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Abstract—A three-dimensional scattering field Transmission Line
Modeling (TLM) algorithm is established to obtain bistatic radar
cross sections of frequency dispersive gyromagnetic objects. Starting
from the 1D TLM modeling of gyrotropic materials, a scattering field
TLM algorithm is derived for 3D calculations. For verification, the
bistatic radar cross section results for several gyromagnetic structures
are compared with the single frequency computations, where the
permittivity and permeability tensors are made of complex constants
at a given frequency.

1. INTRODUCTION

Electromagnetic modeling of anisotropic materials has been a hot
research topic. Because of its unique properties, gyrotropic medium
has attracted the interest of the researchers. Gyrotropic materials
are widely used in circulators, cavities and similar waveguide devices.
The polarization rotation property of these materials makes them
a research area for optical applications, too. The finite difference
time domain (FDTD) analysis of magnetized plasma was first done
by Hunsberger et al. [1], where they used discrete convolution in
order to model the frequency dependency of the material. Hunsberger
also modeled magnetized ferrite and chiral materials using the same
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technique [2]. The examples he solved were one dimensional gyrotropic
slab problems of which the reflection and transmission coefficients were
obtained.

The Transmission Line Modeling (TLM) method is a robust and
efficient numerical technique to model electromagnetic problems in
time domain. Hybrid Symmetrical Condensed Node approach of TLM
method was used by Yaich et al. to model the magnetized plasma
slab problem [3] and the magnetized ferrite slab problem [4]. On the
other hand, Paul used TLM method to model gyrotropic materials,
where he introduced a different approach using Z transform in order
to adapt the frequency dependency of the media to discrete time
domain [5]. The Z transform is most widely used of the functional
transformations of sequences (i.e., discrete time domain signals) in
the theory of discrete signals and systems [6]. The implementation
of Z transform in FDTD analysis of frequency dependent media was
first introduced by Sullivan [7–9]. Huang and Li used FDTD analysis
with Z transformation to model the electromagnetic propagation in
a magnetized plasma, and showed that the Z transform algorithm is
more accurate than the recursive convolution algorithm [10].

In this paper, a scattering field TLM algorithm is derived to
calculate the electromagnetic scattering of three dimensional frequency
dispersive gyrotropic objects. With the help of the 1D TLM modeling
of gyrotropic materials by Paul [5, 11], a scattering field TLM algorithm
is derived for 3D calculations. The bistatic radar cross section results
of the gyromagnetic structures are obtained from the simulations and
compared with our monochromatic calculations at some frequencies
where the diagonal susceptibility tensor elements have real non-
negative values [12–14].

Since our TLM computation space is truncated, a near field to
far field transformation method is also used to obtain the far field
scattering [15, 16]. The incident field for our frequency dispersive
algorithm is chosen to be a Gaussian wave, and the bistatic RCS values
for the desired frequency are calculated using the discrete Fourier
transform.

2. TLM MODELING OF 3D FREQUENCY DISPERSIVE
GYROTROPIC OBJECTS

For TLM modeling of anisotropic 3D materials, we modified Paul’s
TLM algorithm [5, 11] to a scattering field formulation. Assuming the
conductivity tensors to be zero, in Paul’s TLM algorithm the relation
between the port excitations (F e) and the field quantities (F ) is given
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in Laplace domain as

2F
e = 4F + 2s∆tM F (1)

In scattering field formulation this equation becomes

2F
e
scat = 4F scat + 2s∆tM F scat + 2s∆tM F inc (2)

where s = j2πf and F = F scat + F inc; F scat and F inc are the
normalized scattered and incident field vectors as we discussed in [13].
F is the field vector which has the voltage and current values of the
TLM cell described by Paul [5]. We introduce

F inc =




V inc
x

V inc
y

V inc
z

iinc
x

iinc
y

iinc
z




(3)

F scat =




V scat
x

V scat
y

V scat
z

iscat
x

iscat
y

iscat
z




(4)

In (2), M is the general material tensor which describes dielectric
and magnetic properties. The discrete time domain model is obtained
from (2) using bilinear Z transform, where s∆t is replaced with

s∆t = 2
1− z−1

1 + z−1
(5)

We use the partial fraction expansions as
(
1− z−1

)
M(z) = M0 + z−1

(
M1 + M2(z)

)
(6)

which leads us to

T
−1

F scat

= 2F e
scat − 4M0F inc

+z−1
(
2F

e
scat+κ F scat−4M1 F inc−4M2(z)

(
F scat+F inc

))
(7)

where
T
−1

= 4I + 4M0 (8)
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and
κ = −4I − 4M1. (9)

The tensor M2 is a function of z, while M0 and M1 are constant
parameter tensors. (7) can be rewritten as

F scat = T
(
2F

e
scat − 4M0F inc + z−1S

)
(10)

Or in time domain representation,

F scat[n] = T
(
2F

e
scat[n]− 4M0F inc[n] + S[n− 1]

)
(11)

with time index n.

2.1. Gyromagnetic Objects

Gyromagnetic materials are represented by a permeability tensor and
a scalar permittivity value. We are going to use a permittivity of ε0

(permittivity of free space) for our magnetized ferrite material. Since
longitudinal propagation will be modeled in this section, we will assume
a relative permeability tensor of

µ =

[
µ1 jµ2 0
−jµ2 µ1 0

0 0 µ3

]
(12)

where the applied magnetic field is in z direction (i.e., H0 = ẑH0) in
Cartesian coordinates. The tensor elements are given as [1, 17]

µ1 = 1 +
(ω0 + jωα)ωm

(ω0 + jωα)2 − ω2
= 1 + χ1 (13)

µ2 =
ωωm

(ω0 + jωα)2 − ω2
=

χ2

j
(14)

µ3 = 1 = 1 + χ3 (15)

where α is the damping factor, ωm is the saturation magnetization
frequency, and ω0 is the Larmor precessional frequency.

The magnetic susceptibilities are

χm =




χxx
m χxy

m 0
χyx

m χyy
m 0

0 0 χzz
m


 =

[
χ1 χ2 0
−χ2 χ1 0

0 0 χ3

]
(16)

In order to assemble these susceptibility tensors into our TLM
algorithm, we have to first transform these frequency dependent
functions into Laplace domain, from which we can easily move to Z
domain.
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χ1 can be written in Laplace domain as

χ1(s) =
(ω0 + sα)ωm

(ω0 + sα)2 + s2
(17)

which can be rewritten as

χ1(s) = ωm<
[ −j

s− j(ω0 + sα)

]
(18)

where the operator <[.] implies the real part of [.]. If we call τm =
1− jα

−jω0
, and τa =

1
1− jα

, (18) will have the form of

χ1(s) = ωm<
[
τa

−jτm

1 + sτm

]
(19)

Similarly, χ2 can be formulated in Laplace domain as

χ2(s) =
sωm

(ω0 + sα)2 + s2
(20)

and in another form

χ2(s) = ωm<
[

1
s− j(ω0 + sα)

]
(21)

or

χ2(s) = ωm<
[
τa

τm

1 + sτm

]
(22)

Transforming Laplace domain equations to Z domain we use
τm

1 + sτm
→ τm

1 + 2(1−z−1)
∆t(1+z−1)

τm

(23)

In order to have a similar form as in (6), we will multiply right hand side
of the equation above by (1− z−1) and use partial fraction expansion.

(
1− z−1

) τm

1 + 2(1−z−1)
∆t(1+z−1)

τm

=
τm∆t

2τm + ∆t

+z−1


τm∆t(2τm −∆t)

(2τm + ∆t)2
−

z−1 8τ2
m∆t2

(2τm+∆t)3

1− z−1 2τm−∆t
2τm+∆t




= β0 + z−1(β1 + β2) (24)
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We only have β2 as a function of z.

β2 =
z−1 −8τ2

m∆t2

(2τm+∆t)3

1− z−1 2τm−∆t
2τm+∆t

=
z−1b1

1− z−1a1
(25)

When we are transforming χ2(s) to Z domain, we can use the equations
above. On the other hand, for transformation of χ1(s) to Z domain, all
β terms should be multiplied by−j. Then we can formulate (1−z−1)χ1

in Z domain as(
1− z−1

)
χ1(z) = ωm<

[−jτa

(
β0 + z−1 (β1 + β2)

)]
(26)

And (1− z−1)χ2 will be
(
1− z−1

)
χ2(z) = ωm<

[
τa

(
β0 + z−1 (β1 + β2)

)]
(27)

(26) and (27) can be rewritten as
(
1− z−1

)
χ1(z) = χ10 + z−1(χ11 + χ12(z)) (28)

(
1− z−1

)
χ2(z) = χ20 + z−1(χ21 + χ22(z)) (29)

Thus, we can build our M matrices in the following forms

M0 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 χ10 χ20 0
0 0 0 −χ20 χ10 0
0 0 0 0 0 0




,

M1 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 χ11 χ21 0
0 0 0 −χ21 χ11 0
0 0 0 0 0 0




,

M2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 χ12 χ22 0
0 0 0 −χ22 χ12 0
0 0 0 0 0 0




(30)

In our 3D anisotropic TLM algorithm, we can use M0, M1 and M2 in
Equation (7).
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We defined a discrete time step state vector S in (10) as

S = 2F
e
scat + κ F scat − 4M1 F inc − 4M2(z)

(
F scat + F inc

)
(31)

Let Sm = M2(z)(F scat + F inc). Sm vector has the form of

Sm =




0
0
0

<[Sm4]
<[Sm5]

0




(32)

We will develop the forth element of Sm (i.e., < [Sm4]) due to
the elements of field vector F , which are ix (ix = iscat

x + iinc
x ) and iy

(iy = iscat
y + iinc

y ).

Sm4 = ωmτa (−jβ2ix + β2iy) (33)

When we place the open form of β2 in (33), we have

Sm4 = ωmτa

(
−j

z−1b1

1− z−1a1
ix +

z−1b1

1− z−1a1
iy

)
(34)

(
1− z−1a1

)
Sm4 = ωmτa

(−jz−1b1ix + z−1b1iy
)

(35)

Sm4 = ωmτa

(−jz−1b1ix + z−1b1iy
)

+ z−1a1Sm4 (36)

In time domain representation, the iterative update of Sm4

Sm4[n]
= ωmτa

(−jb1

(
iscat
x [n−1] + iinc

x [n−1]
)

+ b1

(
iscat
y [n−1] + iinc

y [n−1]
))

+a1Sm4[n− 1] (37)

where n is the discrete time index.
Similarly, the calculation of the fifth element of the vector Sm (i.e.,

< [Sm5]) can be formulated as

Sm5 = ωmτa

(−jz−1b1iy − z−1b1ix
)

+ z−1a1Sm5 (38)

and in time domain

Sm5[n]
= ωmτa

(−jb1

(
iscat
y [n−1] + iinc

y [n−1]
)− b1

(
iscat
x [n−1] + iinc

x [n−1]
))

+a1Sm5[n− 1] (39)

Updating the new field values is followed by determining the
reflected port voltages as described by Paul [11]. The TLM
computation process will continue with sending these reflected port
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voltages to the neighboring cells as their new incident port voltages for
the next time step.

In our simulations we used a Gaussian wave as the incident wave
propagating in z direction, which has electric field component in x
direction. The F inc vector has the form of

F inc =




Vinc

0
0
0

iinc

0




(40)

where
Vinc = iinc = −∆l e−A(∆t(n−n0)−∆l

c
(z−z0))2

(41)

n is the time step index and z is the z coordinate index of the cell.
We have −∆l in the front, since these quantities are normalized fields.
Vinc is in the first row, which denotes the E field in x direction, while
iinc is in the fifth row to represent the H field in y direction. A is the
constant that determines the width of the pulse, while n0 and z0 are
delays in time and space, respectively.

The incident fields are injected to the simulation domain
analytically and the electric and magnetic surface currents due
to scattering fields on the imaginary closed surface enclosing the
gyrotropic structure are stored for each time step. Then the far field
RCS data is generated using these surface currents. The TLM cell
parameters are different than Paul’s total field parameters. Incident
and reflected port voltages of the 12 ports of a TLM cell are transferring
only the scattering field information to the neighboring cells in our
algorithm. The port voltage values of a cell are updated according to
the scattering field information coming from the neighboring cells and
the analytically injected incident field to that specific cell. The scheme
of transferring the port voltages between the neighboring cells is the
same as that of Paul. Using this method we can easily generate any
form of incident field on any 3D arbitrarily shaped structure.

3. RADAR CROSS SECTIONS OF 3D GYROMAGNETIC
OBJECTS

In order to demonstrate the algorithm we developed in this paper,
we used our single frequency 3D formulation [13] to compare our new
results. In [13], the scattering of a ferrite sphere is compared with the
bistatic RCS of the same sphere in the study of Geng et al. [18]. The
monochromatic 3D formulation is easier to derive since M matrix has
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constant valued elements, which does not force the algorithm to have a
complex update scheme. In monochromatic formulation we can obtain
one RCS result for one simulation at a given frequency. On the other
hand, using the frequency dispersive formula, one can get RCS results
for multiple frequencies in one simulation.

To model, we have chosen three gyromagnetic structures —
sphere, cube and finite cylinder — with material parameters, ω0 =
2π20× 109 [rad/s] as the Larmor precessional frequency, ωm = 2π20×
109 [rad/s] as the saturation magnetization frequency and α = 0.1 as
the damping factor. The real and imaginary parts of the relative
permeability tensor elements are given in Figure 1. The tensor
element values for single frequency simulations are calculated using the
frequency dependent formulations of the relative permeability tensor
elements. We ran our single frequency simulations at 7GHz, 8 GHz,
9GHz and 10 GHz.

Using the time domain we obtain the response of the material for a
wide band of frequency. But we have to verify our frequency dispersive
RCS results. Since we could not manage to find any study showing time
domain solution for 3D RCS results of frequency dispersive gyrotropic
materials in the literature, we developed SF method to obtain the
RCS of the same structure at a given frequency [13]. But single
frequency method only works for the media where the permittivity or
permeability tensor should have non-negative number for the real part
of the complex diagonal element. We had chosen these four frequencies,
because the real parts of the complex numbers on the diagonal sections
of the permeability tensors are non-negative.

Figure 1. The real and imaginary parts of the relative permeability
tensor elements of the magnetized ferrite.
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For 7 GHz, the tensor has the form of

µ =

[ 2.137− j0.05 j(0.397− j0.032) 0
−j(0.397− j0.032) 2.137− j0.05 0

0 0 1

]
(42)

At 8GHz, we have the relative permeability tensor of

µ =

[ 2.185− j0.065 j(0.472− j0.045) 0
−j(0.472− j0.045) 2.185− j0.065 0

0 0 1

]
(43)

and for 9GHz, we have

µ =

[ 2.247− j0.085 j(0.558− j0.063) 0
−j(0.558− j0.063) 2.247− j0.085 0

0 0 1

]
(44)

For 10 GHz, the tensor becomes

µ =

[ 2.323− j0.11 j(0.656− j0.088) 0
−j(0.656− j0.088) 2.323− j0.11 0

0 0 1

]
(45)

In modeling of the gyromagnetic sphere, the diameter is taken as
33.4mm, while the space discretization is ∆l = 1.67mm. The diameter
of the sphere is chosen to have one wavelength at around 9 GHz. In
order to ensure the accuracy, the cell size is set to λ/20. The time step
value becomes ∆t = 2.78 psec.

In the frequency dispersive formulation, the incident field is chosen
as a Gaussian wave form. We waited until the fields reach the steady
state. We first consider the wave incident on a gyromagnetic sphere in
free space as shown in Figure 2.

Figure 2. Incidence of a plane wave on a gyrotropic sphere in free
space.
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The bistatic RCS calculations of frequency dispersive (FD) and
single frequency (SF) computations for a sphere case are given in
Figures 3 to 6 at four different frequencies. The results show fairly
good agreement. Since we discretize both time and space, the tensor
elements we take for single frequency computations change, which
results in some discrepancy. Finer mesh will give better solutions.
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Figure 3. The bistatic RCS of frequency dispersive and single
frequency simulations of the gyromagnetic sphere at 7GHz.
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Figure 4. The bistatic RCS of frequency dispersive and single
frequency simulations of the gyromagnetic sphere at 8GHz.
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Figure 5. The bistatic RCS of frequency dispersive and single
frequency simulations of the gyromagnetic sphere at 9GHz.
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Figure 6. The bistatic RCS of frequency dispersive and single
frequency simulations of the gyromagnetic sphere at 10GHz.

In the figures, θ is the observation angle in spherical coordinates.
θ = 0◦ is the +z direction, while θ = 180◦ is −z direction which is
the backscattering observation angle.

Next we consider the wave incident on a gyromagnetic cube
(Figure 7). The space and time discretization values are kept the same
as in the sphere case. The length of one edge of the cube is chosen to
be d = 33.4mm.
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Figure 7. Incidence of a plane wave on a gyrotropic cube in free space.

As examples, the bistatic RCS calculations of frequency dispersive
(FD) and single frequency (SF) computations for 7 GHz and 10 GHz
are given in Figures 8 and 9. We again observe a fairly good agreement.
We also simulated the structure for 8 and 9 GHz frequencies, but we
do not show them here due to limitation of space.

For the gyromagnetic finite cylinder model (Figure 10), the length
and the diameter are chosen to be 33.4 mm.

We plotted the single frequency and frequency dispersive RCS
calculations for 7 GHz and 10 GHz in Figures 11 and 12. We also
modeled and observed good agreement for the simulations at 8 and
9GHz.
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Figure 8. The bistatic RCS of frequency dispersive and single
frequency simulations of the gyromagnetic cube at 7 GHz.
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Figure 9. The bistatic RCS of frequency dispersive and single
frequency simulations of the gyromagnetic cube at 10 GHz.

Figure 10. Incidence of a plane wave on a gyrotropic cylinder in free
space.

As seen from the scattering graphs, the RCS of cube is larger than
that of cylinder which is larger than the RCS of sphere. Moreover, as
frequency increases, the RCS increases for all three cases.

We do not show the simulation results of 3D frequency dispersive
gyroelectric structures, because for every frequency the real component
of the diagonal elements of the susceptibility tensors are negative.
The single frequency TLM algorithm is unstable for negative real
valued diagonal susceptibility tensor elements. But we obtain stable
RCS results for frequency dispersive modeling of gyroelectric objects.
Nevertheless, we could not find some other data for gyroelectric objects
to compare our results.
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Figure 11. The bistatic RCS of frequency dispersive and single
frequency simulations of the gyromagnetic cylinder at 7GHz.
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Figure 12. The bistatic RCS of frequency dispersive and single
frequency simulations of the gyromagnetic cylinder at 10GHz.

4. CONCLUSION

We presented a 3D scattering field TLM algorithm to model frequency
dispersive (FD) gyrotropic (gyromagnetic) objects in this paper. We
showed the simulation results for three cases — sphere, cube and finite
cylinder shaped gyromagnetic objects. The bistatic RCS results of
these cases were compared with our single frequency (SF) 3D TLM
computations and a fairly good agreement between the simulation
results was observed. The material parameters for SF calculations
are calculated analytically from the frequency dependent formula
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giving the frequency information, whereas the material parameters
for FD calculations are discretized in the time domain. Because
of this discretization, we observe a little difference between SF and
FD results. Finer mesh means making the structures more realistic,
because the method uses cubic cells to build the complex shapes.
With a finer mesh the sphere model would be more like a sphere or
a cylinder would become more like a real cylinder (getting rid of the
staircase like structure). This would give more realistic RCS results
in our simulations. Better means more realistic. The tensor element
values are constant in SF simulation. But in FD, the permittivity
and permeability tensor element values are not constant, instead
the frequency dependent formulas of these elements are discretized
in time domain. Time domain discretization depends on the space
discretization in TLM, since the velocity of the wave is constant in
the 3D cells of the TLM method (i.e., ∆l/∆t is constant). Due to
this discretization, the gyrotropic model in FD simulation behaves
similar to the SF model at a given frequency, but not the same.
The discrepancies between the SF and FD results originate from this.
This modeling method can be used to simulate devices which contain
gyrotropic materials, not only in microwave frequencies but also in
optical frequency bands.
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