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Abstract—In this paper, the problem of designing linear antenna
arrays for specific radiation properties is dealt with. The design
problem is modeled as a single optimization problem. The objectives
of this work are to minimize the maximum side lobe level (SLL) and
perform null steering for isotropic linear antenna arrays by controlling
different parameters of the array elements (position, amplitude, and
phase). The optimization is performed using two techniques: Taguchi’s
optimization method and the self-adaptive differential evolution
(SADE) technique. The advantage of Taguchi’s optimization technique
is the ability of solving problems with a high degree of complexity
using a small number of experiments in the optimization process
Taguchi’s method is easy to implement and converges to the desired
goal quickly in comparison with gradient-based methods and particle
swarm optimization (PSO) Results obtained using Taguchi’s method
are in very good agreement with those obtained using the SADE
technique.

Corresponding author: S. K. Goudos (sgoudo@physics.auth.gr).



160 Dib, Goudos, and Muhsen

1. INTRODUCTION

The synthesis of antenna arrays plays a very important role in commu-
nication systems. Several papers exist in the literature that address
this design problem [1–5]. The increased use of such arrays creates
more challenges upon the antenna engineers. More requirements, such
as pattern shaping, low profile, wideband/narrowband, and interfer-
ence cancellation; and more limitations such as power dissipation and
antenna size, lead to the urgent need for simple, time saving and effi-
cient optimization techniques. Several new synthesis and optimization
techniques have emerged in the last two decades that mimic biological
evolution, brain function, or the way biological entities communicate
in nature. Although some of these new algorithms are still in their
infancy, they have been used successfully in single and multiobjec-
tive synthesis and optimization problems with many constraints and
nonlinear processes. Most of these new techniques make use of previ-
ous history, natural tendencies, training, memory updates and biolog-
ically inspired processes. Optimization algorithms can be categorized
as evolutionary algorithms, machine learning/neural networks, tradi-
tional methods and hybrid methods. Each of these four categories is
expanded according to the nature of specific techniques used: local,
global, heuristic, deterministic, stochastic, evolutionary, hybrid, mul-
tiobjective . . . etc.

Among these, the evolutionary algorithms (EAs) (e.g., genetic
algorithms (GAs) [6], simulated annealing (SA) [7], particle-
swarm optimizers (PSO) [8, 9], differential evolution (DE) [10], ant
colony optimization (ACO) [11], and central force optimization
(CFO) [12, 13]) have become widely used in electromagnetics due
to their simplicity, versatility, and robustness. However, these
methods present certain drawbacks usually related to the intensive
computational effort they demand to achieve the global optimum and
the possibility of premature convergence to a local optimum.

DE is a population based stochastic method [14]. Several DE
variants or strategies exist. The classical DE algorithm has been
applied to design problems in electromagentics [15, 16]. One of the DE
advantages is the fact that very few parameters have to be adjusted
in order to produce results. Short while ago, a new DE version that
self-adapts these control parameters has been applied to numerical
benchmark problems in [17]. This self-adaptive DE algorithm has been
used for microwave absorber design in [18].

Recently, another global optimization technique, Taguchi’s
optimization method [19], has been introduced to the electromagnetics
and antennas communities [20–22]. It was successfully used to optimize
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linear antenna arrays, ultra-wideband antenna, planar microwave filter
design, and coplanar waveguide (CPW) slot antenna. In this paper,
Taguchi’s optimization method is further demonstrated by synthesizing
linear antenna arrays. Taguchi’s method is used to adjust the elements
positions, amplitudes, and phases to achieve maximum side lobe level
reduction and null steering. For comparison purposes, self-adaptive
differential evolution (SADE) [17, 18] is applied to the same problems
and its results are compared to those obtained using Taguchi’s method.
To the best of our knowledge, this is the first time that these methods
are compared for linear array synthesis.

This paper is organized as follows. Taguchi’s method is briefly
described in Section 2, while the SADE technique is presented in
Section 3. The formulation details of the array factor for linear arrays
are given in Section 4. Section 5 has the numerical results while the
conclusions are discussed in Section 6.

2. TAGUCHI’S OPTIMIZATION METHOD

Taguchi’s optimization method will be briefly described here. The
interested reader may consult [20–22] for more details. The steps taken
in Taguchi’s optimization can be summarized as follows [20]:

2.1. Problem Initialization

This step includes formulating a suitable fitness (or objective) function
defining the solution space, and selecting an appropriate orthogonal
array (OA). The fitness function and the solution space are chosen
according to the optimization goal. The selection of the orthogonal
array depends on many parameters such as the number of experiments
(N), number of variables to be optimized (k), number of levels that
the variables can select from (s), and the strength of the orthogonal
array (t). The notation OA (N , k, s, t) is usually used to represent an
orthogonal array. Here, we choose s = 3 and t = 2 which are found to
be sufficient for most problems [20–22].

2.2. Input Parameters Design Using Orthogonal Array

In this step, the input parameters are selected to conduct the
experiments (i.e., the evaluation of the fitness function). For an
orthogonal array with s = 3, the value of level 2 for each parameter is
chosen at the center of the optimization range corresponding to that
parameter. Then, the values of the other levels (1 and 3) are evaluated
by subtracting and adding a specific “level difference” (LD) to the
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value of level 2. The equation which determines the level difference in
the first iteration is taken as [20]:

LD1 =
max−min

s + 1
(1)

where “max” and “min” are the upper and lower bounds of the
optimization range, respectively.

2.3. Conduct Experiments, Build a Response Table and
Identify Optimal Level Values

After determining the value of each parameter according the selected
level, they are be used to evaluate the fitness function (i.e., conduct the
experiments). Then, the value of the fitness function is transformed to
the signal-to-noise ratio using the following equation [20]:

η = −20 log(Fitness) (2)

where η is the signal-to-noise (S/N) ratio.
After conducting all the experiments and finding the fitness values

and the corresponding S/N ratio, a response table is built by averaging
the S/N for each parameter n and level m using [20]:

−
η(m,n) =

s

N

∑

i,OA(i,n)=m

ηi (3)

Next, the largest S/N ratio for each parameter in the response table
is used to determine the optimal level for the next iteration. After
determining the optimal levels, a confirmation experiment is performed
using the optimal level for each parameter. The value of the fitness
function resulting from such an experiment is considered as the fitness
value for the current iteration.

2.4. Check the Termination Criteria and Reduce the
Optimization Range

If the termination criterion is not satisfied, the optimal level for the
current iteration will be the center of the next iteration:

xn|2i+1 = xn|opt
i (4)

Also, the optimization range for the next iteration is reduced by
multiplying the current level difference by the reducing rate (rr) which
can be set between 0.5 and 1 depending on the problem [20]. So, for
the (i + 1)th iteration:

LDi+1 = (rr) (LDi) = (rri) (LD1) = RR(i) LD1 (5)
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where RR(i) = rri is called the reduced function [20].
Finally, the above algorithm is repeated until a specific

termination criterion is achieved or a specific number of iterations is
reached.

3. DIFFERENTIAL EVOLUTION OPTIMIZATION
METHOD

A population in DE consists of NP vectors x̄iG, i = 1, 2, . . . , NP , where
G is the generation number. The population is initialized randomly
from a uniform distribution. Each D-dimensional vector represents a
possible solution. The initial population evolves in each generation
with the use of three operators: mutation, crossover and selection.
Depending on the form of these operators several DE variants or
strategies exist in the literature [14]. The most popular is the one
known as DE/rand/1/bin strategy. In this strategy a mutant vector v̄
for every target vector x̄iG is computed by:

v̄i,G+1 = x̄r1,G + F (x̄r2,G − x̄r3,G), r1 6= r2 6= r3 (6)

where r1, r2, r3 are randomly chosen indices from the population,
and F is a mutation control parameter. After mutation the
crossover operator is applied to generate a trial vector ūi,G+1 =
(u1i,G+1, u2i,G+1, . . . , uDi,G+1) whose coordinates are given by:

uji,G+1 =
{

vji,G+1, if rand(j) ≤ CR or j = rn(i)
xji,G, if rand(j) > CR and j 6= rn(i) (7)

where j = 1, 2, . . . , D, rand(j) is a number from a uniform random
distribution from the space [0, 1], rn(i) a randomly chosen index from
(1, 2, . . . , D) and CR the crossover constant from the space [0, 1]. DE
uses a greedy selection operator. According to this selection scheme
for minimization problems:

x̄i,G+1 =
{

ūi,G+1, if f(ūi,G+1) < f(x̄i,G)
x̄i,G, otherwise (8)

where f(ūi,G+1), f(x̄i,G) are the fitness values of the trial and the
old vector respectively. Therefore the newly found trial vector ūi,G+1

replaces the old vector x̄i,G only when it produces a lower objective
function value than the old one. Otherwise the old vector remains in
the next generation. The stopping criterion for the DE is usually the
generation number or the number of objective function evaluations.
Compared with PSO, DE has been found to produce better results on
numerical benchmark problems [23].
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3.1. Self-adaptive DE (SADE)

Storn has suggested [14] that the differential evolution control
parameters are adjusted in the following way: F ∈ [0.5, 1], CR ∈
[0.8, 1] and NP = 10D. In [17], a novel approach is proposed for
the self-adapting of DE control parameters. This strategy is based on
DE/rand/1/bin scheme. Each vector is extended with its own F and
CR values. Therefore the control parameters are self-adjusted in every
generation for each individual according to the following scheme:

Fi,G+1 =
{

Fl + rnd1 × Fu if rnd2 < 0.1
Fi,G, otherwise

CRi,G+1 =
{

rnd3 if rnd4 < 0.1
CRi,G, otherwise

(9)

where rnd1, rnd2, rnd3, rnd4 are uniform random numbers ∈ [0, 1] and
Fl, Fu are the lower and the upper limits of F set to 0.1 and 0.9,
respectively [17]. So, by using the self-adaptive algorithm the user
does not have to adjust the F and CR parameters while the time
complexity does not increase. More details about the self-adaptive DE
algorithm can be found in [17, 18].

4. LINEAR ANTENNA ARRAY FACTOR

For a 2N -element symmetrical array placed on the x-axis shown in
Figure 1, the array factor (AF) can be written as:

AF (ϑ) =
2N∑

n=1

In exp(j[kxn sin(ϑ) + φn]) (10)

where k is the wave number, and In, ϕn, and xn are, respectively, the
excitation amplitude, phase, and location of the array elements.

Figure 1. Geometry of 2N -element symmetric linear array placed
along the x-axis.
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Assuming that the 2N isotropic radiators are placed symmetri-
cally along the x-axis, Equation (10) can be simplified as:

AF (ϑ) = 2
N∑

n=1

In cos[kxn sin(ϑ) + φn] (11)

From Equations (10) and (11), it is obvious that three parameters are
controlling the AF: the amplitudes, the phases, and the positions of
the elements. In this paper, Taguchi’s optimization method and SADE
are used to design linear antennas by optimizing these parameters
individually. In all examples that follow, the SADE algorithm is
executed 10 times. The best result is compared with Taguchi’s
optimization method. The population size was set equal to 10D.

5. NUMERICAL RESULTS

The fitness function for maximum side lobe level (SLL) minimization
is expressed as:

Minimize fitt = max{20 log |AF (ϑ)|}
subject to ϑ = [14◦, 90◦].

(12)

where AF (θ) is given in Equation (11).

5.1. Optimize Element Amplitudes (In)

In order to optimize the amplitudes, the remaining control parameters
xn and ϕn are fixed, where ϕn is taken as zero and the spacing between
adjacent elements is taken as (λ/2), n = 1, . . . , N . Assuming that the
first element is placed at x1 = (λ/4), the array factor can be simplified
as:

AF (ϑ) = 2
N∑

n=1

In cos[(n− 0.5)π sin(ϑ)] (13)

The excitation amplitudes of the 2N -element array will be optimized
in the range [0, 1]. Three linear array design cases of 10, 16 and 24
elements are optimized using Taguchi’s and SADE methods.

It must be pointed out that the synthesis of excitations can be
formulated as a Convex Programming problem or even as Linear
Programming problem and solved more efficiently [24–27]. But, this
case also represents an appropriate example to compare both Taguchi’s
and SADE methods. In other papers as well, excitation synthesis using
global optimizers like PSO [28] has been used for comparison purposes
between different algorithms.
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5.1.1. 10 Elements AF Optimization

Using Equation (13), and applying both Taguchi’s and SADE
optimization methods on a 10-element linear array (LA), the obtained
radiation patterns are shown in Figure 2, while Figure 3 shows the
convergence of the fitness function versus the iteration number. Using
100 iterations for both algorithms, the obtained optimum values of the
amplitudes are given in Table 1.

A Laptop with 2GHz Intel Celeron CPU and 512 RAM was used
for simulating the Taguchi’s code, and the simulation time was only
17 seconds, while the simulation time for the SADE was about 15
seconds. The maximum SLL obtained using Taguchi’s technique is
−24.88 dB, while the maximum SLL of the uniform one is −12.97 dB.
On the other hand, the maximum SLL found by SADE is −24.41 dB.
The obtained SLL using Taguchi’s method is less than the uniform

Table 1. Optimum amplitude values found by Taguchi’s method and
SADE for the 10-element array.

n Taguchi’s method SADE
1 1.0000 1.0000
2 0.8999 0.9028
3 0.7228 0.7277
4 0.5077 0.5153
5 0.3994 0.4158

Figure 2. Radiation pattern of
10 elements λ/2 spaced array op-
timized with respect to ampli-
tudes, compared with uniform ar-
ray.

Figure 3. Convergence curves
of the fitness value of the 10
elements λ/2 spaced LA.
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one by 11.9 dB and is also better than the PSO results in [29] by about
0.3 dB. The beamwidth of the optimized array is slightly larger than
the conventional one, but the uniform array is optimum in regard to
the beamwidth.

5.1.2. 16 Elements AF Optimization

In this example, Taguchi’s optimization and SADE methods will be
applied on a 16-element linear array. Table 2 holds the optimum
values of the amplitudes obtained using Taguchi’s method (after 100
iterations) and SADE (after 500 iterations).

Table 2. Optimum amplitude values found by Taguchi’s method and
SADE for the 16-element array.

n Taguchi’s method SADE
1 1.0000 1.0000
2 0.9500 0.9515
3 0.8575 0.8586
4 0.7317 0.7333
5 0.5861 0.5889
6 0.4381 0.4404
7 0.2988 0.3020
8 0.2552 0.2616

Figure 4. Radiation pattern of
16 elements λ/2 spaced array op-
timized with respect to ampli-
tudes, compared with uniform ar-
ray.

Figure 5. Convergence curves
of the fitness value of the 16
elements λ/2 spaced LA.
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Figure 4 shows the obtained radiation patterns compared with
uniform array. The maximum SLL obtained using Taguchi’s method
is −31.31 dB, while the maximum SLL of the uniform one is −13.15 dB.
On the other hand, the maximum SLL obtained using SADE is
−31.06 dB. The maximum SLL obtained using Taguchi’s method is
less than the uniform one by about 18.1 dB and is also better than the
PSO results in [29] by about 0.6 dB. Figure 5 shows the convergence
of the fitness function versus the iteration number. Using Taguchi’s
technique, the goal of the optimization is obtained after 80 iterations
only, while it takes around 500 iterations for the SADE to converge.

5.1.3. 24 Elements AF Optimization

The radiation pattern of an optimized 24-element LA is shown in
Figure 6 and the convergence of the fitness function is shown in
Figure 7. The goal of the optimization is obtained within only
50 iterations for Taguchi’s method while it requires 500 iterations
for SADE. The maximum SLL obtained using Taguchi’s method is
−35.25 dB (SADE −35.21 dB), while the maximum SLL of the uniform
one is −13.95 dB. The obtained SLL is less than the uniform one by
about 21.3 dB and is also better than the PSO results in [29] by about
0.45 dB. The optimum amplitude values found by both methods are
shown in Table 3.

Table 3. Optimum amplitude values found by Taguchi’s method and
SADE for the 24-element array.

n Taguchi’s method SADE
1 1.0000 1.0000
2 0.9731 0.9747
3 0.9283 0.9272
4 0.8585 0.8584
5 0.7745 0.7735
6 0.6758 0.6775
7 0.5772 0.5743
8 0.4686 0.4712
9 0.3719 0.3701
10 0.2764 0.2781
11 0.1995 0.1972
12 0.2026 0.2053
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Figure 6. Radiation pattern of
24 elements λ/2 spaced array op-
timized with respect to ampli-
tudes, compared with uniform ar-
ray.

Figure 7. Convergence curves
of the fitness value of the 24
elements λ/2 spaced LA.

5.2. Optimize Element Positions (xn)

In this part, the amplitudes and phases are set to In = 1 and
ϕn = 0, for n = 1, . . . , N . The positions xn’s are adjusted by
Taguchi’s optimization method and the SADE technique to minimize
the maximum side lobe level. As an example, a 10-element array is
considered here. In order not to exceed the uniform array length, the
last elements positions are set to x±N = ±2.25λ. Thus, this problem
is solved in four dimensional solution space. The minimum distance
between two neighboring elements is set to 0.25λ, and the min(xi) is
set to 0.125λ. The simplified array factor is as follows:

AF (ϑ) = 2

[
N−1∑

n=1

cos[kxn sin(ϑ)] + cos[4.5π sin(ϑ)]

]
(14)

The radiation pattern of the 10 elements optimized LA is shown
in Figure 8. The maximum SLL obtained using both techniques is
−19.7 dB, while the maximum SLL of the uniform one is −12.96 dB.
The obtained SLL is less than the uniform one by about 6.7 dB which
exactly agrees with the PSO results presented in [29]. The convergence
of the fitness function versus the number of iteration is shown in
Figure 9. The goal of the optimization is achieved after only 100
iterations for both algorithms. The optimum values of the positions
obtained using Taguchi’s method and SADE are given in Table 4.

Several applications in wireless communications require the
minimization of the close-in SLL (i.e., the first side lobe nearest to the
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Table 4. Optimum position values (wavelengths) found by Taguchi’s
method and SADE for the 10-element uniform amplitude array (SLL
suppression case).

n Taguchi’s method SADE
1 0.2142 0.2145
2 0.5989 0.5995
3 1.0597 1.0605
4 1.5861 1.5865
5 2.2500 2.2500

Figure 8. Radiation pattern of
10 elements LA optimized with
respect to positions compared
with uniform array.

Figure 9. The convergence
curves of the fitness value of the
10 elements LA optimized with
respect to positions.

main beam). Therefore, the fitness function is modified as follows [29]:

Minimize fitt=α1max{20log|AF (ϑAS)|}+α2max{20log|AF (ϑNS)|}
Subject to ϑAS ∈ [14◦, 90◦] and ϑNS ∈ [14◦, 21◦] (15)

In the above equation, the region of ΘAS is weighted by α1, and
the close-in region of ΘNS is weighted by α2. Here we take α1 = 1
and α2 = 2. Table 5 has the optimum position values for this case,
while the obtained radiation patterns are shown in Figure 10. The
maximum SLL for the uniform array is −12.96 dB, while the maximum
SLL for the Taguchi’s optimized array and the SADE optimized array
are −18.08 dB and −18.20 dB, respectively. The Taguchi’s optimized
array has a close-in SLL level of −30.44 dB, while the SADE gives
−30.22 dB. The convergence of the fitness function versus the number
of iterations is shown in Figure 11. Both algorithms converge to the
optimum solution after 100 iterations.
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Table 5. Optimum position values (wavelengths) found by Taguchi’s
method and SADE for the 10-element uniform amplitude array (close-
in SLL suppression case).

n Taguchi’s method SADE
1 0.1642 0.1745
2 0.5509 0.5445
3 0.9362 0.9395
4 1.5199 1.5165
5 2.2500 2.2500

Figure 10. Radiation pattern
of the 10 elements LA optimized
with respect to positions (close-in
SLL suppression case).

Figure 11. The convergence
curves of the fitness value of the
10 elements position-optimized
LA (close-in SLL suppression
case).

5.3. Optimize Element Phases (ϕn)

In this section, the optimization problem is treated by assuming
that all elements have the same exciting amplitudes and only phase
control is allowable. The linear array has 2N equally spaced elements
with spacing of 0.5λ. The array elements phases are assumed to be
symmetric as:

ϕi = ϕ−i, i = 1, 2, 3, . . . , N (16)

where ϕi is the phase of the i-th element. For a symmetric array, the
array factor is given as:

AF (θ) = 2
N∑

i=1

ejϕi cos [(i− 0.5)π sin θ] (17)
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Equation (17) could be written in decibels as:

AF dB(θ) = 20 · log
∣∣∣∣
AF (θ)
AF (θo)

∣∣∣∣ (18)

where θ0 is the direction of the main beam which is taken as θo = 0◦.
The goal of the optimization is to adjust the phases of the array
elements to reduce the maximum side lobe level and to impose nulls
at specific angles. The fitness function is given as [30]:

fit = k1 · fSL(θ) + k2 · fNS (θ) (19)

where k1 and k2 are the weights of the two goals. fSL(θ) and fNS (θ)
are given by:

fSL(θ) = max{AF dB(θ)} (20)

fNS (θ) =
∑

k

AF dB(θk
null) (21)

where SL is the feasible region of side lobes excluding the main beam,
and θk

null denotes the direction of the k-th null. Here, for comparison
purposes, we consider several examples which are similar to those
presented in [30].

Figure 12 shows the optimum array patterns for the phase-
optimized 20 elements LA, compared with uniform array. The
optimum phase values (in degrees) obtained using Taguchi’s method
and SADE are presented in Table 6. The maximum SLL for the
uniform array is −13.19 dB while the maximum SLL for the optimized
array (obtained using both algorithms) is −16.24 dB. This shows that
the maximum side lobe reduction is improved by 3 dB which is slightly
better than that in [30] by about 0.1 dB.

Figure 12. Optimum array pattern for the phase-optimized 20
elements LA, compared with uniform array.
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Table 6. Optimum phase values (degrees) found by Taguchi’s method
and SADE for the 20-element uniform amplitude array.

n Taguchi’s method SADE
1 34.296 −8.216
2 28.558 −1.345
3 25.851 1.475
4 27.328 0.023
5 20.520 5.39
6 25.816 0.71
7 −18.624 46.728
8 85.245 −58.136
9 44.900 −18.198
10 28.062 −1.904

5.3.1. Unidirectional Null Steering

Reaching the optimum side lobe reduction under the constraint of null
steering will be the goal of the next example. The desired null level is
less than −60 dB and the desired null direction is at 9◦. After applying
both Taguchi’s optimization method and the SADE technique on a
32 elements linear array, the obtained radiation patterns are shown
in Figure 13. The optimum values of the phases (in degrees) found
by both methods are shown in Table 7. The Taguchi’s null value is
−78.33 dB (SADE −95.41 dB). The maximum SLL for the Taguchi’s
optimized array with null steering is −14.6792 dB (SADE −16.73 dB).
For the same problem, the maximum SLL obtained in [30] (using
the electromagnetics-like optimization technique) is −13.03 dB. It is
worth mentioning that the maximum SLL for the uniform array is
−13.24 dB, and the maximum SLL for the optimized array without
null steering is −17.55 dB. This means that after imposing the null
on the 32 elements array, the final Taguchi’s optimum maximum SLL
is reduced by 2.87 dB. For this problem, the SADE results are better
than Taguchi’s ones.

Figure 14 shows the results for the case of 40 elements array. The
optimum values of the phases (in degrees) found by both methods
are shown in Table 8. The Taguchi’s null value is −100.15 dB
(SADE −103.13 dB). The maximum SLL for the Taguchi’s optimized
array with null steering is −16.26 dB, while that for the SADE
is −15.23 dB. For the same problem, the maximum SLL obtained
in [30] is −16.17 dB. It is worth mentioning that the maximum SLL
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Table 7. Optimum phase values (degrees) found by Taguchi’s
method and SADE for the 32-element uniform amplitude array with
unidirectional null steering.

n Taguchi’s method SADE
1 97.008 0.468
2 89.395 −1.000
3 84.816 −1.000
4 89.771 −1.127
5 89.476 0.000
6 85.127 −4.170
7 93.879 −1.000
8 90.626 −1.000
9 90.311 0.000
10 73.426 0.000
11 179.009 28.288
12 73.499 0.678
13 −22.226 83.517
14 127.411 −95.316
15 83.729 −32.137
16 121.048 0.000

Figure 13. Optimum array
pattern of 32 element array by
the phase-only synthesis with
unidirectional null steering.

Figure 14. Optimum array
patterns of 40 element array
by the phase-only synthesis with
unidirectional null steering.
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Table 8. Optimum phase values (degrees) found by Taguchi’s
method and SADE for the 40-element uniform amplitude array with
unidirectional null steering.

n Taguchi’s method SADE
1 63.935 −2.152
2 52.596 −4.772
3 62.808 −1.000
4 55.933 6.145
5 73.719 −1.000
6 81.473 −1.000
7 86.684 −9.465
8 55.439 −1.000
9 19.538 −1.000
10 23.263 −5.280
11 59.938 0.000
12 77.890 0.000
13 62.579 −1.000
14 56.510 −1.000
15 66.814 12.082
16 112.846 20.134
17 −30.596 131.145
18 118.459 55.280
19 60.524 0.000
20 40.272 −27.990

for the uniform array is −13.24 dB, and the maximum SLL for the
optimized array without null steering is −17.81 dB. This means that
after imposing the null on the 40 elements array, the final Taguchi’s
optimum maximum SLL is reduced by 1.54 dB.

5.3.2. Bidirectional Null Steering

Bidirectional null steering is applied on a 20 elements LA. Two cases
are considered: null steering at 14 and 20.5 degrees and null steering
at 33.5 and 40 degrees. The obtained radiation patterns are shown in
Figure 15, while the optimum phase values are presented in Tables 9
and 10. The results are as follows:
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a. Null Steering at 14 and 20.5 Degrees:
The Taguchi’s first null value is −75.22 dB (SADE −77.25 dB),

and the Taguchi’s second null value is −77.25 dB (SADE −81.97 dB).
The maximum SLL for the Taguchi’s optimized array is −12.27 dB,
while SADE gives −12.60 dB. For the same problem, the maximum
SLL obtained in [30] is −11.37 dB.

Table 9. Optimum phase values (degrees) found by Taguchi’s
method and SADE for the 20-element uniform amplitude array with
bidirectional null steering at 14 and 20.5 degrees.

n Taguchi’s method SADE
1 46.607 −1.000
2 26.703 −1.000
3 33.178 0.000
4 38.478 −1.000
5 42.276 0.000
6 53.586 −1.000
7 43.362 −19.125
8 −34.757 53.613
9 112.326 −7.236
10 33.945 −126.688

Table 10. Optimum phase values (degrees) found by Taguchi’s
method and SADE for the 20-element uniform amplitude array with
bidirectional null steering at 33.5 and 40 degrees.

n Taguchi’s method SADE
1 55.747 −1.000
2 59.298 2.346
3 69.506 −1.203
4 56.368 −1.008
5 29.602 21.694
6 90.837 −39.172
7 71.518 −16.064
8 46.722 10.626
9 44.301 0.999
10 −14.444 68.775
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(a) (b)

Figure 15. Optimum array patterns of 20 element array by the phase-
only synthesis with bidirectional null steering. (a) Null steering at 14
and 20.5 degrees. (b) Null steering at 33.5 and 40 degrees.

b. Null Steering at 33.5 and 40 Degrees:
The Taguchi’s first null value is −79.51 dB (SADE −105.82 dB),

and the Taguchi’s second null value is −77.82 dB (SADE −68.98 dB).
The maximum SLL for the Taguchi’s optimized array is −14.29 dB,
while it is −14.30 dB for the SADE optimized array. For the same
problem, the maximum SLL obtained in [30] is −12.41 dB.

6. CONCLUSIONS

Linear array synthesis using Taguchi’s method and self-adaptive
differential evolution has been presented. We have compared the above
methods in several common linear array design cases like amplitude,
position and phase synthesis. The results show that Taguchi’s method
is a powerful optimizer that converges fast and finds optimum values
within 100 iterations. Self-adaptive DE is also a robust optimizer
but in several cases requires more iterations than Taguchi’s method.
The main advantage of SADE is the fact that it requires only the
adjustment of two parameters: the population size and the number
of iterations. In amplitude synthesis, Taguchi’s method finds better
results than SADE. For position-only and phase-only synthesis, the
best values found by both methods are quite similar. Both methods
may also be used in conjunction with a numerical technique to optimize
different antennas (e.g., microstrip patch antennas). In such cases
where computational time plays an important role, fast convergence is
an additional requirement.
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