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Abstract—In this paper, a multilevel Green’s function interpolation
method (MLGFIM) is developed to analyze electromagnetic scattering
from an arbitrarily shaped three-dimensional objects comprised of
both conductor and bi-isotropic media. The field decomposition
method is adopted to split the homogeneous bi-isotropic media
into two uncoupled isotropic media instead of direct calculation
of complicated Green’s function in bi-isotropic material. The
problem is formulated using the Paggio-Miller-Chang-Harrington-Wu-
Tsai (PMCHWT) approach for multiple homogeneous isotropic media
and electric field approach for conducting bodies. The resultant
integral equations are discretized by the method of moment (MoM)
and iteratively solved by MLGFIM. Numerical examples illustrate
accuracy of this algorithm and CPU time of O(N log N) and memory
requirement of O(N).

1. INTRODUCTION

Recent developments in material technology have allowed for greater
design flexibility and novel application in antennas and microwave
components. Specifically, bi-isotropic (BI) materials [1] have emerged
as one of the most promising topics in electromagnetic research. Many
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possible applications were proposed for radar absorbing materials,
waveguide mode converters, and polarization rotators, etc. [2]. Due
to the special form of their constitutive relationships, there has
been increasing interest in recent years for accurate and efficient
analysis of electromagnetic wave propagation and scattering in those
materials in microwave range. Using the eigenfunction method [3, 4],
analytical solutions are available for some simple geometries such as
spheres and cylinders. On the other hand, many efforts have been
put into the development of efficient numerical techniques based on
either integral or differential equations. The method of moments
(MoM) [5, 6], the finite difference time domain (FDTD) approach [7, 8]
and T-matrix method [9], etc., have been developed to solve EM
scattering by complex bodies consisting of the bi-isotropic media.
When the BI objects are homogeneous or piecewise homogeneous,
MoM is preferred because it limits the discretization of the unknown
quantities to the surfaces of the objects and the discontinuous interfaces
between different materials [10–13]. Despite this, the computational
requirements for MoM solution of this type of problems are still very
high. In this paper, the multilevel Green’s function interpolation
method (MLGFIM) [14–17] is developed to deal with this problem.

MLGFIM is a recent-developed kernel-independent approach,
originally proposed to rapidly solve electro-quasi-static problems [14],
and later extended to solve three-dimensional full-wave electromagnetic
scattering and radiation problems [15–17]. It inherits the tree
structure of the kernel-dependent multilevel fast multipole algorithm
(MLFMA) [18–23] and combines interpolation ideas of precorrected
fast Fourier transform (PFFT) [24–26]. The peer-level and lower-to-
upper level interpolation techniques [14, 15] distinguish MLGFIM from
Brandt’s method in which a soften kernel is required. The adaptive
phase compensation (APC) technique [16] and the hybrid quasi-2D/3D
multilevel partitioning approach [17] are proposed in order to improve
the interpolation efficiency. To date, MLGFIM has been applied
to perfect electric conducting (PEC) objects, coplanar objects and
composite objects consisting of conductor and isotropic media in which
computational complexities are between O(N) and O(N log N), and all
of memory complexities are O(N).

In this paper, we apply MLGFIM for computing electromagnetic
scattering from 3D bodies comprising both conducting and BI media
objects. The field decomposition approach [1] is employed to split
the homogeneous BI medium into two uncoupled isotropic media.
We formulate the surface integral equations (SIE) using the Paggio-
Miller-Chang-Harrington-Wu-Tsai (PMCHWT) approach [27, 28] for
multiple homogeneous isotropic media and the electric field approach
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for conducting objects. The resultant integral equations are discretized
by MoM. MLGFIM is then used to speed up the matrix-vector
multiplication in the iterative solution process. Numerical examples
demonstrate the good performance of the proposed approach.

2. FORMULATIONS

2.1. Surface Integral Equation

Consider an arbitrary structure comprised of multiple conducting and
dielectric objects, as shown in Fig. 1. The j-th dielectric object
is the homogeneous bi-isotropic medium, of which the constitutive
relationships can be expressed as

⇀

D = ε
⇀

E + ξ
⇀

H (1)
⇀

B = ζ
⇀

E + µ
⇀

H (2)

in which

ξ = (χ + iκ)
√

µ0ε0 (3)
ζ = (χ− iκ)

√
µ0ε0 (4)

The BI medium with κ = 0 but χ 6= 0 is called the Tellegen medium,
while the one with χ = 0 but κ 6= 0 is called the Pasteur medium or
Chiral medium.

Let us denote the homogeneous exterior region as region 0 and
other homogeneous dielectric region as region i (i = 1, 2, . . .). The
surface of region i is denoted as Si and the interface between regions
i and j is denoted as Sij . The unit normal to Sij and pointing toward
the interior of region i is denoted as n̂ij . Hence we have n̂ij = −n̂ji.
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Figure 1. Composite metallic and dielectric scatterer.
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In each region consisting of bi-isotropic medium, for instance
region j, electric field

⇀

E, magnetic field
⇀

H, electric current
⇀

J and
magnetic current

⇀

M can be split into two uncoupled electromagnetic
quantities as follows:

⇀

Ej =
⇀

E
+

j +
⇀

E
−
j (5)

⇀

Hj =
⇀

H
+

j +
⇀

H
−
j (6)

⇀

J j =
⇀

J
+

j +
⇀

J
−
j (7)

⇀

M j =
⇀

M
+

j +
⇀

M
−
j (8)

where
⇀

E
±
j =

1
2 cos ϑ

(
e±iϑ

⇀

Ej ± iη
⇀

Hj

)
(9)

⇀

H
±
j =

1
2 cos ϑ

(
e∓iϑ

⇀

Hj ∓ i

η

⇀

Ej

)
(10)

⇀

J
±
j =

1
2 cos ϑ

(
e∓iϑ

⇀

J j ± i

η

⇀

M j

)
(11)

⇀

M
±
j =

1
2 cos ϑ

(
e±iϑ

⇀

M j ∓ iη
⇀

J j

)
(12)

ϑ = sin−1 χ

n
(13)

n =
√

(µjεj)/(µ0ε0) (14)

and η =
√

µj/εj is the intrinsic impedance.
Two uncoupled electromagnetic quantities satisfy Maxwell’s

equations in homogeneous isotropic medium, i.e.,

∇× ⇀

E
±
j = iωµ±j

⇀

H
±
j −

⇀

M
±
j (15)

∇× ⇀

H
±
j = −iωε±j

⇀

E
±
j +

⇀

J
±
j (16)

in which

ε±j = ε
(
cosϑ± κ

n

)
e∓iϑ (17)

µ±j = µ
(
cosϑ± κ

n

)
e±iϑ (18)

In this scenario, the electric field integral equation (EFIE) and
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magnetic field integral equation (MFIE) can be obtained as

∑
±

[∑
m

− 1
iωε±j

Lj

(
⇀

J
±
jm

)
−Kj

(
⇀

M
±
jm

)]

tan

= −⇀

E
inc

j

∣∣∣
tan

(19)

∑
±

[∑
m
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(
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)
− 1
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Lj

(
⇀
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)]

tan
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H
inc
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∣∣∣
tan

(20)

where

Lj

(
⇀

X
±
jm

)
=

(
k±j

)2

4π

∫
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(
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r
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r ,
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e
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r
′∣∣∣
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r − ⇀

r
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(23)

k±j = ω
√

ε±j µ±j (24)

Furthermore, equivalent electric current
⇀

J
±
jm and equivalent magnetic

current
⇀

M
±
jm are defined by

⇀

J
±
jm = n̂jm × ⇀

H
± (⇀

r
) ⇀

r ∈ Sjm (25)
⇀

M
±
jm = −n̂jm × ⇀

E
± (⇀

r
) ⇀

r ∈ Sjm (26)

The EFIE and MFIE in region j are (19) and (20) carried over all the
interfaces which surround region j. Using PMCHWT approach, we
can combine EFIE and MFIE on the interface between two dielectric
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regions to obtain integral equations on Sjj′ as follows:

∑
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⇀
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In addition, since the tangential electric field vanishes on the surface
of perfect conductor, only EFIE (19) will be needed.

2.2. Multilevel Green’s Function Interpolation Method

The integral equations can be numerically solved using the method
of moments (MoM). By applying MoM, the surface is meshed into a
number of the curvilinear quadrilateral patches. The unknown electric
and magnetic currents are expanded using the zeroth divergence
conforming basis (DCB) function [29] (i.e., rooftop basis function) as
follows:

⇀

J =
∑

n

Jn

⇀

f n (29)

⇀

M =
∑

n

Mn

⇀

f n (30)

Substituting (11), (12), (29) and (30) into (27) and (28) and applying
Galerkin method, we have corresponding matrix equation as[

ZEJ ZEM

ZHJ ZHM

] [
J
M

]
=

[
V E

V H

]
(31)

where
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uv =

∑

j

〈
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e∓iϑ
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⇀
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⇀
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]〉
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ZEM
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(33)

ZHJ
uv =

∑

j

〈
⇀

f u,
∑
±

[
e∓iϑ
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⇀
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〈
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[
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⇀

f v −
1
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⇀
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V E
u =

∑

j

〈
⇀

f u,−⇀

E
inc

j

〉
(36)

V H
u =

∑

j

〈
⇀

f u,−⇀

H
inc

j

〉
(37)

In order to reduce the calculation time and memory requirement,
MLGFIM is utilized to iteratively solve the matrix equation (31).
As mentioned earlier, MLGFM uses an octary-cube-tree multilevel
partitioning scheme. Specifically, we first enclose the entire object
in a large cube, and then partition the large cube into eight smaller
cubes. Each subcube is recursively subdivided into smaller cubes
until the finest cubes satisfy the termination criterion. For two
elements in same or adjacent finest cubes, their interaction is directly
calculated. However, the interaction between two elements in different
cubes not immediately adjacent to each other is approximately
calculated using Green’s function interpolation method. For a problem
involving multiple regions, the Green’s function interpolation has to be
independently performed in each region, while the same tree structure
for all regions will be kept.

By observing (32)–(35), we can find that there are two kinds of
integrals in matrix elements as follows:

I1j
uv =

〈
⇀

f u, Lj

⇀

f v

〉
(38)

I2j
uv =

〈
⇀

f u,Kj

⇀

f v

〉
(39)

Expanding (38) and (39) into the scalar expression [17], we can get a
general form, i.e.,

Ij
uv =

∫

Sj
u

ds

∫

Sj
v

ds′ξ
(⇀
r
)
η

(
⇀
r
′)

Λ(j)
(

⇀
r ,

⇀
r
′)

(40)

For non-adjacent groups, we choose a suitable interpolation function
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to approximate Λ(j)(⇀
r ,

⇀
r
′
) as [17]

Λ(j)
(

⇀
r ,

⇀
r
′)

=
K∑

p=1

K∑

q=1

wp
u(⇀

r )wq
v

(
⇀
r
′)

Λ(j)
(

⇀
ru,p,

⇀
r
′
v,q

)
(41)

in which wp
u and wq

v are the pth and qth interpolation functions in
field group u and source group v, respectively, and K is the number
of interpolation points in both groups. Here ⇀

ru,p(p = 1, . . . , K) and
⇀
r
′
v,q(q = 1, . . . ,K) are the interpolation point in field group u and

source group v, respectively. Substituting (41) into (40), we can obtain
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where interpolation function matrix wv

(
⇀
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can be expressed as
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⇀
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⇀
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, and Green’s function matrix
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⇀
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⇀
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...
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⇀
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⇀
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′
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)
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′
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)


 (43)

MLGFIM utilizes three procedures, e.g., upward pass (aggrega-
tion), translation and downward pass (disaggregation) and two types
of interpolation schemes, i.e., the peer-level and lower-to-upper level
interpolation techniques to calculate the direct interaction component
between two basis function in non-adjacent groups. Detailed procedure
about MLGFIM may be referred to [14–17].

3. NUMERICAL RESULTS

In this section, we present some numerical examples to demonstrate
the accuracy, efficiency and versatility of the proposed method. All
calculations are performed on a computer with 3.0GHz processor
and 3.5 GB RAM. Here the QR factorization technique [30, 31] is
used to compress the Green’s function matrix with low rank and the
GMRES [32, 33] iteration method with a relative error norm of 0.001
is adopted for all simulations.
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As the first example, we consider a plane wave scattering from
a bi-isotropic sphere with electrical size of k0a = 1.5 where k0 is
the free space wavenumber and a is the radius of the sphere. The
relative permittivity and permeability are 4/(1− κ2

r) and 1/(1− κ2
r),

respectively. Here we choose κr = κ
/√

εrµr and χ = 0. A θ-polarized
plane wave is incident from the direction of θ = 180◦ on the sphere
and the bistatic RCS is calculated as shown in Fig. 2(a). The result is
in very good agreement with results in [5]. Based on these results, we
further calculate plane wave scattering from the 3 by 3 sphere array.
The distance between the centers of two adjacent spheres is 2.5a. The
co-polarized bistatic radar cross section σθθ and the cross-polarized
bistatic radar cross section σθφ are calculated, as shown in Figs. 2(b)
and (c). It can be seen from Figs. 2(b) and (c) that co-polarized
bistatic RCS decreases and cross-polarized bistatic RCS increases due
to inclusion of κr.

-40

-30

-20

-10

0

10

20

30
κ

r
=0.5

κ
r
=0.3

κ
r
=0.1

κ
r
=0.0

-20 20 40 60 80 100 120140 160180 200
-100

-80

-60

-40

-20

0

20

40

φ (degree)

(c)

-35

-30

-25

-20

-15

-10

-5

0

5

10

σ
θ

θ
/ λ

2
(d

B
sm

)

σ
θ

θ
/ λ

2
(d

B
sm

)

σ
θ

φ
/ λ

2
(d

B
sm

)

0

0 20 40 60 80 100 120 140 160 180
θ (degree)

(a)

 MLGFIM for κ
r
=0.5

 MLGFIM for κ
r
=0.3

 MLGFIM for κ
r
=0.1

 MLGFIM for κ
r
=0.0

 Reference for κ
r
=0.0

 Reference for κr=0.1

 Reference for κ
r
=0.3

 Reference for κ
r
=0.5

-20 20 40 60 80 100 120 140 160180 200

(b) 

0
θ (degree)

κ
r
=0.5

κ
r
=0.3

κ
r
=0.1

κ
r
=0.0

Figure 2. Plane wave scattering from a sphere and a 3-by-3 array of
spheres: (a) bistatic RCS with θθ polarization for a single sphere; (b)
bistatic RCS with θθ polarization for an array of spheres; (c) bistatic
RCS with θφ polarization for an an array of spheres.
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In the second case, we consider a plane wave scattering from
a three-layer bi-isotropic coated conducting sphere. The radius of
conducting sphere is 0.3m and the radii of three-layer bi-isotropic
coated media are 0.45 m, 0.6 m and 0.75 m, respectively. The
parameters for three-layer bi-isotropy are εr = 4, µr = 1, κr = 0,
χr = 0; εr = 4.4, µr = 1.1, κr = 0.3, χr = 0.3; εr = 5.3, µr = 1.3,
κr = 0.5, χr = 0.5, respectively. The co-polarized and cross-polarized
bistatic RCS for normally incident plane wave with frequency 300 MHz
are calculated. For comparison, two other cases for bi-isotropy with
χr = 0 and κr = 0 are also calculated, as shown in Figs. 3(a) and (b).

In the following, MLGFIM is applied to plane wave scattering
from a 3-by-3 patch array with the finite substrate and ground
plane. The geometry of the array can be found in [34], in which
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Figure 3. Plane wave scattering from three-layer bi-isotropic coated
conducting sphere: (a) bistatic RCS with θθ polarization; (b) bistatic
RCS with θφ polarization.
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Figure 4. Plane wave scattering from a 3-by-3 array of patch:
(a) bistatic RCS with θθ polarization; (b) bistatic RCS with θφ
polarization.
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the dimensions of the square patch are 36.6 mm and 26mm, distance
between two adjacent patches is 55.517mm in both x and y directions,
the dimensions of finite substrate in x and y directions are 247.6mm
and 237 mm. The thickness for substrate is 1.58mm. The co-polarized
and cross-polarized bistatic RCS for dielectric substrate with χr =
0, κr 6= 0 and χr 6= 0, κr 6= 0 are calculated, as shown in Figs. 4(a) and
(b). According to Figs. 4(a) and (b), we can know that the co-polarized
bistatic RCS approximately remains unchanged and the cross-polarized
bistatic RCS obviously increases with the growth of χr and κr.

Next, we consider the plane wave scattering from a structure
consisting of conducting and dielectric objects, as shown in Fig. 5(a).
The conducting bar with length of 3.5 m and width of 0.5 m and height
of 0.5 m is beneath four dielectric bars. Each of dielectric bars has the
same width as conducting bar and its length and height are 4 m and
2m, respectively. The relative permittivity and permeability in this
example are similar to those in the first example. MLGFIM is used to
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Figure 5. Plane wave scattering from a structure consisting of
conducting and dielectric objects: (a) geometry, (b) bistatic RCS with
θθ polarization; (c) bistatic RCS with θφ polarization.
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Figure 6. Computational performance of MLGFIM for bi-isotropy:
(a) memory complexity, (b) computational complexity.

calculate the co-polarized and cross-polarized bistatic RCS, as shown
in Figs. 5(b) and (c). According to Figs. 5(b) and (c), it can be seen
that the co-polarized RCS for χr 6= 0 or/and κr 6= 0 is larger than the
co-polarized RCS for χr = 0, κr = 0 in the direction of θ = 180◦. But
the co-polarized RCS for κr = 0.5 is smaller than the co-polarized RCS
for κr = 0 in the direction of θ = 0◦. The cross-polarized bistatic RCS
for χr 6= 0 or/and κr 6= 0 is larger than that for χr = 0, κr = 0 in all
directions.

Finally, we illustrate the computational performance of MLGFIM
for solution to electromagnetic scattering from bi-isotropic media. Here
the case of 3-by-3 sphere array with κr = 0.5 in first example is
considered. The memory complexity and computational complexity
are shown in Figs. 6(a) and (b), respectively. According to Fig. 6(a),
we can know that the memory requirement for given number of levels
obeys O(N) and the coefficient of the line obeying O(N) reduces
with the increasing number of levels. It can be seen from Fig. 6(b)
that computational complexity is O(N log N) and the CPU time slow
increases for given number of levels.

4. CONCLUSION

In this paper, MLGFIM is proposed to solve electromagnetic scattering
from arbitrary objects comprised of both conducting and bi-isotropic
objects. The homogeneous bi-isotropic media are split into two
uncoupled isotropic media by using the field decomposition method.
The resultant problem is formulated using PMCHWT approach for
homogeneous bi-isotropic objects and EFIE formulation is used for
conducting bodies. MLGFIM is employed to accelerate the solution of
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equivalent electromagnetic surface currents. The memory complexity
of the whole algorithm is O(N) and computational complexity is
O(N log N). Numerical examples were presented to illustrate the
accuracy and versatility of the proposed method in dealing with a
wide array of scattering problems.
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