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Abstract—The paper aims at solving the problem of plane
electromagnetic waves scattered by N dielectric coated conducting
strips. The method used is based on an asymptotic technique
introduced by Karp and Russek for solving scattering by wide slit.
The technique assumes the total scattered field from each coated strip
as the sum of the scattered fields from the individual element due to
a plane incident wave plus scattered fields from factious line sources
of unknown intensity located at the center of every element. The line
sources account for the multiple scattering effect. By enforcing the
boundary conditions, the intensity of the line sources can be calculated.
Numerical examples are introduced for comparison with data published
in the literature.

1. INTRODUCTION

The scattering of electromagnetic waves by perfectly conducting strip
grating was the subject of many investigations [1] and [2]. Different
methods have been used for solving such a problem, among them is
the self consistent method [3]. This method is based on the previous
knowledge of the responses of the isolated objects in the multi-object
scattering problem. The incident field on each object is considered
as the sum of the source field and the scattered fields from all other
objects, which involves unknown scattering amplitudes. By applying
the boundary conditions on each object surface, a set of algebraic
equations in terms of the unknown coefficients are obtained. In an
approximate treatment the self-consistent method was used by Karp
and Russek [4]. The solution is restricted to the case where the spacing
between the objects is much greater than the maximum dimension
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of any one object. This technique has been extended to the case
of scattering of plane waves by wide double wedges (Elsherbine and
Hamid [5]). Hansen [6] used the integral equation approach in order
to calculate the diffracted field of a plane acoustic wave through two
or more parallel slits in a plane screen. The scattering of plane waves
by two or N co-planar strips was the subject articles of Saermark [7–
9] who formulated the general problem for different orientation of the
strips but gave only a solution for the co-planar case. He however,
truncated the infinite series involved in the solution after one term
assuming that the strip widths are small.

The basic element used in present work is the dielectric coated
conducting strip which has been addressed in [10]. Moreover, the
scattering by two parallel dielectric coated strips has also been also
investigated [11]. Meanwhile, the electromagnetic wave scattering by
single and multiple dielectric coated conducting elliptic cylinder has
been presented [12–14].

In the present paper, approximate solution of a plane electromag-
netic wave incident on N dielectric coated conducting strips randomly
oriented is considered using the technique in [4]. The solution is much
easier in calculation than the full wave solution approach. In addition,
the full wave solution approach (exact) requires a coefficient matrix,
for N elements, of a size (Nm×Nm) while this method requires (m×m)
coefficient matrix. Accordingly this method will have a saving in com-
putational time of the order of N2. Moreover for large number of
elements the matrix size of the exact method may produce some error
when it is inverted. These two reasons are the advantages of the present
method. The only disadvantage of the present method is that, it can
not be used when the inter-element spacing is small. The geometrical
arrangement of problem solved here can be used for simulating a re-
flector antenna surface. In fact any dielectric coated cylindrical surface
can be simulated by such basic building blocks.

2. FORMULATION OF THE PROBLEM

Figure 1 shows the cross sections of dielectric coated conducting strips
of infinite length with their axes parallel to the z axis. The ith
conducting strip has a width 2di and coated with a dielectric of
permittivity εi. The focal length of outer surface of the ith strip
dielectric coating is equal to the conducting strip width while its semi-
major axis and semi-minor axis are respectively ai and bi. The center
of the ith dielectric coated strip is located at (ri, ψi) with respect to
the global coordinates (x, y, z). The ith coated strip is inclined by an
angle βi with respect to the x-axis. In addition to the global coordinate
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Figure 1. Geometry of the problem.

system, N coordinate systems are defined at the coated strip centers
such that the plane of the ith strip lies in the xi-zi plane.

A plane wave, with e−jωt time dependence, is incident with an
angle φo with respect to the x-axis of the global coordinate system
and polarized in z-direction, i.e.,

Ei
z = e−jko(x cos φo+y sin φo) (1)

where ko is the wave number of free space. The incident wave may
be transformed and expanded in terms of the elliptic wave function
expressed with respect to ith dielectric coated strip coordinates as:

Ei
z1

=
√

8πe−jk(xi cos φo+yi sin φo)

∞∑

m=0

j−m

[
1

N
(e)
m (hi)

Jem(hi, ζi)Sem(hi, ηi)Sem(hi, cosφ0i)

+
1

N
(o)
m (hi)

Jom(hi, ζi)Som(hi, ηi)Som(hi, cosφ0i)

]
(2)

where
φ0i = φo − βi (3)

and Jem(h, ζ) and Jom(h, ζ) are respectively the even and the odd
modified Mathieu functions of the first kind and order m. Also,
Sem(h, η) and Som(h, η) are respectively the even and the odd angular
Mathieu functions of order m. N

(e)
m (h) and N

(o)
m (h) are normalized

functions. The Mathieu functions arguments are hi = kodi, ζi = coshui

and ηi = cos vi, where ui and vi are elliptical cylindrical coordinates
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defined by:

xi = di coshui cos vi yi = di sinhui sin vi z = zi (4)

The approximate solution is based on a technique that was
established by Karp and Russek [4] which considers the scattered field
from each coated strip as a sum of scattered field from that coated
strip due to a plane wave incident plus the scattered fields due to line
sources of unknown intensity located at the centers of the other coated
strips. The factious line sources accounts for the multiple scattering
between the N coated strips. To apply this technique one needs to
obtain the far scattered field from one coated strip due to both a plane
wave and a line source.

2.1. Plane Wave Excitation

Consider the plane wave of Eq. (2), is incident on a coated strip located
at xi, yi. The scattered field in the region outside the coated strip can
be written as

E(s)
z =

√
8π

∞∑

n=0

A(i)
n He(1)

n (hi, ζi) Sen(hi, ηi) (5)

while the electric field inside the coating is

E(I)
z =

√
8π

∞∑

n=0

B(i)
n

{
Jen(Hi, ζi)− Jen(Hi, 1)

Nen(Hi, 1)
Nen(Hi, ζi)

}
Sen(Hi, ηi)

(6)
Matching the boundary condition and multiplying both sides of the
resulting equation by Sem(H1, ηi) and integrating over vi from 0 to
2π, one obtains

e−jk(xi cos φo+yi sin φo)
∞∑

n=0

j−n

{
1

N
(e)
n (hi)

Jen(hi, ζ0i)

Sen(hi, cosφ0i)Mn,m(hi, Hi)
}

+
∞∑

n=0

A(i)
n He(1)

n (hi, ζ0i)Mn,m(hi,Hi)

= B(i)
m {Jem(Hi, ζ0i) − Jem(Hi, 1)

Nem(Hi, 1)
Nem(Hi, ζ0i)}N (e)

m (H1) (7)

Similarly matching the boundary condition corresponding to Hv, one
can get

e−jk(xi cos φo+yi sin φo)
∞∑

n=0

j−n

{
1

N
(e)
n (hi)

Je′n(hi, ζ0i)
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Mn,m(hi,Hi)

N
(e)
m (H1)

Sen(hi, cosφ0i)
}

+
∞∑

n=0

A(i)
n He(1)

n

′
(hi, ζ0i)

Mn,m(hi,Hi)

N
(e)
m (H1)

=
√

εriB
(i)
m

{
Je′m(Hi, ζ0i)− Jem(Hi, 1)

Nem(Hi, 1)
Ne′m(Hi, ζ0i)

}
(8)

From Eqs. (7) and (8), one obtains:
∞∑

n=0

A(i)
n

{
He

(1)
n (hi, ζ0i)
Xm(Hi)

− He′n
(1)(hi, ζ0i)

X ′
m(Hi)

}
Mn,m(hi,Hi)

= −e−jk(xi cos φo+yi sin φo)
∞∑

n=0

j−n 1

N
(e)
n (hi){

Jen(hi, ζ0i)
Xm(Hi)

− Je′n(hi, ζ0i)
X ′

m(Hi)

}
Se(hi, cosφ0i)Mn,m(hi,Hi) (9)

where

Xm(Hi) =
{
Jem(Hi, ζ0i)− Jem(Hi, 1)

Nem(Hi, 1)
Nem(Hi, ζ0i)

}
N (e)

m (Hi) (10)

X ′
m(Hi) =

√
εr

{
Je′m(Hi, ζ0i)− Jem(Hi, 1)

Nem(Hi, 1)
Ne′m(Hi, ζ0i)

}
N (e)

m (Hi) (11)

Mn,m(hi,Hi) =

2π∫

0

Sen(hi, ηi)Sem(Hi, ηi)dvi (12)

Eq. (9) can be written a matrix form as:

[Fm,n] [Am] = [Ym] (13)

where

Fm,n =

{
He

(1)
n (hi, ζ0i)
Xm(Hi)

−He′n
(1)(hi, ζ0i)

X ′
m(Hi)

}
Mn,m(hi,Hi) (14)

Ym = −e−jk(xi cos φo+yi cos φo)
∞∑

n=0

j−n 1

N
(e)
n (hi)

Sen(hi, cosφ0i)

{
Jen(hi, ζ0i)

Xm(Hi)
− Je′n(hi, ζ0i)

X ′
m(Hi)

}
Mn,m(hi,Hi) (15)

Once the coefficients are calculated the scattered electric field
in the outer region is given by Eq. (5). Since He

(1)
m (h, ζ) =

1√
hζ

ej(hζ−((2m+1)/4)π) and for large hζ it can be represented in terms
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of circular cylindrical coordinates, where hiζi = koρi. In this case the
total scattered field is given by:

E(s)
z =

√
8π

ejkiρo

√
koρi

∞∑

n=0

(−j)nA(i)
n Sen(hi, ηi)=c(koρi)f(hi, ri, φi, φ0i) (16)

f(hi, ri, φi, φ0i) = 2π
∞∑

m=0

(−j)mA(i)
m Sem(hi, cosφi) (17)

2.2. Line Source Excitation

Consider a line source of unit intensity placed at (xk, yk) with respect to
the coordinates at the center of ith coated strip, then the z-component
of the electric field due to such a line source can be expressed as:

Einc
z = 4

[ ∞∑

m=0

Sem(hi, ηik)

N
(e)
m (hi)

Sem(h1, ηi)

{
Jem(hi, ζik)He

(1)
m (hi, ζi)

Jem(hi, ζi)He
(1)
m (hi, ζik)

}

+
Som(hi, ηik)

N
(o)
m (hi)

Som(hi, ηi)

{
Jom(hi, ζik)Ho

(1)
m (hi, ζi)

Jom(hi, ζi)Ho
(1)
m (hi, ζik)

}]
u > uik

u < uik
(18)

where k takes the values 1 to N .

ζik =


1

2

(
s2
ik

d2
i

+ 1
)

+

(
1
4

(
s2
ik

d2
i

+ 1
)2

− x′ik
2

d2
i

)1/2



1/2

(19)

ηik =
x′ik

ζikdi
, ψik = tan−1

[
yk − yi

xk − xi

]
− βi (20)

sik =
(
(xi − xk)

2 + (yi − yk)
2
)1/2

(21)

x′ik = sik cosψik y′ik = sik sinψik (22)

The scattered field in the region outside the coated cylinder can be
written as

E(s)
z = 4

∞∑

n=0

C(i)
n He(1)

n (hi, ζi) Sen(hi, ηi) (23)

While the electric field inside the coating is

E(I)
z = 4

∞∑

n=0

D(i)
n

{
Jen(Hi, ζi)− Jen(Hi, 1)

Nen(Hi, 1)
Nen(Hi, ζi)

}
Sen(Hi, ηi)

(24)
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Matching the boundary condition corresponding to Ez and multiply
both sides of the resulting equation by Sem(H1, ηi) and integrating
over vi from 0 to 2π, we get

∞∑

n=0

He
(1)
n (hi, ζik)

N
(e)
n (hi)

Jen(hi, ζ0i)Sen(hi, ηik)Mn,m(hi,Hi)

+
∞∑

n=0

C(i)
n He(1)

n (hi, ζ0i)Mn,m(hi,Hi)

= D(i)
m

{
Jem(Hi, ζ0i)− Jem(Hi, 1)

Nem(Hi, 1)
Nem(Hi, ζ0i)

}
N (e)

m (H1)(25)

Similarly matching the boundary condition corresponding to Hv, one
can get

∞∑

n=0

He
(1)
n (hi, ζik)

N
(e)
n (hi)

Je′n(hi, ζ0i)Sen(hi, ηik)Mn,m(hi,Hi)

+
∞∑

n=0

C(i)
n He′n

(1)(hi, ζ0i)Mn,m(hi,Hi)

= D(i)
m

{
Je′m(Hi, ζ0i)− Jem(Hi, 1)

Nem(Hi, 1)
Ne′m(Hi, ζ0i)

}
N (e)

m (H1) (26)

Solving (25) and (26), one gets:
∞∑

n=0

C(i)
n

{
He

(1)
n (hi, ζ0i)
Xm(Hi)

− He′n
(1)(hi, ζ0i)

X ′
m(Hi)

}
Mn,m(hi,Hi)

= −
∞∑

n=0

He
(1)
n (hi, ζik)

N
(e)
n (hi)

Sen(hi, ηik)Mn,m(hi,Hi)

{
Jen(hi, ζ0i)

Xm(Hi)
− Je′n(hi, ζ0i)

X ′
m(Hi)

}
(27)

Eq. (27) can be written in a matrix form similar to (13), where

Ym = −
∞∑

n=0

He
(1)
n (hi, ζik)

N
(e)
n (hi)

{
Jen(hi, ζ0i)

Xm(Hi)
−Je′n(hi, ζ0i)

X ′
m(Hi)

}

Sen(hi, ηik)Mn,m(hi,Hi) (28)
Once the coefficients are calculated the scattered electric field in the
outer region is:

E(s)
z =

√
8π

ejkiρi

√
koρi

∞∑

n=0

(−j)nC(i)
n Sen(hi, ηi) = c(koρi)g(hi, φi, ζik, ηik)

(29)
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where

g(hi, φi, ζik, ηik) =
√

8π

∞∑

m=0

(−j)mC(i)
m Sem(hi, cosφi) (30)

Now consider the problem of N coated strips shown in Fig. 1.
Assuming a fictitious line source Cj at the center of the jth coated
strip, the far scattered field from the ith coated strip is

Es
i =c(koρi)


f(hi, ri, φi, φ0i)+

N∑

j=1,i6=j

Cjg(hi, φi, ζij , ηij)


, i=1, 2, . . . , N

(31)
The partial scattered field from the ith coated strip due to the scattered
field from the jth coated strip can be determined by two ways. The
first, at φj = ψji the value of Es

j [c(koρj ]
−1 can be considered as the

intensity of a line source times the well-known response (29), i.e.,

E
s(ij)
i =


f(hj , rj , ψji, φ0j) +

N∑

k=1
k 6=j

Ckg(hj , ψji, ζjk, ηjk)




c(koρi)g(hi, φi, ζij , ηij), j = 1, 2, . . . , N (32)

Second, this partial scattered field is given by

E
s(ij)
i = c(koρi)Cjg(hi, φi, ζij , ηij), j = 1, 2, . . . , N (33)

Using equivalence between (32) and (33),
N∑

i=1

f(hj , rj , ψji, φ0j) +
N∑

k=1
k 6=j

N∑

i=1
i6=j

Ckg(hj , ψji, ζjk, ηjk)=Cj , j =1, 2, . . . , N

(34)
Eq. (34) can be written a matrix form as:

[Qm,n] [Cm] = [Pm] (35)

Pm = −
N∑

i=1

f(hm, rm, ψmi, φ0m) (36)

Qmn =





N∑
i=1

g(hm, ψmi, ζmn, ηmn) m 6= n

1−N m = n
(37)
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Once Cm are known, one can determine the z-component of the total
scattered field from the N dielectric coated strips, i.e.,

Es
z = c(koρ) P (φ) (38)

c(kρ) =
√

2/πkρ ejkρ e−jπ/4 (39)

p(φ) =
N∑

i=1

e−jko(xi cos φ+yi sin φ)





f(hi, ri, φ− βi, φ0i) +
N∑

k=1
k 6=i

Ckg(hi, φ− βi, ζik, ηik)





(40)

The plane wave scattering properties of a two-dimensional body of
infinite length are conveniently described in terms of the echo width,
i.e.,

W (φ) =
4
k
|P (φ)|2 (41)

o

i
0=β

λ= 24.0
i

d

o

o
90=φ

o
r 0.180,75.0

22
=ψλ=

o
r 0.000,75.0

11
=ψλ= λ= 25.0

i
a

3.2=ε
ir

 

 

Figure 2. Comparison of the echo width patterns between exact and
approximate solutions.
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ir
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r 0.000,4.0
11
=ψλ=

o
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a

λ= 25.0
i

d

 

Figure 3. Comparison of the echo width patterns between exact and
approximate solutions.

λ= 48.0
i

do
r 0.180,75.0

22
=ψλ=

o
r 0.000,75.0

11
=ψλ= λ= 50.0

i
a

3.2=ε
ir

o

i
0=β

o

o
90=φ

 

Figure 4. Comparison of the echo width patterns between exact and
approximate solutions.
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λ= 25.0
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r 0.000,00.0
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Figure 5. Effect of the number of terms “m” on the echo width
pattern.
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Figure 6. Echo width pattern for different dielectric thickness.
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λ= 25.0
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11
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Figure 7. Comparison of the echo width patterns between exact and
approximate solutions.
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Figure 8. Echo width pattern for different dielectric thickness.
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Figure 9. Echo width pattern for different dielectric thickness.
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Figure 10. Echo width pattern for different dielectric thickness.
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3. RESULTS AND DISCUSSION

In order to check the accuracy of our calculations the case of two
dielectric coated strips is introduced. First the spacing between the
two dielectric coated strips is considered 1.5λ and the echo width
pattern is calculated for the input parameters given in Fig. 2, using
both the exact method introduced in [10] and the approximate method
introduced here. As one can see from Fig. 2 an excellent agreement
is found. If the spacing between the two coated strips is decreased
to less than 1.5λ the approximate method starts to fail and it gives
inaccurate results as shown in Fig. 3 corresponding to spacing of
0.8λ. The effect of a dimensionally larger element on the approximate
solution is addressed in the third example where the strip width is
taken as 0.96λ for two elements shown in Fig. 4. As can be seen the
echo width pattern is calculated using both approximate and exact
methods. The agreement between the two cases is excellent. That
shows the only restriction on the approximate method is the inter-
element spacing. The number of elements in the present problem is
designated by n while the infinite series in Eqs. (9) and (34) is truncated
after m terms. In order to see the effect of the number of terms m on
the echo width pattern for three elements (n = 3), the example of
geometrical parameter shown in Fig. 5 is introduced. As one can see
when m = 4, the solution converges and any increase in the value of m
will not affect the echo width pattern. The effect of the dielectric
coating thickness on the echo width pattern for a three elements
case is also illustrated in Fig. 6. It indicates that the magnitude of
the echo width pattern in the forward and the backward directions
increases as the dielectric thickness increase then it decreases again.
There should be a specific thickness at which the magnitude of the
echo width is maximum in both the forward and backward directions.
Comparison between approximate and exact methods is repeated again
for the five element array, where the inter element spacing is 1.5λ. As
one see from Fig. 7, the echo width pattern corresponding to both
methods have an excellent agreement. Again that shows the number
of elements has no effect on the approximate method. Once more the
effect of the dielectric coating thickness on the echo width pattern for
a five elements case is illustrated in Fig. 8. The same phenomenon
of a maximum echo width for certain dielectric thickness is observed
here again as noticed earlier in Fig. 6. The effect of rotating all
elements with respect to the direction of the incident field, as shown in
Figs. 9 and 10, on the echo width is investigated for different dielectric
thickness. As illustrated in Fig. 9, a 45◦ inclination results in echo
width pattern with maximum magnitude at 225◦ direction which is a
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reflection from the elements. Other peaks appear at forward direction
at 270◦ and at 315◦ direction. The magnitude of the echo width in
this case is observed to be high at very thin dielectric thickness. The
last example is for array of elements having an element rotation of
90◦. The echo width pattern for different dielectric thickness is shown
in Fig. 10. The maximum magnitude of the echo width pattern is in
the forward direction. The reflection in the backward direction is very
small in this case. Also, the magnitude of the echo width pattern is
higher for very thin dielectric thickness.

4. CONCLUSION

Approximate solution of the scattering of an electromagnetic waves
by N dielectric coated conducing strips is introduced. The solution
is found to give excellent results when the inter-element spacing is
higher than strip width. The effect of the dielectric coating on the
echo width is presented through several examples. It is found that
very thin dielectric coating increases the scattering echo width in the
forward and the back directions, and as the thickness increases the
forward and backscattered echo width decreases. Effect of rotating the
elements on the resulting echo width pattern is also investigated.
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