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Abstract—In conventional statistical STAP algorithms, the existence
of interference target in training samples will lead to signal
cancellation, resulting in the output SCR falling and the moving
target detection performance degrading. The nonhomogeneity detector
is an effective way to restrain the outlier, which can improve the
covariance matrix estimation by detecting the samples containing
outliers and rejecting them, and improve the STAP performance.
A new interference target detection algorithm is proposed in this
paper, the outlier detection is realized by using the samples’ data
phase information. Compared with traditional method, the improved
algorithm is more sensitive to interfering target with different azimuth
and intensity. Simulation results demonstrate the validity of this
improved method.

1. INTRODUCTION

Airborne radar systems are required to detect slow moving targets in
the presence of both clutter and jamming. The ground clutter observed
by an airborne radar platform is extended in both range and angle;
it also spreads over a region in Doppler due to platform motion. A
potential target may be obscured not only by mainlobe clutter that
originates from the same angle as the target but also by sidelobe
clutter that comes from a different angle but has the same Doppler
frequency. The effect of sidelobe clutter may be eliminated with
low-enough antenna sidelobes on transmitting and receiving. Many
techniques have been developed for transmitting and receiving beams
to accumulate target energy and reject clutter plus interference [1–
8]. Although pattern synthesis can choose the antenna parameters to
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obtain desired radiation characteristics, such as the specific position
of the nulls, the desired sidelobe level and beamwidth of antenna
pattern, most of these methods optimize only one parameter and
have high computational complexity. Moreover, achieving very low-
sidelobes in practice can be quite difficult, especially in the complex
electromagnetic environment, and very expensive.

Space-Time Adaptive Processing (STAP) refers to the simultane-
ous processing of the spatial samples from an array antenna, and the
temporal samples provided by the echoes form multiple pulses of a
radar coherent processing interval (CPI). It is a candidate technology
to improve the detecting and tracking of slow moving targets in diffi-
cult clutter and jamming environments [9–22]. STAP performance is
determined in part by how closely its interference covariance matrix,
typically estimated from adjacent range cells located symmetrically
around the test cell, matches the interference statistics of the test range
bin. The existence of interference target in training data will lead to
mismatch of the interference covariance matrix estimation, resulting in
the degrading of moving target detection performance. To minimize
the loss in performance due to the outlier, a nonhomogeneity detec-
tor (NHD) was proposed to identify secondary data cells that contain
outlier [11]; these data samples are then excised from the covariance
matrix estimation. The generalized inner product (GIP) algorithm was
used to process the measured data obtained from the Multi-Channel
Airborne Radar Measurements (MCARAM) [12] program; the results
show that 7 dB improvements in STAP processing when the outliers
were discarded [13]. Therefore, the NHD is an effective method used to
improve STAP performance under nonhomogenous environment. The
main NHD include GIP [11], sample matrix inversion (SMI) [11], cor-
relation dimension (CD) [14] and reiterative censoring adaptive power
reside (RCAPR) [15–18], etc.

The existence of strong interference target in training samples
will lead to the NHD algorithms such as GIP, SMI, and APR
performance is severely degraded, resulting in the weaker ones cannot
be detected and rejected [19]. The RCAPR algorithm has been
shown to provide excellent detection performance in nonhomogeneous
interference environments, but it has high computational complexity.
Considering that the GIP detection result is not affected by the
detect vector, it does not need to re-choice the training samples
when the detection vector is changed, which significantly reduces
the high computational complexity. Moreover, GIP can recognize
the sidelobe interference target. In order to fully inherit the GIP’s
merit and overcome its shortcoming simultaneously, a new interfering
target detection algorithm is developed, which applies samples data
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phase information to screen training data for outliers. The improved
algorithm performs outstanding operation, whether interference target
exists or not. It is more sensitive to interfering target with different
azimuth and intensity, more robust than GIP in selecting training data
corrupted by multiple strong outliers.

2. STAP FUNDAMENTALS

2.1. Array Geometry

Figure 1 shows the geometry of an airborne array radar. “×” on a
horizontal axis denotes the antenna element. The radar platform moves
in the x-direction. We further define the x-direction as zero azimuth.
θ denotes the azimuth, ϕl the depression angle, Rl the slant range, and
v the platform velocity.
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Figure 1. Geometry of airborne antenna arrays.
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Figure 2. STAP architecture.
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2.2. Data Models

Consider an N -element uniform linear array with interelement spacing
d. The radar transmits an K-pulse waveform at pulse repetition
interval T . The received data for each range gate may be arranged
into a NK × 1 space-time snapshot Xl formed by stacking the spatial
snapshots from each pulse. A block diagram of the STAP is depicted
in Figure 2. The data is processed at one range gate of interest, as
depicted in Figure 3, which corresponds to one slice of the CPI data
cube. Under the signal-presence hypothesis H1

Xl = αS(fs, fd) + Xc + Xj + Xn (1)
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Figure 3. (a) the classical STAP data cube processing. (b) the STAP
data cube processing with NHD.
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here α is the target complex magnitude; fs = d
λ cos θ cosϕl, fd =

2v
λ cos θ cosϕl are the normalized spatial frequency and Doppler
frequency respectively; Xc, Xj and Xn represent the ground clutter,
jammers, and white noise. The NK × 1 space-time steering vector S
is given as follows

S(fs, fd) = St(fd)⊗ Ss(fs) (2)

where, “⊗” represents the Kronecker product; Ss(fs) and St(fd) are
the spatial and time steering vectors

St(fd) =
[

1 e
j

2πfd
fr · · · e

j(K−1)
2πfd

fr

]T
(3)

Ss(fs) =
[

1 ej2πfs · · · ej(N−1)2πfs
]T (4)

here, fr denotes the pulse repetition frequency, fr = 1/T .
The output of the space-time adaptive processor is

yl = WH
l Xl (5)

where Wl = [ω11 ω21 . . . ωN1 . . . ω1K ω2K . . . ωNK ]T is the adaptive
weight vector and determined as follows

Wl = R̂−1
l S (6)

here R̂l is the covariance matrix estimated by secondary data chosen
from range cells close to the cell under test. A fundamental issue,
evident from (6), concerns accurately estimating the true, unknown
covariance matrix. We typically estimate the covariance matrix via
the minimum mean squared error (MMSE) as,

R̂l =
1
L

k=l+L/2∑

k=l−L/2

XkX
H
k , k 6= l (7)

3. THE INTERFERENCE TARGET DETECTION
ALGORITHM

The underlying theory forming the basis of STAP for radar is based on
the assumption that the noise and clutter field are stationary as well
as independently and identically distributed (i.i.d) from range sample
to range sample. The interference target existing in the secondary
data violates the i.i.d assumption required to accurately compute the
unknown covariance matrix via (7), resulting in degraded performance
of the adaptive processor compared to theoretical predictions. In
order to address this problem, a nonhomogeneous detector has been
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devised for detecting which data are nonhomogeneous with respect
to the majority and removing them from the STAP training data in
Figure 3(b).

The GIP [11] test statistics is

ηGIP

(
Xl, R̂L

)
= XH

l R̂−1
L Xl (8)

where Xl is the training sample, and R̂L is a covariance matrix via the
minimum mean squared error (MMSE) estimated by L secondary data.
Define the whitening filter output as the NK×1 vector X̃l = R̂

−1/2
L Xl.

Next, observe that (8) can be written as the inner product,

ηGIP

(
Xl, R̂L

)
= X̃H

l X̃l (9)

which equals the sum of the squares of X̃l. The covariance matrix of
X̃l is given as

R̃l = E(X̃lX̃
H
l ) = E

[
R̂
−1/2
L XlX

H
l R̂

−1/2
L

]
= R̂

−1/2
L RlR̂

−1/2
L (10)

where Rl = E
[
XlX

H
l

]
is the true covariance matrix of Xl. The

expected value of ηGIP is

E(ηGIP) = trace
(
R̃l

)
= trace

(
R̂
−1/2
L RlR̂

−1/2
L

)
(11)

we regard signal vectors with similar values of ηGIP as homogeneous
snapshots. A signal vector with ηGIP significantly varying from
the mean is nonhomogeneous snapshot. While the GIP works well
for clutter heterogeneity, it suffers from problems in dense target
environments. For GIP test directly assesses both amplitude and phase
information critical to defining covariance structure, the existence of
strong target-like interferer in training samples will lead to signal
cancelation, resulting in that GIP cannot distinguish the weaker ones
from training samples. Aiming at resolving this problem, a new
interference detection algorithm named as MGIP is proposed in this
paper, which uses the samples’ data phase information to reject the
samples containing outlier. The algorithm is carried out as follows

ηGIP = XH
l R̂−1

pLXl (12)

where, R̂pL = 1
L

∑
XT

plXpl, Xpl = arg(Xl), arg() denotes the phase of
sample data; T denotes the transposition. It can prove that

E(ηMGIP) = trace
[
R̂
−1/2
pL RlR̂

−1/2
pL

]
(13)

the sample vectors with ηMGIP significantly varying from the mean is
nonhomogeneous. The MGIP algorithm has two merits as follows
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1) MGIP algorithm can detect the weak interference target with the
same Doppler frequency and azimuth as the strong one’s. In
GIP algorithm, the covariance matrix R̂L is estimated directly
by training data Xl. The existence of strong interference target
will nullify in this direction and lead to signal cancelation, so the
weaker one cannot be detected. While in MGIP algorithm, Xpl is
the phase information of training sample Xl and a real number, so
the covariance matrix R̂pL estimated by Xpl will not be affected
by the bearing and intensity of the interference target. Therefore,
the MGIP algorithm will not nullify in this bearing of interference
target, which makes it more sensitive to interfering target with
different bearing and intensity. Simulation results demonstrate
the validity of this improved method.

2) In the GIP algorithm, the computation of complex matrix
inversion R̂−1

L is time consuming, but the MGIP algorithm only
needs to compute the real matrix inversion R̂−1

pL , which reduces
the computational burden.

4. THE INTERFERENCE TARGET DETECTION
ALGORITHM PERFORMANCE ANALYSIS

There are two hypotheses before our analyzing the algorithm
performance. One is that R̂L is converged (according to [20], if L
is large enough, it can be thought true in engineering application);
the other is that the moving target is not correlated to the clutter
(referring to [11, 21], it can be thought so when considering the moving
target average effect on different range cells). Because the clutter
echoes are random variable, one range cell clutter echo is only once
realization of them; the NHD result based on them is a variable
too. So it is not comprehensive to judge an algorithm performance
only by the interference targets recognizing results for special range
cells. Moreover, the quantitative analysis using these methods is
difficult. Therefore, another method from the statistical point of view
is proposed to judge an algorithm performance. Referring to paper [22],
a sensitive factor of interference target is quoted as follows

αNHD =
E

[
ηNHD

(
Xl, R̂L

)
|σit0 > 0

]

E
[
ηNHD

(
Xl, R̂L

)
|σit0 = 0

] =
E
[
ηNHD

(
XlH +σit0Sit0, R̂L

)]

E
[
ηNHD

(
XlH , R̂L

)]

(14)
where, Sit0 is steering vector of interference target being detected in
detection cell, and σ2

it0 denotes its power. XlH is a homogenous clutter
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part of Xl. E(◦) denotes an average value under several range cells.
ηNHD(◦) |σit0 > 0 denotes the NHD output for snapshot Xl containing
outlier, while the NHD(◦) |σit0 = 0 denotes for snapshot Xl without
outlier. αNHD reflects the algorithm’s sensitivity to interference target.
The greater is the αNHD, the more evident is the difference between
Xl containing and not containing outlier, and the better is the NHD
performance.

Substituting the expression (11) into (14) we can get the
sensitivity coefficient of GIP

αGIP =
E

[
ηGIP

(
Xl, R̂L

)
|σit0 > 0

]

E
[
ηGIP

(
Xl, R̂L

)
|σit0 = 0

]

=
trace

[
R̂
−1/2
L

(
Rl + σ2

it0Sit0S
H
it0

)
R̂
−1/2
L

]

trace
[
R̂
−1/2
L RlR̂

−1/2
L

] (15)

Substituting the expression (13) into (14) we can get the sensitivity
coefficient of MGIP

αMGIP =
E

[
ηMGIP

(
Xl, R̂pL

)
|σit0 > 0

]

E
[
ηMGIP

(
Xl, R̂pL

)
|σit0 = 0

]

=
trace

[
R̂
−1/2
pL

(
Rl + σ2

it0Sit0S
H
it0

)
R̂
−1/2
pL

]

trace
[
R̂
−1/2
pL RlR̂

−1/2
pL

] (16)

5. SIMULATION RESULTS AND ANALYSIS

The performances of proposed algorithm detecting target under
non-homogeneous environment are verified through Monte Carlo
experiment. The following results are all obtained by averaging 200
times independent experiment values. The airborne radar is side
looking, and the main simulation parameters are listed in Table 1.

5.1. The Sensitive Coefficient Simulation under R̂L

Corrupted and Not Corrupted by Interference Target

The NHD aims at distinguishing the contaminated samples by
interference target from training samples. In the following simulations,
under R̂L corrupted by interference target, one interference target with
parameters SINR = 30dB, θ = 90◦, 2fd/fr = 0.25 was injected into
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training samples. From the Equations (15) and (16), it is clear that
the sensitive coefficient varied according to intensity, azimuth and
Doppler frequency of interference target being detected in detection
cell. Its simulation results according to these parameters are shown
in Figures 4–6. In these figures, the curve labeled “clean” is the
simulation result for R̂L being not corrupted by interference target,
and the curve labeled “dirty” is the simulation result for R̂L being
corrupted by strong one.

Figure 4 shows the variety of αGIP and αMGIP according to
detecting interference target intensity. Figure 4(a) shows that, under

Table 1. Parameters for simulation.

Parameter Value
λ (wavelength) 0.23m

V (aircraft velocity) 140m/s
H (aircraft altitude) 8 km

N (number of array channels) 10
K (number of pulses) 12

fr (pulse repetition frequency) 2435Hz
d (element spacing) 0.5λ

CNR (clutter-to-noise ratio) 50 dB
2fd0/fr (target normalized doppler) 0.25

θ (azimuth angle) 90◦
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R̂L corrupted by strong interference target environment, when the
detecting interference target power SINR < 30 dB, the GIP sensitive
coefficient αGIP ≈ 0 dB and the outlier cannot be detected. Figure 4(b)
shows that MGIP sensitive coefficient is not affected by interference
target in training samples.

Figure 5 shows the variety of αGIP and αMGIP according to
azimuth of interference target in detecting cell, its other parameters
are set at SINR0 = 15 dB, 2fd0/fr = 0.25. Figure 5(a) shows that GIP
nullifies not only in the direction of clutter but also in the direction of
interference target in training data. However, Figure 5(b) shows that
MGIP only nullifies in the direction of clutter and is not affected by
the interference target azimuth in training data.

(a) GIP (b) MGIP

Figure 5. The sensitive coefficient versus azimuth of interference
target in detecting cell.

(a) GIP (b) MGIP

Figure 6. The sensitive coefficient versus Doppler frequency of
interference Target in detecting cell
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Figure 6 shows the variety of αGIP and αMGIP according to
Doppler frequency of interference target in detecting cell. Its other
parameters are set at SINR0 = 15dB, θ0 = 90◦. Figure 6(a)
shows that GIP nullifies not only in the clutter Doppler frequency
but also in the Doppler frequency of interference target in training
data. However, Figure 6(b) shows that MGIP only nullifies in the
clutter Doppler frequency and is not affected by the interference target
Doppler frequency in training data.

Therefore, from Figures 4–6, we can see that the interference
targets existing in training samples will reduce the GIP sensitive
coefficient at these targets bearing and degrade its interference target
reorganization performance. MGIP algorithm is not affected by the
interference targets in training snapshots, so it is more robust to
recognize them.

5.2. The Performance of Interference Target Detection
Algorithm

To verify the performance of interference target detection algorithm,
nine outliers are injected into several range cells in a random fashion.
In these snapshots, six of them have the form of target-matching space-
time steering vector. The cells of existing interference target and the
parameters of them are listed in Table 2.

The GIP and MGIP detection results are shown in Figure 7.
In Figure 7(a), only three strong targets lying at cell 50, 75 and

150, and three sidelobe interference targets lying at cell 90, 125 and
175 were detected by GIP; the three weaker ones lying at cell 100,
170 and 200 cannot be detected. Moreover, the interference targets
intensity cannot be distinguished. From Figure 7(b) we can see that
MGIP detected nine targets clearly, and the intensity of them can be
distinguished clearly too.

Table 2. The parameter of interfering target.

Rang cell 50, 75, 150 100, 170, 200 90 125 175
Azimuth 90◦ 90◦ 90◦ 100◦ 120◦

2fd/fr 0.25 0.25 −0.1 0.25 −0.75
SCNR (dB) −10 −35 −25 −15 −15
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Figure 7. The output test statistic of interfering target detecting
algorithm (a) GIP (b) MGIP.

6. CONCLUSION

The presence of interference targets in the secondary data will bias
the covariance matrix estimate such that a true target in the primary
range cell is suppressed. Therefore, it is important that all relevant
interference targets are rejected. Owing to the phase information of
the secondary data contains the interference target phase information,
the presence of interference targets in the secondary data will lead to
their phase nonhomogenous. Moreover, the phase is not affected by
the amplitude. Based on these, a new interference targets detection
algorithm using the phase information to screen them is proposed.
The theoretic analysis and simulations results show that the MGIP
algorithm is more robust than the GIP with reduced computation load
in detecting the interference targets.
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