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Abstract—We present a new RADAR system able to perform Phase
Conjugation experiments over the ultrawideband [2–4]GHz. The
system is equipped with a transmit/receive linear array made of eight
antennas connected to a 2-port Vector Network Analyzer through
eight independent couples of digitally-controlled RF attenuators and
phase shifters. Thus, each channel can selectively transmit or receive
and can as well attenuate and phase shift the RF signal. For each
frequency, either the Phase Conjugation or the Decomposition of the
Time Reversal Operator (DORT) is applied to the received signal and
the appropriate amplitude and phase law is coded into the prototype;
the focusing wave is then experimentally re-emitted by the array. The
quality of the achieved backpropagation is evaluated both in frequency
and time domain: In this sense we can speak of Time Reversal. The
excellent agreement between measured and theoretical results validates
the potential of our system.

1. INTRODUCTION

The concept of Time Reversal Mirror [1–3] has generated numerous
studies in both Acoustics and Electromagnetism in the last decade.
Many are the potential applications in non-destructive control, medical
imaging, sub-marine acoustics, telecommunications and RADAR. The
capacity of these mirrors to focus onto an object is very useful for
imaging in random media. It permits to improve the signal-to-clutter
ratio and to increase the robustness of imaging algorithms. This
has been proved on one hand with synthetic data in case of buried
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objects [4] as well as in a circular scanner configuration [5], and on the
other with experimental data to construct a better initial estimate for
an inversion algorithm in [6]. Our aim here is to build a prototype that
allows us to get the data required by such inversion algorithms and to
evaluate its performances.

In Electromagnetism, only a few experiments of Time Reversal
(TR) have been performed. Recently, particular attention has been
devoted to the application of TR techniques in the ultrawideband
regime for telecommunications [7, 8] and for detection of targets in the
through-the-wall framework [9, 10]. Generally speaking, two different
instrumental approaches can be distinguished among the published
experiments. A first set of them has been achieved directly in the
time domain with a Digital Oscilloscope and an Arbitrary Waveform
Generator. Thanks to the latter, it is relatively easy to experimentally
re-transmit the reversed wave. As an example, Lerosey et al. [11] realize
TR over a 150 MHz-wide band and in a reverberating medium to spot
time compression in the reversed signal. In [12, 13] the prototype is
employed with a bandwidth of respectively 2 MHz and 2.7GHz and
comprises only one antenna at transmission and one at reception.
Space diversity, intrinsic in a very reverberating medium (such as an
indoor environment in telecommunications), supplies here the absence
of an antenna array. In a second kind of experiments, the systems
work in the frequency domain with a Vector Network Analyzer; the re-
transmission is only performed numerically. One ought to rather talk
about Phase Conjugation over a given bandwidth and pulse synthesis.
In [14] the authors exploit a 10 GHz-wide band with again only one
antenna at transmission and one at reception. Nonetheless, thanks to
a precise mechanical support, they can be placed at different positions
in order to artificially “build” two arrays. Finally, Cresp et al. [15] use
a bandwidth of 6.5 GHz with a linear eight-antenna array.

Our contribution consists in proposing a system merging the
advantages of both described solutions: A prototype, made of a
linear eight-antenna array, working in the frequency domain and
capable of experimentally re-transmit the complex conjugate of the
received signal within a bandwidth of 2 GHz at S-band. Recording
an 8 × 8 transfer matrix also allows us to apply the DORT
(french acronym for Décomposition de l’Opérateur de Retournement
Temporel) method [16]. This method, initially applied to ultrasonic
waves, has later been studied in the frame of Maxwell equations [17–
19] and its behavior with respect to polarization has been understood.
DORT method is of particular interest as it tells us how to feed the
antenna array to focus selectively onto a target. In case of multiple
targets, it is more powerful than TR, which has to be iterated and
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which restricts focusing to the brightest target.
The remainder of this paper has four main parts. Initially, we

recall a few theoretical aspects of both TR and DORT and we describe
our approach to a time-domain DORT version valid under free-space
conditions. Then, we describe the hardware we dispose of in our system
and its behavior. Finally, we present the results of two experiments
that we conducted to validate our prototype: In Section 4 and Section 5
respectively, Time Reversal (UWB Phase Conjugation) and time-
domain DORT are performed by experimentally backpropagating the
array feeding vectors.

2. THEORY OF TIME REVERSAL INVARIANCE IN
WAVE PROPAGATION

In vacuum, each component of the electric field e(r, t) satisfies the
d’Alembert equation

∆f(r, t)− 1
c2

∂2f(r, t)
∂t2

= 0 (1)

where c is the speed of light. The solution of this equation is invariant
with respect to a sign change in the time t. In other words, if a function
f(r, t) is solution, then f(r,−t) is also one. Such a property, known as
time reversal invariance, is ensured by the absence in Eq. (1) of odd-
order time derivatives which would appear if the propagating medium
had losses.

In the frequency-domain, denoting by F (r, ω) the Fourier
transform of f(r, t), Eq. (1) becomes the Helmholtz equation

∆F (r, ω) + k2F (r, ω) = 0 (2)

satisfied by each component of the complex electric field E(r, ω), with
k = ω/c. At a given frequency, since k2 is real, time reversal invariance
is equivalent to phase conjugation invariance, therefore both F (r, ω)
and F ∗(r, ω) are solutions of Eq. (2).

2.1. Time Reversal and DORT

Consider a discrete distribution of N antennas located at rant =
[r1 . . . rN ] able to measure the electric field e(rant, t) generated by one
or more sources. If each of them stocks the field into a memory and
re-radiates it back into the medium after time reversal (last element
of the memory is output first) the resulting array field will converge
onto the sources that originally created the field. Such an array
has been baptized Time Reversal Mirror (TRM) [1] and its focusing
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capabilities have been experimentally exhibited in both acoustics [20–
22] and electromagnetism [11–13].

The main drawback of a TRM is the difficulty of focusing
selectively on one among different sources, since the backpropagated
wave will naturally “prefer” the most radiating one. If the sources
are passive targets and the processed signal is the scattered field, one
may iterate the TR process to finally focus onto the brightest one.
Nevertheless, in case of targets with similar brightness the number of
iterations becomes high.

The solution to this issue has been found with the DORT
method [16]. This technique requires the knowledge of the inter-
element matrix k(t) whose element kij (t) denotes the component of
the scattered electric field measured at antenna i when antenna j
plays the role of emitter. DORT method is based on the singular
value decomposition (SVD) of its Fourier transform, the transfer
matrix K(ω), which writes as U(ω)Λ(ω)VH(ω), where the superscript
H stands for conjugate-transpose. At the angular frequency ω the
diagonal elements of Λ(ω) are the singular values, whose hierarchy
provides information about the brightness of the targets, and the
columns of V(ω) are the associated right singular vectors, whose
complex amplitudes are to be fed to the array to focus selectively onto
each target without any iteration.

2.2. Time-domain DORT

DORT method is inherently a time-harmonic technique. To exploit it
over a given frequency range, one can start by applying the SVD to
each transfer matrix and retrieve the corresponding singular vectors.
Despite the fact that each of them will focus correctly onto the target
both the amplitude and phase relationships between them are lost
because of the decomposition process. Thus, a time-domain DORT
technique consisting of pulse synthesis out of the raw monochromatic
singular vectors fails.

The amplitude issue is commonly solved by weighting the
singular vectors by their respective singular value [23, 24], which helps
increasing the signal-to-clutter ratio at the frequencies where the
targets diffract the most. For the phase problem some ideas have also
been investigated. In inhomogeneous media Yavuz et al. [24] build one
big space-frequency matrix, assembling all the single-frequency K(ω)
together; a SVD of this new matrix leads to coherent frequency singular
vectors out of which a time-domain excitation for the antennas is built.
A different approach [25] consists, in case the target position is known
or can be estimated, in equalizing the phases of each re-emitted time-
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harmonic field at this location, since the best space-time focusing will
naturally be obtained under these conditions.

In free-space, the solution for a working time-domain DORT is
fairly simpler than the previous ones. In the case of a scatterer
located at robj and small with respect to the wavelength it has been
demonstrated [18, 26] that the jth component of the singular vector
v1(ω) associated to the largest singular value can be approximated by
the complex conjugate of the Green function G(ω, rj , robj) from the
jth antenna to the object:

v1(ω) ≈ G∗(ω, rant, robj)

= [G∗(ω, r1, robj) . . . G∗(ω, rN , robj)]
T (3)

In free-space, the phase of each component of v1(ω) varies linearly with
respect to frequency. For its last component, for instance, and with a
time dependency expressed by eiωt, we have

arg[v1,N (ω)] = k|robj − rN |. (4)

Although the SVD produces a unitary-norm and arbitrary phase-
shifted version of Eq. (3),

vSVD
1 (ω) =

G∗(ω, rant, robj)
‖G(ω, rant, robj)‖eiφ(ω), (5)

where φ(ω) is an arbitrary phase, one can enforce the norm to be equal
to λ1(ω) and the phase of the last component to match the value in
Eq. (4). For the phase, though, this implies the knowledge of the object
position. Alternatively, the phase of the last component can be set to
zero all over the bandwidth and the final feeding vector ṽ1(ω) becomes

ṽ1(ω) = λ1(ω)vSVD
1 (ω)e−i arg[vSVD

1,N (ω)]. (6)

By modeling the antennas of the array as infinitesimal dipoles of
vertical moment, the vertical component of the field impinging on the
object after re-emission can be written as

E(ω, robj) ∝ GT (ω, rant, robj)ṽ1(ω)

= λ1(ω)‖G(ω, rant, robj)‖e−i arg[v1,N (ω)], (7)

which gives exactly the same space-time focusing as if we used v1(ω)
of Eq. (3) only delayed in time by

∆tfoc =
k|robj − rN |

ω
=
|robj − rN |

c
. (8)

Interestingly, this solution might be subject to a different interpreta-
tion. ṽ1(ω) can in effect be thought of as the limit of an iterative TR
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experience starting with the Nth antenna as only active source. If we
call e(0)(ω) = [0 0 . . . 1]T , ∀ω, such initial steering vector and use
〈a|b〉 = aHb as definition of complex scalar product between vectors
a and b, the vector to be re-transmitted after 2m iterations writes

e(2m)(ω) =
[
KH(ω)K(ω)

]m
e(0)(ω)

≈ λ2m
1 (ω)

〈
vSVD

1 (ω)|e(0)(ω)
〉

vSVD
1 (ω)

= λ2m
1 (ω)vSVD

1 (ω)e−i arg[vSVD
1,N (ω)], (9)

which apart from the 2mth power of λ1(ω) corresponds exactly to
Eq. (6). Furthermore, the iterative TR experiment corresponds to
the well-known power method used in mathematics for computing the
SVD [27]. If indeed one would trigger the power method iterations with
e(0), the first singular vector would simply be ṽ1. Borcea et al. [28]
implicitly also use the iterative TR approach: Since the columns of
K(ω) still keep the coherence over frequency which is lost with the
SVD, one of them is used as e(0)(ω).

As described in Section 3, the medium where our experiences are
carried out can approximatively be considered as free-space, validating
the use of Eq. (6). Employing the same technique, good results have
also been found in [15], although the physical justification had not been
given. In cases where the waves propagate in more complex conditions,
such as in a waveguide [25], the Green function loses its “linear-phase-
over-frequency” property and the proposed solution fails.

3. PROTOTYPE DESCRIPTION

The architecture of our RADAR prototype, shown in Fig. 1, can be
split in two functional parts: A High Frequency (HF) section and its
control logic. The HF section is built around a 2-port Vector Network
Analyzer (VNA) serving both as signal source and receiver. The RF
front-end is made of a linear array of 8 UWB antennas plus one more
spare antenna working in a multistatic configuration. Antennas are
antipodal symmetric Exponentially Tapered Slot Antennas (ETSA),
printed on a Duroid substrate of permittivity εr = 2.2 and dimensions
8 cm× 8 cm; they show very good input impedance matching (SWR <
2) in the [2–18]GHz frequency band and radiate a vertically-polarized
(perpendicular to the plane of Fig. 1) electric field [29]. Antennas based
on the same design have also been employed in [9, 15]. The distance
between the antennas of the array is set to 5 cm (λ0/2 at 3 GHz) to
avoid grating lobes while limiting antenna coupling.

Each array channel is controlled both in amplitude and phase via
wideband attenuator/phase shifter (A/Φ) couples driven numerically.
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Figure 1. Prototype architecture.

They ensure a dynamic range of respectively more than 30 dB and
360 deg all over the [2–4] GHz frequency band. In order to select
any channel combination and direction (transmission/reception), we
dispose of an eight-switch bank connected to the antennas and of an
additional multiposition switch. Finally, a power splitter allows to
recombine/split the eight channels. Since all the RF components are
passive elements, the system is reciprocal and can be used both as
transmitter and receiver.

In conclusion, three different RF accesses are available: The spare
antenna, the power splitter and the multiposition switch. Depending
on the targeted experiment, two out of these three points are connected
to the VNA. Looking for a compromise between cost, material
availability and overall dimensions, our prototype works between 2 and
4GHz. The low end is imposed by the adaptation of the antennas, the
high end by the dynamic range of the phase shifters.

The control of the HF hardware is performed in the PC by a
Matlab application. The VNA is driven through an Ethernet link,
switches and A/Φ’s through a PIC microcontroller connected via USB
to the PC.

All measurements are carried on in a 1.5m×0.6m chamber made
of flat absorbing panels and containing only the antennas and the
propagation medium (air). The choice of the VNA frequency step
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is based on the total electrical length of the RF paths from port 1 to
port 2 of the analyzer, which amounts in the worst-case configuration
to a distance of about 12m (cables, RF components, chamber length,
etc.). Taking some margin on this value, the step is set to 10 MHz
(201 points in the 2–4GHz band) which indeed gives an alias-free range
of 15 m.

4. TIME REVERSAL EXPERIMENT

4.1. Details of Measurement

The first experiment consists in time-reversing the field radiated by an
active source, the spare antenna A9 in Fig. 1, in the empty chamber.
In the first step, called “data-acquisition” and sketched in Fig. 2(a),
the array antennas receive the wave radiated from A9. Since the VNA
is 2-port only, we cannot record simultaneously all eight transmission
S-parameters. Thus, despite the fact that all the antennas are always

(a)

(b)

Figure 2. Time reversal experiment setup: (a) Data-acquisition and
(b) backpropagation steps.
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physically present, the acquisition is done sequentially by each of them,
selected via the switches. Each measurement is denoted by Sj9, where
j corresponds to the number of the receiving antenna and 9 to the
transmitting one. The result is an eight-element vector Sj9 = [Sj9]j=1,8

at each of the 201 frequencies.
Once the acquisition is complete, the array plays the role of

transmitter and A9 that of receiver (Fig. 2(b)). Passing through the
power splitter, the signal sent by the VNA reaches all the channels.
The eight signals are attenuated and phase shifted selectively before
being radiated by their respective antenna. Since our prototype works
in the frequency domain, the amplitude/phase law to implement in the
A/Φ couples is given by the phase conjugation at each frequency of the
acquired data, resulting in the S∗j9 vectors. The received signal at A9 is
then measured by the VNA and the transmission S-parameter, called
S9A, is recorded by the PC. To reduce the time needed to cover the
whole 2GHz-wide band, Phase Conjugation is applied with a frequency
step of ∆f = 100 MHz (21 points). Finally, the conversion to time
domain via Inverse Fast Fourier Transform (IFFT) leads to a synthetic
pulse equivalent to the result of a true time-domain TR experiment.

Watching carefully at Figs. 2(a) and 2(b), one might notice that
the RF signal does not follow the same path when the array acts as
transmitter or receiver. In effect, in the data-acquisition step we do not
want the received signal to go through the A/Φ channels but rather
through the multiposition switch: Since the former path is much more
lossy than the latter, the measurement would otherwise suffer from a
reduced precision. Now, since reciprocity is not verified under these
conditions, Sj9 must be transformed at each frequency into a new
vector containing the field that would have been measured if the signal
went through the A/Φ couples. This is done by using the ABCD matrix
multiplication technique [30], made possible thanks to a previous full
characterization of each RF channel. Only now experimental Phase
Conjugation can be performed.

4.2. Results and Discussion

A first approach to evaluate the quality of the experiment consists
in studying amplitude and phase of the measured S9A directly in the
frequency domain. We suggest to compare S9A with an ideal reference
built from Sj9 measured during the data-acquisition step. In effect,
Phase Conjugation means feeding the antennas of the array with S∗j9
because the measurement associated to the propagation from A9 to Aj

is Sj9. Thus, the backpropagated signal finally measured at A9 in an
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ideal case, Sid
9A, can be written as

Sid
9A = SH

j9S9j = ‖Sj9‖2, (10)

where we have exploited reciprocity (Sj9 = S9j) for the last equality.
This equation shows the importance of having the forward and
backward signals following the same paths. If this condition does
not hold, the SH

j9 and S9j terms would not “compensate” and the
reversed field Sid

9A would not have phase equal to zero. In conclusion,
the measured field shall at best equal the result of Eq. (10).

(a)

(b)

Figure 3. Phase conjugation experiment. Comparison between (a)
amplitude and (b) phase of S9A(ω) in the theoretical and measured
cases, respectively in dashed and full line.
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The results are presented in Fig. 3. The dashed curve is the
reference signal Sid

9A, while the measurement, normalized in power in
order to be comparable to Eq. (10), is shown in full line with circle
markers. The measured phase has a mean value of only 0.5 deg and
a standard deviation of 1.5 deg. Similarly, the amplitude error never
exceeds 1 dB. We can conclude that we have almost perfectly achieved
the ideal Phase Conjugation result.

By applying the IFFT to S9A(ω) (after zero-padding the spectrum
bins from 0 to 2 GHz) we synthesize the pulse received by A9, s9A(t).
Since we do not apply any pulse shaping in order to preserve all the
spectral information we have, s9A(t) has the shape of a sinc pulse of
1GHz bandwidth (half the operational bandwidth) modulated by a
cosinus function of frequency 3 GHz (central operational frequency).
Furthermore, for a better visualization of the result, we apply the
Shannon interpolation formula to the discrete samples to build a
“continuous time” version of s9A(t).

Both theoretical (IFFT of Eq. (10)) and measured s9A are depicted
in Fig. 4. Again, we remark an excellent agreement between theory and
measurement. The experimental signal is not wider in time than the
ideal one, and the secondary “lobes” are not higher either, meaning
that the time-compression brought related to TR is achieved despite
the slightly reverberating character of our chamber (flat absorbers
strongly reflect in oblique incidence). This means that at all frequencies

0.16 dB

Figure 4. Phase conjugation experiment. Comparison between the
IFFT of S9A(ω) in the theoretical and measured cases, respectively in
dashed line and full line with circle markers.
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the signals transmitted by the antennas of the array all interfere
constructively at the position of A9. A quantitative indication of
the quality of our wideband Phase Conjugation can be found in the
ratio between the two signals at the time t = 0. In effect, according
to the definition of IFFT, this corresponds to a comparison of the
coherent sum of the frequency samples of S9A in the theoretical and
experimental cases. For our experiment, such ratio is as small as
0.16 dB. This residual, and in general the small discrepancies in Fig. 3,
can be explained by the discrete resolution of attenuators and phase
shifters and by the limited VNA dynamic range.

In order to evaluate the quality of spatial focusing, we have
measured the backpropagated field along a line parallel to the antenna
array and centered at the original A9 position, as depicted in Fig. 2(b).
While the array is still fed with the Phase Conjugation law at each
frequency, A9 is placed at nine equally spaced spots with a step of 3 cm
denoted by the vector x9 =

[
x−4

9 . . . x0
9 . . . x4

9

]T . At each angular
frequency ω we obtain

S9A(ω,x9) =
[
S9A(ω, x−4

9 ) . . . S9A(ω, x0
9) . . . S9A(ω, x4

9)
]T

. (11)
For each position, we use two criteria inspired by Fig. 3, both based

on the measurements over the entire bandwidth. First we observe
the phase of the new S9A in the frequency domain. In effect, perfect
focusing implies a linear phase law, a particular case of which is the
zero slope (Fig. 3(b)). Thus, we have measured the standard deviation
σφerr(x9) of the phase error φerr(x9) with respect to the linear phase
law that best interpolates the measurements, arglin int [S9A(ω,x9)]:{

φerr(x9) = arg [S9A(ω,x9)]− arglin int [S9A(ω,x9)]

σφerr(x9) =
√

Var [φerr(x9)]
(12)

The result is given in Fig. 5(a), where σφerr(x9) clearly increases for
positions away from the original one (0 cm). Also, the faster increase
when going towards negative position values is expected because the
original position of A9 is not centered but rather 17.5 cm aside with
respect to the center of the array.

The other criterion consists in performing the IFFT of S9A(ω,x9)
and keeping the maximum value of the resulting time-domain
s9A(t,x9) [31]. For the central position, we already know from Fig. 4
that the maximum occurs at t = 0ns thanks to phase conjugation and
reciprocity of the setup between data-acquisition and backpropagation
steps; in the other cases this is in general not true, since the location
of A9 is not the same in the two steps. The resulting normalized
amplitudes are shown in Fig. 5(b), which confirms what has already
been observed with the phase error standard deviation criterion.
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(a) (b)

Figure 5. Phase conjugation experiment. (a) Standard deviation of
φerr and (b) normalized IFFT amplitude maximum as a function of A9

position.

Figure 6. Phase conjugation experiment. Time-domain field chart at
the instant when the re-emitted wave focuses on A9.

A final analysis of the experiment consists in a more classical
numerical backpropagation of S∗j9 over the whole frequency range.
We model our antennas as infinitesimal dipoles of vertical moment
in free-space. This modeling choice introduces an error in the TR
process because it adds a mismatch between the characteristics of the
antennas in the experimental data-acquisition step and in the synthetic
backpropagation, invalidating the reciprocity theorem. Nevertheless,
it proves to be rather effective especially because our antennas have
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a very stable phase center over the [2–4]GHz bandwidth, exactly
as infinitesimal dipoles do. For each frequency we produce a field
chart, showing the map of the amplitude of the electric field inside
our chamber. Finally, by taking the IFFT of the field values at each
pixel, we generate a field chart for every time instant, which allows us
to observe the focusing process in the time-domain. Such a chart at
the instant where the focusing spot is best concentrated around the
position of A9 is presented in Fig. 6.

5. TIME-DOMAIN DORT EXPERIMENT

5.1. Details of Measurement

In our experiment, the diffracting object is a metallic cylinder placed
at a distance of 40 cm from the center of the array (Fig. 7). During
the initial data-acquisition step it is illuminated sequentially by each
of the array antennas and the field is recorded by all of them. The
transfer matrix Kmeas is thus built for each frequency between 2 and
4GHz. Although the Kij element comprises the propagation of the RF
wave not only through the air but also through the jth multiposition
switch and the ith A/Φ channel (except for diagonal elements for which
the signals pass twice through the multiposition switch), we are only
interested in the air part. In order to extract an equivalent Kair (for
the following we will neglect the index “air”) we employ the ABCD
matrix technique as already mentioned at the end of Section 4.1.

Coupling between antennas, due to their proximity and to their
scarce directivity, alters the measurements. The signal received by
the selected antenna is indeed the result of both diffracted field
coming from the object (useful signal) and direct field coming from
the neighbor transmitting antenna (noise). To reduce this unwanted
contribution, we actually perform differential measurements [15]. Once
the total field matrix Kt is acquired, the incident field matrix Ki is

Figure 7. DORT experimental setup.
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measured after removing the target. Finally, we retrieve the diffracted
field by simple difference:

Kd = Kt −Ki. (13)

The accuracy of the subtraction is set by the VNA precision. In
practice, we manage to reduce the incident field by 25 to 35 dB, hence
ultimately setting the dynamic range of our diffraction experiments.

Before applying the SVD to Kd, we convert each of its elements
to time-domain by IFFT and apply windowing to remove the very first
and last parts of the signal. The first contains most of the antenna
coupling residual after subtraction, the last is unnecessary since our
absorbing chamber is only 1.5 m long but we dispose of a much “longer”
signal due to the 10 MHz frequency step. In practice we cut the first
1.5 ns and keep a 8.5 ns-long window, which means that we can detect
objects at a distance from the array going from 22.5 cm up to 1.5m.

A further conversion back to the frequency domain gives the
final Kd to be decomposed. Time-domain DORT is then applied
according to the methodology presented in Section 2.2, giving the
focusing singular vector v1 for each frequency. As for the Time
Reversal experiment, the array is now ready to act as emitter, in
order to experimentally focus the field onto the target: v1 is coded
in the A/Φ couples and the array transmits. Again, a differential
measurement is performed to alleviate the antenna coupling problem.
The multiposition switch used during data-acquisition is now useless,
since it is the array as a whole that receives the field diffracted by the
target. Consequenctly the received signal is again attenuated/phase
shifted by the same v1 law, and in practice we simply measure one
reflection S-parameter per frequency called Sd

AA.

5.2. Results and Discussion

The SVD of the transfer matrix gives the singular values distribution
presented in Fig. 8(a). The largest singular value λ1 is separated by at
least 15 dB over the entire bandwidth from the two next ones; apart
from the attenuation at the band edges, due to the shape of the time-
domain window, the curve is relatively smooth and flat whereas the
others present a more noisy behavior.

In order to check that λ1 is associated to the target we first
numerically re-emit in the time-domain the associated singular vector
ṽ1, modified according to our time-domain DORT formulation in
Eq. (6), using the same infinitesimal dipole model for the antennas as
in the Time Reversal experiment. The resulting movie clearly shows a
wave focusing on the target and Fig. 9 is the frame at the instant of
best focusing.
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(a) (b)

Figure 8. DORT experiment. Three largest singular values
distribution versus frequency for the (a) long and (b) short time
window cases.

Figure 9. DORT experiment. Numerical time-domain field chart for
the singular vector associated to λ1 in Fig. 8(a) at the instant when
the re-emitted wave focuses on the target.

Concerning the smaller singular values, we know from theory [18]
that along a line of measurement any extended object also produces
anti-symmetric singular vectors, linked to the anisotropic components
of the scattered field. These vectors are easily recognizable by one
or more phase jumps of nearly 180 deg and magnitude nulls in their
complex amplitude distribution. The theoretical computation gives,
for the geometry of the problem investigated here, a ratio of about
20–25 dB all over the bandwidth between the first two largest singular
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values, associated to the symmetric and the anti-symmetric singular
vectors, respectively. While on Fig. 8(a) such a dynamic range is not
reached, we get it by gating the Kd elements with a shorter time-
window, 3.5 ns instead of 8.5 ns-long, leading to the singular values
distribution on Fig. 8(b). Here the second largest singular value is
indeed as smooth as the first one and clearly separated from the
third one. For the associated singular vector, the complex amplitude
law at 3 GHz with the corresponding monochromatic field chart are
presented respectively in Figs. 10(a) and 10(b). On the former, we
indeed distinguish a 150 deg phase jump between antennas 4 and 5
and an amplitude decrease of about 15 dB at the same location. The
field chart, showing the distribution of the real part of the electric field,
has itself a zero around the object position and equal amplitudes but
opposite phases with respect to the axis connecting the object and the
array center.

A last result is issued from the experimental re-emission in the
anechoic chamber of the singular vector v1 associated to λ1 in Fig. 8(a).
As previously described, the result of the measurement is one single
reflection S-parameter per frequency, Sd

AA. Recalling that the RF
signal is attenuated/phase shifted both before and after propagating
in the air (Fig. 7) and exploiting reciprocity, we can write

Sd
AA = vT

1 Kdv1 = vT
1 UΛVHv1 = λ1vT

1 u1. (14)

In order to further simplify the previous equation we need to write the

(a) (b)

Figure 10. DORT experiment. Anti-symmetric singular vector
(associated to λ2 in Fig. 8(b)) (a) complex law and (b) real part of
the corresponding monochromatic field chart at 3 GHz.
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two singular value problems associated to Kd:

Kdv1 = λ1u1(
Kd

)T
u∗1 = λ1v∗1

(15)

where v1 and u1 are respectively the first right and left singular vectors
of Kd. In virtue of reciprocity, Kd is a symmetric matrix; hence, under
the assumption that the dimension of the eigenspace associated to λ1

is one, which is verified here (Fig. 8), Eq. (15) ensures that v1 and u∗1
are colinear. In particular, it exists one particular SVD, called Takagi
factorization [32], for which v1 = u∗1. Finally, the development of
Eq. (14) simply leads to

Sd
AA = λ1, (16)

that is to say, the DORT singular vector re-emission through the same
amplitude/phase law at both transmission and reception allows one to
retrieve the corresponding singular value [33].

Nevertheless, our prototype does not allow us to measure exaclty
λ1(ω). Kd in Eq. (14) is in effect the transfer matrix comprising only
the propagation in the air, whereas when we perform the re-emission
we also measure twice the propagation through the A/Φ RF channels
(made of switches, A/Φ couples fed with v1, cables and the power
splitter to split/recombine the individual signals). If such channels
were all strictly identical, a simple amplitude and phase offset should be
applied to Eq. (16) to match the measurement result. Unfortunately,
due to mismatches between the RF components, the contributions are
not the same and the offset cannot be calculated anymore. In order
then to verify the quality of our measurement, we rather have to replace
K in Eq. (14) by the actual KA/Φ matrix including the propagation
through the A/Φ channels, which can be obtained from the measured
Kmeas by using the ABCD matrix multiplication technique. The new
reference curve is then

Sd,ref
AA (ω) = vT

1 (ω)Kd
A/Φ(ω)v1(ω), (17)

which we compare in Fig. 11 against the measured Sd
AA(ω) and which

indeed recalls the shape of λ1(ω) in Fig. 8(a). The error between the
curves never exceeds 1–2 dB over the entire bandwidth; as pointed
out for the Time Reversal experiment, the main reasons for these
discrepancies lie in the finite resolution of the A/Φ couples and in
the VNA limited dynamic range.
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Figure 11. DORT experiment. Amplitude of Sd
AA(ω) measured after

re-emission of the singular vector associated to λ1 in Fig 8(a). The
ideal curve is in dashed line, the measurement in full line with circle
markers.

6. CONCLUSION

In this paper we have presented a RADAR system able to
experimentally perform Phase Conjugation over the whole [2–4] GHz
frequency band. Two experiments have validated its behavior by
showing an excellent agreement with the expected theoretical results.
The first one is the ultrawideband Phase Conjugation of the signal
emitted by an active antenna and received by the array; the second
one consists in implementing the DORT method to generate a beam
focusing on a diffracting object over the entire frequency band. To
our best knowledge, the latter is the first experimental report of
electromagnetic DORT singular vector re-emission over such a wide
frequency band.

We have deliberately opted for an ultrawideband frequency-
domain system in contraposition to a time-domain apparatus [11]. In
our approach we simultaneously use all the antennas to focus onto the
targets at one frequency at the time and finally build the transient
focusing beam by the superposition of these time-harmonic waves.
The same result can alternatively be obtained by real-time emission
of pulses by one antenna at the time, followed by the recombination
of these individual pulses. Our choice is mainly motivated by the aim
of exploiting the DORT method, which indeed is a frequency-domain
technique, within the resolution of inverse problems. Experimental
data provided by our RADAR in more complex media shall serve this
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purpose.
Finally, the acquisition of a second identical array will add to our

prototype interesting features. In particular, the use of two separate
arrays will permit us to study the impact of the bistatic angle on clutter
rejection and to measure the repsonse of the target to the focusing
wave. The latter will be used in the frame of inverse scattering imaging
algorithms in order to improve the quality of the reconstructions [4].
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