depends sensitively on the number of
amplitudes being determined. The computational cost is proportional
to the number of elements and thereby the computation time depends
on the number of multiplications and additions. Reducing these later
is very critical and hence a good algorithm should be based on fast
computation technique to allow instant interference suppression. Since
large antenna size is needed to obtain narrow main beam width, it
requires a cumbersome procedure to calculate the current excitations
which will be very sensitive to the relative errors.

Also, to simplify the feeding network, the constituent antennas in
a linear array which possess identical characteristics, are uniformly
spaced with identical current excitations. Furthermore, the array
hardware complexity can be significantly reduced by turning off some
elements in a uniformly spaced or periodic array to produce low side
lobes [5]. In the on-off approach, the problem can be reformulated as
an array pattern synthesis with digital amplitude weighting control
where the elements amplitude weights can be 1 (on) or 0 (off).
In this approach, the problem of finding the best combinations of
the active array elements to obtain minimum side lobe level (SLL)
with interference suppression involves checking a large number of
possibilities which is only practical for small array size. To take
advantage of previous research works, the problem of array elements
digital amplitude weights control can be considered as a dynamic
array thinning to produce an active elements density across the
aperture in order to create the desired nulls while minimizing the
SLL array pattern. More recent researches for designing thinned
antenna arrays are oriented towards new algorithms to produce the
lowest SLL, such as genetic algorithms (GA) [5–7], simulated annealing
(SA) [8, 9], neural networks [10], evolutionary programming [1–13].
Mahanti et al. proposed a real-coded GA with elitist strategy for
thinning a large uniformly array [6]. The SLL obtained was about
−20.5 dB with thinning of 22% and 24% of 100 array elements.
Evolutionary programming (EP), a multi-agent stochastic search
method, is proposed for optimizing thinned phased arrays with a
large number of elements [11]. Also, recently, a pattern search (PS)
algorithm was proposed by Razavi and Forooraghi as a tool for array
thinning [12]. Moreover, differential evolution algorithm (DE) and
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a binary-coded GA are jointly applied to the minimization of SLL
problem in planar arrays [13]. The most prominent advantage of DE
is its low computation time compared to that of GA, particularly in
large antenna arrays. Also, recently, pattern synthesis with minimum
SLL and null control based on particle swarm optimization (PSO) was
presented [2, 3]. Moreover, a bacterial foraging algorithm (BFA) for
null steering of linear antenna arrays by controlling only the element
amplitudes was proposed [4].

In this paper, a novel Immunity Genetic Algorithm based on
stochastic crossover evolution is introduced to find an optimal set of
active array elements by turning off some elements of a uniformly
spaced array to produce low side lobes with null steering. Our
crossover operator based on the swapping of two-points selected on the
parent unduplicated chromosome (DNA) is a variant of the known GA
crossover operator. These chromosomes are spread all over the solution
space. Furthermore, a new expression of the array factor is presented
based on precomputed array factor transform matrix. The array factor
is remodeled in a form similar to the Discrete Cosine Transform (DCT).
The array factor for a specific number of elements N is expressed based
on a precomputed DCT matrix and a linear transform is used to achieve
a high speed computation of the array factor. The new expression of
the array factor achieves a high speed up factor which allow us to push
the search process to new borders in stochastic search for optimum
solutions. Determining the side lobe level accurately is based on finding
the nulls of the first lobe; the deactivation process of some elements of
the array causes the nulls to move, to resolve this problem a technique
for dynamically finding the exact position of the antenna main beam
is presented. With 20% deactivated elements our algorithm achieves
a side lobe level of about −20 dB and −23 dB SLL for 100 and 200
elements, respectively, which agree with the fact that relative, mean
SLL is 1/N . The effectiveness of our technique is also demonstrated
with null control while minimizing the SLL of the array pattern. The
results show that the null steering with optimum SLL using the digital
amplitude control of array elements is very efficient.

2. DIGITAL AMPLITUDE CONTROL USING IGA
ALGORITHM

Consider a linear array model of 2N equispaced isotropic elements
placed along the x-axis. A digital amplitude controlled antenna array
and the corresponding weights (digital control sequence) is shown in
Figure 1. Dynamically controlling the activation and deactivation
of elements allows future array reconfiguration which provides high
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flexibility antennas. Elements at the center of the array play an
important role on the SLL, and hence they are kept turned on (active)
as shown in Figure 1 (indicated as array core). With Centro-symmetric
array configuration, the array factor is given by

AF (θ) = 2
N∑

n=1

an cos[nk d sin(θ)] (1)

where, an represent nth amplitude weights of array elements with
(an = 0 if the element is disabled and an = 1 if the element is enabled
or active), d represent the interelement spacing, and θ represents angle
from broadside.

Figure 1 shows that the elements with white color are turned on
(active elements) and are indicated by the bit 1, and black elements
are disabled or nonacive elements and are indicated by the bit 0. The
digital amplitude control sequence of the array is considered to be the
chromosome of the genetic algorithm.

In genetic algorithms (GA), crossover is a genetic operator used
to vary the programming of a chromosome or chromosomes from
one generation to the next. It is analogous to reproduction and
biological crossover, upon which genetic algorithms are based. Many
crossover techniques exist for organisms which use different data
structures. Our crossover algorithm is a variant of these algorithms,
based on the swapping of two-points which are selected on the parent
unduplicated chromosome; these two genes (bits) are swapped to
produce a child unduplicated chromosome (evolution). It is similar
to a DNA immunization process through generations against chronic
viruses. The swapping is based on the generation of two random
variables.

In this work, the digital amplitude sequence of the array is similar
to a chromosome, where the immunity to diseases evolves from parent

Figure 1. Centro-symmetric an-
tenna array and the correspond-
ing digital amplitude control se-
quence.

Figure 2. DNA Immunity
Evolution from parent to child.
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to child by crossover evolution, hence the name immunity GA (IGA).
In order to find how this chromosome will evolve from generation to
generation by changing a part of its genes (bits), we tried to generate
large number of the chromosomes and then searching for the best one
in term of acquired immunity (SLL). The core of the chromosome
(Array core) which contains the main genetic properties is not affected
through generations, and it is estimated to be 40% of the number
of genes (bits), the rest of the chromosome genes are changed by
evolution except the last element. This evolution from parent to child
is performed by swapping individual bits in the chromosome (digital
amplitude sequence). The selection of bits to be swapped (crossed
over) is based on a stochastic process controlled by two variables. The
immunity of the chromosome to viruses, which represents the SLL of
the array pattern, is measured and the best chromosome with high
immunity is kept (array factor with lowest side lobe level).

Consequently, our IGA algorithm is given by the following steps:
Algorithm

1- Initialization; the array size (2N), the number of generated
chromosomes (K) of length N , the evolutions index (I), the
dynamic thinning range [Lmin+1, N−1] (Lmin represents the index
of the last element of the array core), dynamic thinning efficiency
(Theff ) (the element deactivation ratio), and initial DNA given by
aN .

2- Generate two random indexes N1, N2 within dynamic thinning
area.

3- Crossover the two bits (genes) indexed by N1 and N2: aN (N1) =
aN (N2) and aN (N2) = aN (N1)

4- Add this new unduplicated chromosome evolution (digital
amplitude sequence) to the IGA population.

5- Increment index I.
6- If I < K GOTO step 2 else GOTO step 7.
7- Save the IGA population and exit.

The K evolutions, generated stochastically, are spread all over the total
number of possible evolutions given by

CN−Lmin−1
J =

(N − Lmin − 1)!
(N − J − Lmin − 1)!.J !

(2)

where J is the number of active elements in the dynamic thinning area
given by

J = N (1− Theff )− Lmin − 1 (3)
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When the number of active elements, J , is variable, then the total
number of all possible chromosomes will be 2(N−Lmin−1). For N = 50
(actual array size is 2N) and Lmin = 19 this means that for a
deactivation ratio of 40% there will be 30,045,015 possible evolutions.
The K evolutions generated by the stochastic crossover although are
very limited compared to the whole evolutions space; they are spread
on all possible evolutions values and not concentrated in a limited
area. This is a type of spread spectrum evolution where the search for
lowest SLL is performed with fixed deactivation ratio. The evolution
from parent to child is illustrated by Figure 2.

Each evolution by the IGA is stored for later analysis. The
core of the chromosome is not affected by the evolutions. In genetic
organism, this means that the global characteristics inheritations are
conserved from parent to child through generations. Figure 3 shows the
similarity between a biological chromosome (single molecule of DNA)
and the digital amplitude sequence. The evolutions of genes in the
biological chromosome are similar to the evolutions of bits in the digital
amplitude sequence. The bit is 1 (white) when the array element is
active and is 0 (black) when the element is deactivated.

After generating thousands of possible chromosomes, a sample
of evolutions is shown in Figure 4, where the array core representing
the unchanged genes (bits) is in the middle. Each row represents a
possible solution with white pixels denote active elements and black

Figure 3. Similarity between
biological unduplicated chromo-
some (DNA) and digital ampli-
tude control sequence.

Figure 4. Sample of the symmet-
ric (duplicated) chromosome evo-
lution generated by immunity ge-
netic algorithm (IGA).
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pixels denote disabled elements. A sample of evolutions is represented
by an image which is the top view of the IGA population matrix.
The process of generating the array digital amplitude sequence and
measuring their SLL in order to increase their rejection to interferences
is similar to a DNA immunization process against chronic viruses.

The array core of the chromosomes do not change, the chromosome
evolution from parent to child is performed by a 2 bits crossover until
a desired SLL is obtained. All identical chromosomes are removed
(Hamming distance d = 0). Experiments show that about 50% of the
chromosomes are repeated. As the population of possible solutions is
large, a fast computation technique is needed to evaluate the SLL of
all chromosomes.

3. DIRECT ARRAY FACTOR TRANSFORM

The array factor expression given, by Equation (1) is similar to the
discrete cosine transform (DCT), therefore, it can be written as linear
transformation using matrix representation. With M the number
of evaluation points of the array factor and N is half the array
elements. The array factor expression for the Centro-symmetric array
of Equation (1) is rewritten as



AF (θ1)
AF (θ2)
...
AF (θM )


=2




W (1, θ1) W (2, θ1) · · · W (N, θ1)
W (1, θ2) W (2, θ2) · · · W (N, θ2)
...

...
. . .

...
W (1, θM ) W (2, θM ) · · · W (N, θM )


.




a(1)
a(2)
...
a(N)


 (4)

where W (n, θ) = cos(kd n sin(θ)). The above expression is called
Direct Array Factor Transform (DAFT) and can be rewritten as

AFM = W(n,θ).aN (5)

where, aN is the amplitude weight vector of the N elements and W(n,θ)

is the array factor transform (AFT) matrix of size (M,N) expressed
by a non square matrix which has for consequence the inability to
find its inverse using a linear transformation. Hopefully, the synthesis
of antennas for relatively small size can be done with acceptable
computation.

Since the AFT matrix does not depend on the array amplitude
coefficients (aN ), it can be precomputed to speed up the Transform
computation process. This will push the computation process to new
limits in the stochastic process where we search for a best solution
among an astronomic number of combinations to satisfy the design
requirements such as element deactivation ratio (dynamic thinning
efficiency) and SLL. Note that the model of the array factor is written



28 Hamici and Ismail

using real values. This has a great effect on the computation speed
since multiplications and additions are real. The DAFT is applied to
a set of chromosomes generated by the IGA algorithm. After a set of
thousands of chromosomes is generated, a search is performed within
the array factor to satisfy given minimum SLL.

4. SIDE LOBE LEVEL ESTIMATION

When the Array Factor Transform is computed for all chromosomes
generated by the IGA, a calculation of the SLL is performed on each
array factor. This step is very critical because it is the key feature
of a chromosome selection. In order to exactly measure the SLL an
accurate estimation of the first lobe is needed. The nulls cannot be
estimated correctly from analytical solution because the deactivation
of some elements moves these nulls. Hence a good estimation is based
on a good numerical method. To achieve this goal we considered the
edges of the first lobe as an image processing edge detection problem
and used the zero-crossing method to estimate their positions. The
first derivative of the Array Factor normalized magnitude is computed.
Figure 5, shows the array factor and its derivative where the dashed
lines show that the main beam is located exactly at the zero crossing
of the array factor derivative.
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Figure 5. Main beam or first lobe edges detection using zero-crossing
method. The upper graph is the array factor and the lower graph is
its derivative.



Progress In Electromagnetics Research C, Vol. 11, 2009 29

5. RESULTS AND DISCUSSION

The new digital amplitude controlled array method that utilizes
the proposed IGA algorithm is demonstrated by many computer
simulation examples in order to suppress interference signals while
minimizing the SLL. The simulation is performed in three steps:
1) Generate an AFT matrix for a given number of array elements
and store it for later usage, 2) generate thousands of unduplicated
chromosomes (digital amplitude sequences). 3) Finally compute the
SLL for all chromosomes population and select the best chromosome
which gives the lowest SLL. The computing was achieved on a dual
core 2 computer running at 1.8 GHz equipped with 2 GB of RAM.
When generating a population of 300 thousands chromosomes about
50% of them are repeated, this is due to the fact that the probability to
generate two numbers A and B is quasi the same as generating B and
A in a large trials. The swapping of genes (bits) in the two cases will
produce the same unduplicated chromosome. This also agrees with the
fact that genetic chromosomes are also duplicated. After generating a
given population a process of filtering duplicated chromosomes (equal
bit patterns) is done and only the filtered population is stored for later
analysis using DAFT.

The memory required by the DAFT analysis of the filtered
population of chromosomes is given by:

Memory Size = PF M C + PF N C = PF C [M + N ] (6)

where PF is the filtered or unduplicated chromosomes, M is the number
of points estimated in the range −90◦ to 90◦, C is the number of bytes
reserved for each value; N is half the number of array elements. The
first term of equation (6) is the memory size of the array factor for all
chromosomes and the second term is the memory size of the population.
Using (6), a memory of 0.95 GB is required when PF equal to 145
thousands chromosomes, M equal to 720 evaluation points, C is 64
bits (8 bytes) for double precision numbers, and 200 array elements
(N = 100), neglecting all other computations. The computation
speed is one of the key features of our technique since it is capable
of computing the SLL of more than 145 thousands array chromosomes
in less than 60 seconds for 100 array elements and for 200 elements the
computation for all array patterns is achieved in less than 2 minutes.
Therefore, the main limitation of the number of elements is due the
available physical memory as the windows operating system denies the
usage of more than 50% of the physical memory since itself uses 50%.
This fast computation is performed using DAFT technique.
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5.1. Synthesis with Minimum SLL

To verify the validity of the proposed IGA algorithm, simulations were
done on 100 and 200 equispaced cento-symmetric linear array elements
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Figure 6. SLL versus IGA evolution index for an array of 100 elements
(N = 50), 30% elements are deactivated, and about 100 thousands
chromosomes population size.
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Figure 7. Array factor for the best digital amplitude sequence given
in row one of Table 1, 2N = 100, only 70 elements are active. The
SLL is −19 dB.

Table 1. Best unduplicated chromosomes (digital amplitude
sequence) and the corresponding SLL for different deactivation ratio
(dynamic thinning percentage), Theff , with 100 elements (N = 50).

Fig. Array digital amplitude control sequence with the lowest SLL Theff % Pop.  υ10
3

SLL (dB)

7 11111111111111111111101111111001111000000001010001 19.0

9 11111111111111111111111111110110011101000011101011 20 91 20.24

×

30 99
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Figure 8. SLL versus IGA evolution index for an array of 100
elements (N = 50), 20% elements are deactivated, and 91 thousands
chromosomes population size.
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Figure 9. Array factor for best digital amplitude sequence given in
row two of Table 1, 2N = 100, only 80 elements are active. The SLL
is −20.24 dB.

of a half wave interelement spacing for different deactivation ratios. In
the following examples, different cases with different deactivation ratios
are presented. Figure 6 shows the SLL of a population of about 100
thousands chromosomes for a 30% of deactivated elements. The lowest
SLL is −19 dB as shown in Figure 7. The corresponding unduplicated
chromosome is given in row one of Table 1. The lowest SLL of 20.24 dB
is achieved for a population of 91 thousands chromosomes for 20% of
deactivated elements as shown in Figure 8.

Figure 9 shows the array factor with the lowest SLL of the best
unduplicated chromosome given in row 2 of Table 1. In the previous
examples, the computation is achieved in less than 46 seconds since
using DAFT, one array factor is computed in 0.35 ms, for N equal to
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Table 2. Different chromosomes that yield almost same SLL. (a)
2N = 100 elements, (b) 2N = 200 elements.

Trial Digital amplitude sequence (100 elements Array, 80 are active) SLL(dB)

1 11111111111111111111111111110110011101000011101011 20.24

2 11111111111111111111111111111010110001110100011011 20.0

3 11111111111111111111111011101111010110010100011111 20.0

(a)

Trial Digital amplitude sequence (200 elements Array, 160 are active) SLL(dB)

1

1111111111111111111111111111111111111111111110111111

101111100110110110010100110001000101101111000011 22.2

2

1111111111111111111111111111111111111111011111110101

001111111011111000110100111001010001111011001101 22.4

3

1111111111111111111111111111111111111110111101111101

111011011110010111011001010101111110000010110011 22.1

(b)

−

−

−

−

−

−

50 and 720 evaluation points (M). Since the optimization problem is
highly non-linear and the search for the best chromosome is stochastic,
the array digital amplitude sequence with the lowest SLL is not unique,
as we may obtain different chromosomes with similar SLL in different
trials and some times in the same population. Table 2 gives different
unduplicated chromosomes for different trials with almost the same
SLL with 20% deactivated elements for 100 and 200 elements. The
population size was 200 thousands chromosomes which produced about
100 thousands unrepeated chromosomes in 13 second. The fitness
evaluation of the 100 thousands population and the search for the
best chromosome was performed in less than 40 seconds. Through
thousands of generated chromosomes, we have observed that the core
of array represents about 40% of the total number of elements which
is not affected by the amplitude control process, since deactivation
of elements inside the core will affect severly the SLL. Consequently,
the design of the amplitude controlled array is accomplished by digital
amplitude control of the last 60% elements except the last element
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Table 3. SLL versus elements deactivation percentage for an array of
100 elements.

deactivation ratio (%) SLL (dB) Gain (dB)
16 −19.2 38.5
20 −20.0 38.0
22 −20.25 37.8
24 −19.8 37.6
26 −19.4 37.4
30 −19.0 37.0
40 −18.0 35.5
46 −17.0 35.0

which controls the total length of the array. Also, it was observed that
the deactivation ratio with the lowest SLL is attained at 22% as given
by Table 3. To confirm this observation we tried to study small array
with size less than 28 elements. For these arrays, we first excluded the
core from the amplitude control process, then we generated all possible
chromsomes. While for array sizes greater the 28 elements we managed
to concentrate the search within the last 17 elements. Table 4 shows
that the best deactivation ratio increases for small arrays and settles
at aproximately 22%, where SLLR is the real SLL searched within
all possible chromsomes and SLLS is the SLL obtaind by stochastic
search. Increasing N from 15 to 30, the two estimated SLL values
match perfectly. Starting from N equal to 30 up to 50, we estimate
SLLR by searching the best deactivation ratio within last 17 elements
(bits). From the table, excellent approximation is obtained. However,
crossing the border of N equal to 50 the array synthesis based on
stochastic search is the only way to perform a good SLL estimation.

To demonstrate the capability of the IGA algorithm, we consider
an array of 200 elemtens with deactivation ratio of 20% where a SLL
of −22.4 dB is obtained as shown in Figure 10. The corresponding
chromosome is given in row two of Table 2(b). In order to increase
the computation efficiency, and due to symmetry of the array factor,
the computation can be performed in the range from 0◦ to 90◦ instead
of −90◦ to 90◦; this will save 50% of the computation time. Using
this feature we can computer 145 thousands array factors and extract
the best digital amplitude sequence for 200 elements array in less than
one minute. Note that with 20% deactivated elements, the SLL results
agree with the fact that relative mean SLL is 1/N .



34 Hamici and Ismail

Table 4. Variation of the best deactivation ratio versus array size.

N Best deactivation ratio(%) SLLR(dB) SLLS(dB)
15 13 −13.56 −13.56
20 15 −15.54 −15.54
25 16 −17.16 −17.16
30 17 −17.99 −17.99
35 20 −18.68 −18.58
40 22.5 −19.39 −18.90
45 22.2 −19.77 −19.22
50 22.0 −20.11 −20.05
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Figure 10. Array factor for best chromosome given in row two of
Table 2(b), 2N = 200, only 160 elements are active. The SLL is
−22.4 dB.

5.2. Synthesis with Minimum SLL and Null Steering

In this section, the digital amplitude control is used to synthesize
the array pattern with null steering for interference suppression. The
search for the best chromosome that gives suppressed levels at the
prescribed angular directions with the lowest possible SLL is based on
the following fitness function

Fitness = w1 AF (θnull) + w2 SLL (7)

where w1, w2 are two weight parameters chosen experimentally to
define the importance of each term and AF (θnull) is the array factor
value at the imposed null angle. It is known that when the angle of
arrival of the interference is close to the main beam, then imposing nulls
at the array factor will deteriorate the SLL. Therefore, the direction of
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arrival of the interference has been chosen at the peak of the 6th side
lobe. Figure 11 shows the array factor (solid) in the range −20◦ to 20◦
for 50 elements (N = 25) with the imposed null at 8◦ and with 20%
deactivation ratio. The array factor of the uniform array (dashed) is
also shown in the figure. The interference rejection of less than −60 dB
with −15 dB SLL was achieved with w1 = 3 and w2 = 1.

Figures 12 and 13 show the array factor (solid) in the range −20◦
to 20◦ for 100 and 200 elements with imposed nulls at 8◦ and 4◦,
respectively, for 22% deactivation ratio. The nulls are chosen at the
peak of the third and sixth side lobe of the uniform array factor,
respectively. The array factor of the uniform array (dashed) is also
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Figure 11. (Solid) Array factor with imposed null at 8◦ and 20%
deactivation ratio. The null depth is −60 dB with −15 dB SLL.
(Dashed) Uniformly array factor, 2N = 50, d = λ/2.
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Figure 12. (Solid) Array factor with imposed null at 8◦ and 22%
deactivation ratio. The null depth is −70 dB with −17.6 dB SLL.
(Dashed) Uniformly array factor, 2N = 100, d = λ/2.
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Figure 13. (Solid) Array factor with imposed null at 4◦ and 22%
deactivation ratio. The null depth is −70 dB with −16.6 dB SLL.
(Dashed) Uniformly array factor, 2N = 200, d = λ/2.

shown in the figures. The interference rejection of less than −70 dB
for both cases was obtained with −17.6 dB SLL for Figure 12 and
−16.6 dB SLL for Figure 13. Moving the null towards the main beam
will degrade the SLL as expected, but we still have an excellent SLL
for background noise suppression.

6. CONCLUSION

This paper presents an Immunity Genetic Algorithm (IGA) for
array pattern synthesis using digital amplitude control. The digital
amplitude control can be considered as a dynamic thinning. Our
IGA algorithm is based on the swapping of two genes (bits) which are
selected on the parent unduplicated chromosome (DNA) represented
by the digital amplitude control sequence. Several examples are
presented in order to show the effectiveness of our proposed technique.
Our main objective is to find the best SLL with fixed percentage
of deactivated elements. Since the nulls of the array factor moves
depending on elements deactivation ratio, we proposed a very fast
method to determine the main beam nulls and hence compute the
SLL with high accuracy. The method is based on the zero-crossing
of the array factor derivative. With our proposed IGA algorithm we
were capable of finding the best array chromosome for 200 elements by
performing a search within a stochastic population of chromosomes of
about 100 thousands extracted from 200 thousands. All computations
of the extracted population are done within 40 seconds. Since the
array factor is expressed as a linear transform based on a pre-computed
DCT matrix, a huge reduction in computation time is obtained. This
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allows us to find a good approximation of the absolute minimum SLL
of synthesized arrays.

Results for array digital amplitude control of different sizes have
illustrated the performance of our proposed technique. By studying
the dynamic thinning percentage of different array sizes, it was found
that the best percentage of deactivated elements is 22% for array size
above 100 elements. Simulation results show the effectiveness of this
novel algorithm for pattern synthesis with low SLL and interference
suppression.
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