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Abstract—Resonant modes of multi-layer structures which contain
the regions of negative epsilon material (such as a metal in the visible
range) are analyzed. Existence of two separate classes of resonant
modes is demonstrated. One is related to the excitation of the surface
mode at the interface of the regions with opposite signs of the dielectric
constant and involve energy transport by evanescent modes throughout
the whole structure. The second class involves propagating modes
(which form the resonant standing wave) in some regions and the
evanescent waves in other layers with ε < 0. It is shown that the
resonant transmission is related to the existence of quasi-stationary
leaky modes having a finite life-time and characterized by large wave
amplitude in the trapping region. It is shown that both types of
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resonances can coexist in multi-layer structures. It is also shown that
the interaction of the symmetric and anti-symmetric surface eigen-
modes widens the resonant transmission region.

1. INTRODUCTION

Over recent years there has been much work devoted to studies of
metamaterials, which have both dielectric permittivity and magnetic
permeability negative, ε < 0, µ < 0. One of the central features
of metamaterials is the amplification of evanescent waves [1, 2],
and many of unique properties of these media are related to this
phenomena [3–8]. Amplification of evanescent modes is responsible for
a number of fascinating results, e.g., anomalously high transmission
of electromagnetic waves through the metal films, which are normally
opaque [9–11]. Such a high transmission occurs when the resonant
conditions for the excitation of the evanescent waves are satisfied. In
this paper, we are interested in situations when the transmission occurs
in the tunneling regimes (i.e., when the waves are evanescent in the
opaque region). In what follows, we will call this phenomena resonant
transmission in tunneling structures, or resonant transmission, for
brevity.

It has also been realized that amplification of evanescent waves
and resonant transmission may also occur in composite structures with
alternating layers of positive and negative ε without the requirement
of negative µ. In this work we analyze the latter case, namely
the wave propagation in composite structures consisting of layered
structures of materials with negative and positive permittivity ε,
while assuming that the magnetic permeability µ is always positive.
Such structures, e.g., consisting of alternating dielectric and metal
layers, are potential building blocks of various plasmonic devices [12].
Resonance transmission has been experimentally demonstrated in
such structures [11, 13–16]. In particular, the effects of surface wave
plasmons on reflection and guiding properties of multi-layer structures
were analyzed in [17–20]. Resonant transmission has also been studied
theoretically in earlier works [10, 21–23]. Tunneling phenomena in
general remain to be of great interest and subject of controversies in
quantum mechanics [24, 25] and the results of this paper are relevant
to quantum mechanical resonant tunneling.

Resonant transmission has long been known in electronic
devices [26, 27]. It also forms a basis for the operation of resonant
Fabry-Perot optical cavities. In the latter case, the resonances occur at
the frequencies corresponding to the propagating wave states inside the
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cavity. In this paper we show that there are two different mechanisms
for the amplification of evanescent waves and resonant transmission.
These mechanisms can coexist in multi-layer metal-dielectric structures
thus creating the conditions for multiple resonances of different types.

Generically, resonant transmission occurs as a result of the
excitation of the resonant eigen-modes of the system. It is important
to emphasize here that these resonant modes are not truly stationary
eigen-mode states but rather are quasi-stationary states experiencing
weak amplitude decay in time due to the energy outflow into the
surrounding region. Such modes are called leaky modes [28]. As it
was noted above, there are two types of resonances. In one case,
the resonant mode is related to the surface eigen-mode localized
at the interfaces of two layers with opposite sign of the dielectric
constant ε [29]. Such a mode will be called Surface-Plasmon-Polariton
(SPP). The true eigen-mode exists at the boundary of two semi-infinite
layers with opposite sign of the dielectric constant ε. Such a mode
is evanescent in both layers and decays at infinity away from the
interface. It becomes a leaky mode which amplitude slowly decays
in time when both layers have finite width and there are propagating
modes in vacuum regions outside of the layers. The mode amplitude
decays in time due to the energy outflow by propagating modes.
The second type of resonance occurs when the propagating modes is
trapped inside the structure between two barriers (similar to Fabry-
Perot resonances). For the infinite barriers, it is a truly stationary
eigen-mode, but for a finite width barriers, the mode becomes quasi-
stationary leaky mode due to energy tunneling through the finite width
barrier. In both cases, the resonances lead to the amplification of
evanescent modes and resonant transmission of electromagnetic waves
via thick layers of opaque materials. In absence of dissipation, the
transmission coefficient becomes unity, T = 1. Both regimes of
resonant transmission can coexist for some configurations leading to
multiple resonances in the transmission coefficient.

There are two specific configurations studied in this paper. The
first one is a two-layer structure consisting of one layer of negative
ε < 0 material and the other layer of the material with positive
but small ε, 0 < ε < 1. We call this configuration a single barrier
structure. It is important to note, however that we consider the waves
incident at the angle larger than critical, so in both regions waves
are evanescent. The second layer with positive ε is required to create
conditions for the resonant excitation of SPP which can be excited by
the incident wave in vacuum. An interface of the ε < 0 material and
vacuum also supports surface modes but such modes propagate along
the interface boundary with subliminal phase velocity ω < kyc [30].



296 Smolyakov et al.

Obviously, such a mode cannot be excited by the propagating wave
which in vacuum has ω2 =

(
k2

y + k2
z

)
c2, where the y-direction is along

the interfaces, and the z-direction is normal to it. Additional layer
with 0 < ε < 1 modifies the dispersion relation for SPP, so that the
modes become superluminal, ω < kyc, and can be linearly excited by
the incident wave. We show that in two-layer configuration, the leaky
mode is a quasi-stationary state required for the resonant transmission.
The two-layer configuration supports only the SPP assisted resonant
transmission. Another configuration analyzed in our work is a three
layer structure: two outer layers with negative ε and one layer with
positive ε in between. We call this configuration a double-barrier
structure. In the latter case, the resonant transmission may occur
in two separate regimes. The first regime is related to the excitation
of SPP modes at the interfaces. In this case, the modes are evanescent
in all three regions. The second regime occurs when the waves are
evanescent in the negative ε regions and propagating in the middle
region with positive ε. This regime corresponds to the resonance with
a standing wave in the central region.

In this paper, we analytically derive the resonance conditions
and emphasize the connection between the leaky mode conditions
and the conditions for the resonant transmission through the multi-
layer configuration in vacuum. We show that two conditions are
equivalent. The leaky mode corresponds to a quasi-stationary state
which is decaying in time due to energy radiation into the vacuum from
the structure. The transmission regime corresponds to the scattering
problem with the incident (and reflected) waves on one side and the
outgoing wave on the other side of the structure. At the resonance
(and in absence of dissipation), the reflection is absent, R = 0, and
transmission is ideal, T = 1. The leaky mode regime corresponds to
the same parameters of the structure. The role of the leaky modes
in quantum mechanical systems with barriers were noted long time
ago [31]. Here we also investigate the coupling of resonance modes
in multi-layer configurations which leads to the broadening of the
resonant transmission function.

In Sections 2 and 5, we consider the leaky modes, respectively
in single and double layer configurations. In Sections 3 and 6, we
analyze the resonant transmission in these two configurations. In
Section 4, we analyze the energy transport by evanescent waves and
emphasize that for a single barrier configuration, in both layers the
energy is transported by two linearly independent evanescent modes.
This approach offers an alternative derivation of resonant conditions
as well as a simple derivation for the phase shift of the transmitted
wave. The results are summarized and discussed in Section 7.
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(a) (b)

Figure 1. The schematics of the material layers. (a) The two layer
structure; region 1 — positive epsilon material, region 2 — barrier
region with negative epsilon. The incidence angle larger than critical
are considered, so waves are evanescent in both regions. (b) The three
layer structure; regions 1, 3 — barrier region with negative epsilon,
region 2 — positive epsilon material. Depending on the angle of
incidence, the waves can be evanescent or propagating in the region
2.

2. LEAKY MODES IN TWO-LAYER STRUCTURE

Here we consider a two-layer structure surrounded by the vacuum
regions V 1 and V 2, as in Fig. 1. The layers are characterized by
dielectric constants ε = ε1(ω) and ε = ε2(ω), respectively having the
widths 2a1 and 2a2. To fix the notations, we note that we consider
the electromagnetic wave with the electric field in the incidence (y, z)
plane (p-polarization) E =(0, Ey, Ez) and the magnetic field is parallel
to the interface plane B = (B, 0, 0). All fields do not depend on the
x-direction and have the harmonic dependence in time and y-direction,
∼ exp (−iωt + ikyy). The dissipation is neglected in this paper and the
parameter ky is real. The exponential factor exp (−iωt + ikyy) will be
omitted below for brevity. We assume that ε1 > 0 and ε2 < 0 so that
a second layer is an opaque barrier.

The Maxwell equations lead to the following equation for the p-
polarized modes

ε
d

dz

(1
ε

dB

dz

)
− κ2B = 0, (1)

where

κ2 = k2
y − ε

ω2

c2
, (2)

and ky is the component of wave number in the y-direction parallel
to the interfaces. This equation can be easily solved in each region.
The corresponding solutions are matched at the interfaces using the
continuity of B and (dB/dz)/ε.



298 Smolyakov et al.

In this configuration, the leaky mode is represented by the
outgoing propagating modes in vacuum regions V 1 and V 2

B(z) = Bv1e
−ikv(z+2a1), z < −2a1, (3)

B(z) = Bv2e
ikv(z−2a2), z > 2a2, (4)

and evanescent modes in regions 1 and 2:

B(z) = Ac cosh (κ1(z+a1)+As sinh (κ1(z+a1) , − 2a1 <z<0, (5)
B(z) = Bc cosh (κ2(z−a2)+Bs sinh (κ2(z−a2) , 0<z<2a2, (6)

Here κ0, κv,κ1 and κ2 are given by the expressions k2
v = k2

0 − k2
y,

k2
0 = ω2/c2, κ2

1 = k2
y − ε1k

2
0, and κ2

2 = k2
y − ε2k

2
0.

The dispersion relation for the leaky mode is obtained by matching
solutions across all three interfaces resulting in

η2
η2 sinh(ϕ2)− ikv cosh(ϕ2)
η2 cosh(ϕ2)− ikv sinh(ϕ2)

= −η1
η1 sinh(ϕ1)− ikv cosh(ϕ1)
η1 cosh(ϕ1)− ikv sinh(ϕ1)

, (7)

where ϕ1,2 = 4κ1,2a1,2 and η1,2 = κ1,2/ε1,2.
For finite ϕ1,2 this equation has no solutions with real ω but there

are solutions with complex ω = ω0 + ω(1), where ω(1) has the real
and imaginary part, ω(1) = ω

(1)
r + iγ. Such solutions corresponds to

the quasi-stationary state with the amplitude decreasing in time due
to outgoing energy flux into the vacuum regions, the so called leaky
mode [28].

When the dielectric layers are thick, ϕ1, ϕ2 À 1, the expression
can be reduced to

η1 + η2 = 2η2
η2 + ikv

η2 − ikv
exp (−2ϕ2) + 2η1

η1 + ikv

η1 − ikv
exp (−2ϕ1) (8)

Since ϕ1, ϕ2 À 1, we can consider the right hand side in Eq. (8) as
a small parameter and, in zero order, neglect it. Then, in the lowest
order we find the following dispersion equation

η1 + η2 ≡ κ1

ε1
+

κ2

ε2
= 0. (9)

This a familiar dispersion relation for the SPP mode at the interface
of two semi-infinite regions, (a1,a2) →∞, with dielectric permittivities
ε1 and ε2 [29]. It can be written in the form

k2
0 = k2

y

ε1 + ε2

ε1ε2
. (10)

We assume evanescent modes in regions 1 and 2, which means κ2
1 > 0

and κ2
2 > 0. The latter requires sufficiently large incidence angles,
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k2
y > εω2/c2. [The positive roots are chosen for the localization of

the surface mode so that κ1 > 0 and κ2 > 0.] It follows then, that
two regions should have the dielectric constants of the opposite signs,
ε1ε2 < 0. It is also required that ε1 + ε2 ≤ 0. It is easy to see that for
ε2 < 0, the dielectric constant of the second layer is positive 0 < ε1 < 1.

To find the time rate of the decay of the quasi-stationary mode one
can expand the left hand side in the vicinity of ω0, which corresponds
to the solution of (10), ω = ω0 + ω(1), ω(1) = ω

(1)
r + iγ. After some

algebra we find

ω(1)

ω0
=

2
η2
0 + k2

v

(
η2
0 − k2

v

)
[exp ( −2ϕ1)− exp ( −2ϕ2)]

+2ikvη0 [exp ( −2ϕ1) + exp ( −2ϕ2)]
∆

, (11)

where

∆=k2
0

(
1
ε2
− 1

ε1

)
+

1
ε1

∂`n(ε1)
∂`nω

(
k2

0

2
− k2

y

ε1

)
− 1

ε2

∂`n(ε2)
∂`nω

(
k2

0

2
− k2

y

ε2

)
. (12)

The imaginary part of ω(1) defines the characteristic mode life-time,
γ−1. For Drude model of ε1,2(ω) we find that for ε1 > 0 one has
∂`n(ε1)/∂`nω > 0 while for ε2 < 0 we have ∂`n(ε2)/∂`nω < 0. As a
result the signs of the decrement γ and the wave vector kv are opposite.
It simply shows that the mode will decay or grow, depending on the
direction of the energy flux in vacuum, to or away from the slab, which
are determined by the sign of kv.

3. RESONANT TRANSMISSION FOR THE SINGLE
BARRIER STRUCTURE

To analyze the transmission problem for the single barrier structure
we should assume the incident wave in the vacuum region V 1 (on the
left) and take into account the reflected wave in the same region. Then
the solution in this region takes the form

B(z) = B+
v1e

ikv(z+2a1) + B−
v1e

−ikv(z+2a1). (13)

Here B+
v1 and B−

v1 are amplitudes of the incident and reflected waves.
In the region V 2, the solution remains in the form (4) and Bv2 is the
amplitude of the transmitted wave. After matching of the solutions in
various region one finds

B−
v1 =

r

r0 − r
, (14)
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where r is the reflection parameter

r = η1
η1sinh(φ1) + ikv cosh(φ1)
η1cosh(φ1) + ikv sinh(φ1)

− η2
η2sinh(φ2) + ikv cosh(φ2)
η2cosh(φ2) + ikv sinh(φ2)

, (15)

and
r0 = 2ikvη1

sinh(φ2) + cosh(φ2)
η1cosh(φ2) + ikv sinh(φ2)

, (16)

where φ1,2 are define in Section 2. Zero reflection, r = 0, requires the
condition η1 + η2 = 0 which is fully equivalent to the surface mode
dispersion relation (9). Additional condition φ1 = φ2 is also required.
This condition means [21]

κ1a1 = κ2a2. (17)

The real parameters κ1,2a1,2 characterize the amplitude in-
crease/decrease in regions 1 and 2. Respectively, the amplification
in the region 1 is equal to the amplitude decrease in region 2. We will
call this condition as a matched amplification condition for evanescent
waves, c.f. this with the standard interference condition for the prop-
agating waves k1a1 = k2a2. The condition (17), together with the
surface wave resonance condition (9), actually means that the average
dielectric permittivity of the total structure at the resonance is zero:

ε̄ ≡ ε1a1 + ε2a2 = 0. (18)

The matched amplification condition (17) was earlier obtained for
multilayer structures containing negative ε, negative µ materials [5, 6].
Somewhat analogous condition for evanescent waves also exists in the
problem of superlense [1, 30]. It is worth noting that the resonant
transmission in the evanescent mode regime is a manifestation of
strongly nonlocal response of near-zero-epsilon materials that have
attracted much attention recently [32].

4. EVANESCENT WAVES AND ENERGY TRANSPORT

It is instructive to consider energy transport via the combination of
evanescent waves as in Eqs. (5) and (6). The energy flux is easily
calculated from the Poynting flux

Sz = − c

4π
EyBy, (19)

Consider the magnetic field in the form of the sum of two evanescent
waves

Bx = C exp(−κz) + D exp(κz). (20)
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Here κ is a real (positive) number, while coefficients C and D can be
complex. The electric field is

Ey = −i
c

ω

1
ε

∂Bx

∂z
, (21)

then the time average of Poynting vector takes the form

Sz =
ic

16πω

1
ε

(
−B∗

x

∂Bx

∂z
+ Bx

∂B∗
x

∂z

)
=

icκ

8πω

1
ε

(CD∗ − C∗D) . (22)

It is evident from this expression that a combination of two
evanescent waves with a finite phase shift between the amplitudes of
the waves is required for a finite energy flux, or in other words, the
ratio C/D should have a finite imaginary part for Sz to be finite. To
illustrate the energy transport evanescent waves we consider the two-
layer structure as in Section 2 for large angles k2

y > εω2/c2.
It is convenient to define the solutions in the vacuum region on

the right (incident wave) and the solution in the vacuum region on
the left (transmitted wave) such that they have a common reference
point z = 0. We represent the incident wave as Ψ<

v = Ai exp (ik0z)
in the vacuum region on the left, and the transmitted wave one the
right is represented by Ψ>

v = At exp (ik0z). In both regions 1 and 2,
the waves are evanescent. The explicit form of the wave fields in these
regions is given in Appendix. The solution is constructed from the
pair of symmetric and antisymmetric solutions Ψcc and Ψss given by
Eqs. (A1) and (A2). These solutions exist when both equations for the
SPP resonance (9) and the matched amplification condition (17) are
satisfied. When these conditions are satisfied, from Eqs. (A8), (A10),
and (A12), it follows that the amplitude of the transmitted wave is
related to the amplitude of the transmitted wave by the relation

At = Ai exp [−2ikv(a1 + a2)] , (23)

which demonstrates the 100% transmission. It is also worth noting
that the relation between At and Ai means that at the resonance, the
transmitted wave at z = 2a2 has a zero phase shift with respect to the
incident wave at z = −2a1. The latter is consistent with the effective
dielectric parameter for this structure ε̄ = 0.

5. LEAKY MODES IN TWO-BARRIER STRUCTURE

In this section, we consider a three layer configuration with two
symmetrical barriers 1 and 3, bounded by two semi-infinite vacuum
regions on both sides, as depicted in Fig. 1(b). The barriers with
dielectric constant εb < 0 and width 2b are separated by the region 2
with a dielectric permittivity εa > 0 and the width 2a. We are
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interested in a leaky eigen -mode so that the solutions in the vacuum
regions V 1 and V 2 have the same form as given by Eqs. (3) and (4).
The solutions in regions 1, 2 and 3 are respectively given by the
expressions

B(z)=A1 cosh (κ(z−z1)+A2 sinh (κ(z−z1) , z1−b<z<z1+b, (24)
B(z)=B1 cos (kaz)+B2 (kaz) , − a<z<a, (25)
B(z)=C1 cosh (κ(z−z3)+C2 sinh (κ(z−z3) , z3−b<z<z3+b. (26)

Here κ2 = k2
y − k2

0εb and k2
a = k2

0εa − k2
y, −z1 = z3 = (a + b).

Matching these solutions at interfaces, after some algebra, one gets
the following system of equations

(Bv1 + Bv2)D1 = 0, (27)
(Bv1 −Bv2) D2 = 0. (28)

Here

D1 ≡ sin (kaa) cosh (2κb)− ζ cos (kaa) sinh (2κb)

− ikvεb

κ
(sin (kaa) sinh (2κb)− ζ cos (kaa) cosh (2κb)) , (29)

and

D2 ≡ cos (kaa) cosh (2κb) + ζ sin (kaa) sinh (2κb)

− ikvεb

κ
(cos (kaa) sinh (2κb) + ζ sin (kaa) cosh (2κb)) .(30)

It is easy to see that there are two independent eigen-mode dispersion
equations corresponding to symmetric and anti-symmetric solutions.
The dispersion equation D1 = 0, describes the odd modes with
Bv1 = −Bv2, and the dispersion equation D2 = 0 describes the even
modes with Bv1 = Bv2. These dispersion equations do not have the
solutions with real ω except in the limit of thick barriers, κb → ∞.
In the latter case, sinh (2κb) → exp (2κb), cosh (2κb) → exp (2κb), and
one gets the standard equations for a finite depth well problem

tan (kaa) = ζ, (31)

tan (kaa) = −1
ζ
. (32)

respectively for odd and even eigen-functions, where ζ = κεa/ (εbka).
These dispersion equations describe the standard symmetric and
antisymmetric modes of a finite depth well bounded by infinite barriers.
For the finite width barriers, these solutions become leaky modes that
decay in time due to energy tunneling through the finite barriers. The
expressions for the decay rates of such quasistationary modes are given
in the Appendix B.
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6. RESONANT TRANSMISSION IN A TWO-BARRIER
STRUCTURE

Now we consider the resonant transmission in the two barrier structure
as in Fig. 1(b). It is straightforward to derive general equations for
transmission and reflection coefficients in this geometry. Here we only
investigate the solution for the resonant case when T = 1.

For the analysis of the resonant transmission problem for T = 1
we assume that there is no reflected wave in region V 1. Then the
solutions in vacuum regions V 1 and V 2 are

B(z) = Bv1e
ikv(z−z1+a), z < −a− 2b, (33)

B(z) = Bv2e
ikv(z−z3−a), z > a + 2b. (34)

The solutions in the regions 1, 2 and 3 are given by the
expressions (24)–(26). Matching all these solutions at interfaces, after
some algebra, one gets the following system of equations

Bv1h11 + Bv2h12 = 0, (35)
Bv1h21 + Bv2h22 = 0. (36)

Here, the coefficients are defined by the expressions

h11 = cos (kaa) cosh (2κb) + ζ sin (kaa) sinh (2κb)

+i
kvεb

κ
[cos (kaa) sinh (2κb) + ζ sin (kaa) cosh (2κb)] , (37)

h12 = − cos (kaa) cosh (2κb)− ζ sin (kaa) sinh (2κb) (38)

+i
kvεb

κ
[cos (kaa) sinh (2κb) + ζ sin (kaa) cosh (2κb)] , (39)

h21 = sin (kaa) cosh (2κb)− ζ cos (kaa) sinh (2κb)

+
ikvεb

κ
(sin (kaa) sinh (2κb)− ζ cos (kaa) cosh (2κb)) , (40)

h22 = sin (kaa) cosh (2κb)− ζ cos (kaa) sinh (2κb)

− ikvεb

κ
(sin (kaa) sinh (2κb)− ζ cos (kaa) cosh (2κb)) . (41)

Solubility condition for the system (35), (36) is h11h22−h12h21 = 0.
This equation is equivalent to the resonant transmission condition
T = 1. This equation can be transformed to the form

sin (2kaa) cosh (4κb)
[
1− ζ2

] [
1 +

k2
vε

2
b

κ2

]
− 2ζ cos (2kaa) sinh (4κb)

[
1 +

k2
vε

2
b

κ2

]
+ sin (2kaa)

[
1 + ζ2

] [
1− k2

vε
2
b

κ2

]
= 0. (42)
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This equation describes the resonant transmission of two different
types. One is related to the standing waves resonantly excited in the
region 2. For this case, one can get a simple resonance condition in the
limit of thick barriers, κb À 1. In this limit, the last term in (42) can
be neglected and one gets from (42)

tan (2kaa) =
2ζ

1− ζ2
. (43)

It is easy to see that this equation has two solutions: tan (kaa) = ζ and
tan (kaa) = −1/ζ which exactly correspond to the leaky eigen-modes
solutions (31) and (32). It is interesting to note that the existence
of the leaky modes in a similar two barrier configurations (with inner
parabolic well) was noted in Ref. [31].

Another type of resonance is related to the SPP excitation. In this
case, the waves in the region (2) are also evanescent and ka = iκa where
κa is real. There are two roots of (42) corresponding to the symmetric
and antisymmetric solutions. In general, both roots are close to the
solution defined by (9). There is a special situation when the average
permittivity of the structure is zero, ε̄ = 0. In the latter case, one of
the roots coincides exactly with (9) and there opens a wide resonant

V1                                        1                 2                 V2

15

10

5

0

-20     -15     -10        -5         0         5        10

Figure 2. The resonant eigen-
mode in a two-layer structure.
The width of the first layer
2a1 = 10c/ω , and the width
of the second layer 2a2 = 3c/ω,
ε1 = 0.3, ε2 = −1.

Barriers

V1                           1        2                        3                  V2

6

4

2

0

-2

-4

-6

-20           -10              0              10             20

Figure 3. The resonant eigen-
mode in a two-barrier structure.
The barrier layers 1 and 3 have the
width 2b = c/ω, with εb = −6;
the width of the middle layer 2 is
2a = 11c/ω, with εa = 0.7. There
is an antisymmetric propagating
mode between the barriers. The
resonant conditions are satisfied for
kyc/ω = 0.2668.
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region. Indeed, the surface wave dispersion Eq. (9) can be put in the
form ζ = i. The last term in (42) then disappears and (42) takes the
form

sinh(2κaa− 4κb) = 0. (44)

-20 -10 0 10 20
-15

-10

-5

0

5

10

z

R
e

(B
 ) x

Figure 4. The resonant eigen-
mode in a two-barrier structure.
There is a symmetric propagating
mode between the barriers. The
resonant conditions are satisfied
for kyc/ω = 0.69363, εb = −6,
εa = 0.7, 2a = 11c/ω, 2b = c/ω.
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5

z
R

e
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 ) x

Figure 5. The resonant eigen-
mode in a two-barrier structure
in the evanescent regime. There
is an antisymmetric evanescent
mode between the barriers. The
resonant conditions are satisfied
for kyc/ω = 0.88115.
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Figure 6. The resonant eigen-
mode in a two-barrier structure
in the evanescent regime. There
is a symmetric evanescent mode
between the barriers. The res-
onant conditions are satisfied for
kyc/ω = 0.89655.
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Figure 7. The resonant eigen-
modes of a two-barrier structure
as a function of the incidence
angle θ = arcsin(ky/k0). Two
resonances for lower ky corre-
sponds to the propagating modes
and two resonances for larger ky

are related to the surface wave
modes.
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Figure 8. The coupling of the
surface wave resonances for ε̄ 6= 0:
εb = −5.6, εa = 0.7, 2a = 8c/ω,
2b = 0.5c/ω.
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Figure 9. The coupling of the
surface wave resonances for ε̄ = 0:
εb = −5.6, εa = 0.7, 2a = 8c/ω,
2b = c/ω.

The surface wave resonant amplification condition for this configura-
tion then

2κaa = 4κb. (45)

This condition together with the surface wave resonant condition (9)
means that the effective dielectric parameter of the total structure is
zero, ε̄ ≡ 4εbb + 2εaa = 0, similar to the situation for a two-layer
structure of Section 4. There are multiple degenerated roots in the
latter case and the resonant transmission region becomes wide as in
Fig. 9.

7. DISCUSSION AND CONCLUSION

We have analyzed the resonant transmission in multi-layer structures
which include layers of opaque material with negative dielectric
permittivity, ε < 0. It is shown that the resonant transmission (T = 1)
(in absence of dissipation) occurs near the resonant eigen-modes of
the structures. In general, there are two basic types of resonances.
The first one is based on the excitation of the SPP modes localized
at the interface of two regions with opposite signs of the dielectric
constant. In this case, waves are evanescent in all layers. There are
two required conditions for the resonant transmission for T = 1: one is
the SPP resonance condition given by the equation and the other one,
is the matched amplification condition for the evanescent waves given
by (17). Since the surface wave modes require finite ky, this type of
resonance tunneling may occur only for a finite incidence angle θ 6= 0,
sin θ = ky/k0. The profile of the magnetic field at the resonance for
a single barrier configuration is shown in Fig. 2. The relation of the
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resonant transmission to the SPP guided modes has also been noted
in [17].

Another type of resonance occurs when the waves are evanescent
in the region of negative ε and the wave is propagating in other regions.
The resonant transmission with T = 1 occurs when the standing wave
is excited in the propagating region. This regime is similar to the
standard Fabry-Perot resonances. These resonances are also possible
for normal incidence, ky = 0. Therefore, the double-layer structure in
Fig. 1(a) allows only the surface wave resonance, while the three layer
structure, as in Fig. 1(b), have both SPP and Fabry-Perot resonances.
The profiles of the magnetic field at the resonance for a two barrier
configuration are shown in Figs. 3–6. The regime when the standing
wave is excited in the propagating layer 2 is shown in Figs. 3 and 4,
respectively for antisymmetric and symmetric cases. The regime when
the waves are evanescent in all three regions is shown in Figs. 5 and 6,
respectively for antisymmetric and symmetric cases.

As it was noted above, for the double layer structure, the resonant
transmission requires two conditions: (9) and (17). The frequency of
the incident wave should match with the frequency of the surface wave
(9). This condition therefore determines the value of ω/ky, or the
incidence angle. An additional constraint (17), a condition of matched
amplification of the evanescent waves, is also required to achieve T = 1
transmission. It is interesting to note that three layer structure is less
constrained. The resonant transmission condition T = 1 is given by a
single Eq. (42). The surface mode resonance at the ζ = i corresponds
to the symmetric solution (Fig. 6). There is also an antisymmetric
solution (Fig. 5) which occurs near the point ζ = i.

In general, the three-layer structure can have several resonances
as shown in Fig. 7, where there are two resonances associated with the
propagating modes in the region 3 (for lower ky), and two resonances
associated with SPP modes. Additional resonances associated with
propagating modes will appear as the width of the propagating
region 3 increases in accordance with general properties of the eigen-
states of the quantum mechanical potential well of a finite depth,
which are described by Eqs. (31) and (32). Therefore there can be
multiple resonances for the regimes when the mode in the region 2 is
propagating. Additional resonances occur due to existence of multiple
eigen-modes in a finite depth well when the width of the well is
increasing. When additional barriers are added to the system, new
resonances will appear due to the mode splitting cause by coupling
across the tunneling regions. Such multiple resonances in a system
with left handed martials were considered in [33].

The SPP resonance described by the condition (9) has an
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interesting property in a system with finite width layer. In fact, the
relation (9) is a condition for the SPP at the interface of two half-
infinite media. For a finite width layer, as in our situation, the surface
waves are excited on both sides. The interaction of the surface wave
localized on opposite sides results of the splitting of the resonance into
two [34]. Two resonances correspond to symmetric and antisymmetric
solutions that are formed due to coupling of the surface waves localized
at each boundary. The two resonances near (9) are shown in Fig. 8 for
parameters when ε̄ 6= 0. The surface waves coupling takes a peculiar
form when ε̄ = 0. As it was discussed in Section 6, when the condition
ε̄ = 0 is satisfied, the total composite structure has an exact resonance
at (9), despite of the finite width of the barrier. Then, the ε̄ = 0
condition result in a relatively wide region of high transparency near
the resonant value given by (9). This situation is shown in Fig. 9.

The resonant properties of the multi-layer structures studied in
this paper can be of interest for various plasmonic applications. It
is important to note that in the considered configurations neither
SPP modes defined by the dispersion relation (9) nor standing wave
resonances are true stationary eigen-modes. Rather, these modes
are quasi-stationary leaky modes with a finite life time defined as
an inverse of the leaky mode decay rate, τ−1 ∼ Im (ω). The leaky
mode regimes (or equivalently, the resonant transmission regimes) are
characterized by the strong enhancement of the wave amplitude inside
the structure [4, 13]. The strong enhancement of the wave amplitude
is evident in Figs. 2, 5 and 6. Such regimes, which can be realized at
the dimensions below the half wavelength, possibly can be used as a
laser cavity resonator. The control of the dielectric permittivity, in
particular, regimes with 1 > ε > 0, can be achieved with the external
electric field applied to a semiconductor materials.

The properties of the resonances studied in this paper are
similar to general resonant properties of multi-barrier structures in
quantum mechanic and therefore are of interest for the problem
of superliminality and Hartman effect. We conjecture that the
characteristic mode life-time (characteristic time of the leaky mode
decay, γ−1) is an effective measure of the signal propagation in the
tunneling problem. It is expected that the effective propagation
(tunneling) time will further increase in the resonant regimes due
to the increased time of the energy accumulation for the evanescent
waves [35]. As it is well known, the dielectric permittivity ε cannot
be negative unless it depends on ω. It is worth noting here that in
calculations of the leaky mode life-time (effective propagation time) is
it critical to take into account the dispersion of the media, ε = ε (ω).
Our calculations shows that the effects of dispersion significantly affect
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the leaky mode decay time and the corresponding propagation time.
Such modifications are important for Hartman effect.
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APPENDIX A. RESONANT EVANESCENT MODE
SOLUTION WITH T = 1 FOR A DOUBLE LAYER
STRUCTURE

One can easily construct a solution across the two layers that illustrates
the nature of the resonant transmission. It is convenient to build
such a solution from the odd and even functions which are symmetric
with respect to the middle point in each region, respectively points
z = a2 and z = −a1. There are two such solutions in each
region Ac cosh (κ1(z + a1)) and As sinh (κ1(z + a1)) −2a1 < z < 0,
and Cc cosh (κ2(z − a2)) and Cs sinh (κ2(z − a2)) for 0 < z < 2a2,
respectively. The combination of both even solutions gives for the
whole region

Ψcc =
{

Ac cosh (κ1(z + a1)) , −2a1 < z < 0
Cc cosh (κ2(z − a2)) , 0 < z < 2a2

, (A1)

Ψss =
{

As sinh (κ1(z + a1)) , −2a1 < z < 0
Cs sinh (κ2(z − a2)) , 0 < z < 2a2

. (A2)

Matching conditions at z = 0 give the following equations for Ψcc:

Ac cosh(κ1a) = Cc cosh(κ2a2)
k1

ε1
As sinh(κ1a1) = −k2

ε2
Cs sinh(κ2a2),

(A3)
and respectively for Ψss:

As sinh(κ1a1) = −Cs sinh(κ2a2)
k1

ε1
Ac cosh(k1a1) =

k2

ε2
Cc cosh(κ2a2).

(A4)
The matching conditions (A3) and (A4) impose the following
constraints:

κ1

ε1
tanh(k1a1) = −κ2

ε2
tanh(κ2a2), (A5)

and
κ1

ε1
coth(k1a1) = −κ2

ε2
coth(κ2a2) (A6)
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Since our solutions (A1) and (A6) all real, we will need both of
them to maintain the finite energy flux. For the solutions to exist, the
constraints (A5) and (A6) have to be consistent with each other which
requires the following conditions

κ1

ε1
+

κ2

ε2
= 0, κ2a2 = κ1a1. (A7)

The first equation is easily recognized as the dispersion relation
for the surface mode at the interface between two layers with ε1 and
ε2. The second equation is a matched amplification condition obtained
earlier (17).

To illustrate the T = 1 tunneling regime and investigate the phase
delay across the two layers we use the solutions Ψss and Ψcc.

Matching at z = −2a1 gives

Ai exp ( −2ik0a1) = Ac cosh (k1a1)−As sinh(k1a1), (A8)

ik0Ai exp ( −2ik0a1) =
k1

ε1
( −Ac sinh (k1a1) + As cosh(k1a1)) , (A9)

while the matching at z = 2a2 gives

At exp (2ik0a2) = Bc cosh (k2a2) + Bs sinh(k2a2), (A10)

ik0At exp (2ik0a2) =
k2

ε2
(Bc sinh (k2a2) + Bs cosh(k2a2)) . (A11)

Matching conditions at z = 0 give

Ac cosh (k1a1)+As sinh(k1a1)=Bc cosh (k2a2)−Bs sinh(k2a2), (A12)
κ1

ε1
[Ac cosh (k1a1) + As sinh(k1a1)]

=
κ2

ε2
[−Bc sinh (k2a2) + Bs cosh(k2a2)] , (A13)

Eqs. (A8), (A10), and (A12), result in the relation (23) that
demonstrates T = 1 transmission.

APPENDIX B. LEAKY MODES DECAY RATES FOR
THE THREE LAYER STRUCTURE

In the limit of thick barriers κb À 1, one can develop a perturbative
solution for decaying leaky modes with decreasing in time amplitudes.
Assuming that φ = 2κb is large, φ À 1, one gets from Eq. (29)

D10

(
1− ikvεb

κ

)
+ 2ζexp (−2iφ) cos (kaa)

(
1 +

ikvεb

κ

)
= 0, (B1)
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for odd modes, and from Eq. (30) for even modes

D20

(
1− ikvεb

κ

)
+ 2ζexp (−2iφ) cos (kaa)

(
1 +

ikvεb

κ

)
= 0. (B2)

In the lowest order, the eigen mode frequency are defined from
the equations D10 = 0 and D20 = 0, respectively for the odd and even
modes. Here

D10 ≡ tan (kaa)− ζ, (B3)

and
D20 ≡ tan (kaa) +

1
ζ
. (B4)

The next order defines the small correction to the real frequency and
small decrement ω = ω0 + ω(1), ω(1) = ω

(1)
r − iγ.

ω
(1)
odd = 2

(
ζexp (−2iφ) cos (kaa)

(
1 +

ikvεb

κ

)
2ζexp (−2iφ)

cos (kaa)
(

1− ikvεb

κ

)−1 ∂D10

∂ω

)

ω=ω0

, (B5)

ω(1)
even = 2

(
ζexp (−2iφ) cos (kaa)

(
1 +

ikvεb

κ

)
2ζ exp (−2iφ)

cos (kaa)
(

1− ikvεb

κ

)−1 ∂D20

∂ω

)

ω=ω0

. (B6)
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