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Abstract—Monopulse antennas form an important methodology
of realizing tracking radar. They are based on the simultaneous
comparison of sum and difference signals to compute the angle-
error and to steer the antenna patterns in the direction of the
target (i.e., the boresight direction). In this study, we consider the
synthesis problem of difference patterns of monopulse antennas in
the framework of Multi-objective Optimization (MO). The synthesis
problem is recast as an MO problem (for the first time, to the best
of our knowledge), where the Maximum Side-Lobe Level (MSLL) and
Beam Width (BW) of principal lobe are taken as the two objectives to
be minimized simultaneously. The approximated Pareto Fronts (PFs)
are obtained for different number of elements and sub-arrays using a
recently developed and very competitive Multi-Objective Evolutionary
Algorithm (MOEA) called MOEA/D-DE that uses a decomposition
approach for converting the problem of approximation of the PF into
a number of single objective optimization problems. This algorithm
employs Differential Evolution (DE), one of the most powerful real
parameter optimizers in current use, as the search method. The quality
of solutions obtained is compared with the help of the trade-off graphs
(plots of the approximated PF) generated by MOEA/D-DE on the
basis of the two objectives to investigate the dependence of the number
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of array-elements and the number of sub-arrays on the final solution.
Then we find the best compromise solutions for 20 element arrays
and compare the results with standard single-objective algorithms such
as the Differential Evolution (DE) and Particle Swarm Optimization
(PSO) and hybrid techniques like Hybrid Contiguous Partition Method
(HCPM) that has been reported in literature so far for the synthesis
problem. Our experimental results indicate the MOEA/D-DE yields
much better final results as compared to the standard single-objective
and hybrid approaches over all the test cases covered here.

1. INTRODUCTION

The conventional way of enhancing angular accuracy amounts to taking
several measurements while the antenna rotates through an area of
interest, and then to compare the results. However, this method
has its drawbacks even if the antenna is properly calibrated. As the
measurements are taken one after the other, the target may shift to
another place in-between and the aspect angle may change too. This
change of aspect angle can lead to significant variation in the strength
of the echo signal (this is called fluctuation) and render a comparison
of consecutive measurements utterly useless. The monopulse technique
was invented to eliminate this source of measurement error. A
monopulse antenna [1–4] also takes several measurements with beams
pointing into different directions, but as the name implies, these
measurements are taken simultaneously, with a single pulse. The
word “monopulse” implies that with a single pulse, the antenna can
gather angle information, as opposed to spewing out multiple narrow-
beam pulses in different directions and looking for the maximum
return. Therefore, this technique can determine angle very precisely.
Monopulse antennas are in widespread use for military applications like
target-tracking radars and missile-seeker heads. Civilian applications
include automotive radars, secondary radars for air traffic control and
control systems, which need to know the precise whereabouts of a TV-,
GPS- or other type of satellite [1, 5].

A key issue in the design of monopulse antennas is that the
sum pattern and the difference pattern have to be synthesized by the
same array configuration. In this context Lopez et al. [6] proposed
an interesting method that is based on a subarray configuration and
uses a standard binary Genetic Algorithm (GA) to determine the
weights of the subarrays. While one of the excitation sets (for the
sum or difference pattern) is assumed to be known (and optimum),
the other set is synthesized by using a subarray configuration to
reduce the feeding complexity. The optimization in [6] has been
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performed by considering a cost function constituted with a single term
penalizing the MSLL exceeding a prescribed value. Caorsi et al. [7]
tackled the same synthesis problem with the Differential Evolution
(DE) method [8], in which hybrid chromosomes (constituted by real
and integer genes) are used to avoid the need for coding and decoding
the real variables (weights of the subarrays). In their method, an
objective function is formulated and minimized to determine for each
array element, the corresponding subarray, the weights of all subarrays,
and the excitation sets of the difference pattern. The approach of [7]
is extended by Massa et al. [8] to the optimization of the directivity of
the difference pattern by means of a hybrid real/integer DE algorithm.

Recently, the use of a hybrid approach called simulated annealing
convex programming (Hybrid-SA) method [9] for the synthesis of
subarrayed monopulse linear antennas has improved performance in
shaping compromise patterns with respect to the previous results. In
order to overcome the considerable computational costs associated with
the method proposed in [9], Manica et al. presented an innovative
approach in [10] based on an optimal pattern-matching technique called
the Contiguous Partition Method (CPM) [11], which was integrated in
an iterative procedure considering different reference patterns to deal
with constraints on the Side Lobe Levels (SLL), as well. In [12, 13]
Rocca et al. presented a hybrid approach (Hybrid-CPM method),
which integrates the CPM with a gradient-based Convex Programming
(CP) procedure [9] to profitably benefit from the positive features of
both CPM and CP, is carefully described and validated. Recently for
dealing with an excitation matching method, Rocca et al. [14] presented
a global optimization strategy for the optimal clustering in sum-
difference compromise linear arrays. Starting from a combinatorial
formulation of the problem at hand, the authors use the Ant Colony
Optimization (ACO) metaheuristics for determining the subarray
configuration expressed as the optimal path inside a directed acyclic
graph structure modeling the solution space. Some other recent and
significant research efforts in this direction can be found in [15–21].

As can be perceived from a literature survey, the design of
monopulse antenna arrays can be formulated in several possible ways
and with emphasis on various aspects of the final output expected.
Under such circumstances there may not exist a single optimal solution
but rather a whole set of possible solutions of equivalent quality [22].
A natural choice for handling this kind of design problems is to use
Multi-objective Optimization (MO) algorithms [23] that deal with such
simultaneous optimization of multiple, possibly conflicting, objective
functions. To the best of our knowledge, there has been no research
work reporting the design of monopulse antenna arrays from an MO
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perspective. This article can be treated as a first humble attempt
towards this direction.

In this study, we employ a decomposition-based MOEA, called
MOEA/D-DE [24, 25], that ranked first among 13 state-of-the-art
MOEAs in the unconstrained MOEA competition held under the IEEE
Congress on Evolutionary Computation (CEC) 2009 [26]. MOEA/D-
DE uses Differential Evolution (DE) [27, 28] as its main search strategy
and decomposes an MO problem into a number of scalar optimization
sub-problems to optimize them simultaneously. Each sub-problem
is optimized by only using information from its several neighboring
sub-problems and this feature considerably reduces the computational
complexity of the algorithm. Here MOEA/D-DE is used for two
purposes: firstly to design monopulse arrays that could simultaneously
minimize the Maximum Side-Lobe Level (MSLL) and principal lobe
Beam Width (BW), and secondly to study the effects of number
of elements and number of subarrays on the performance of the
antenna array by observing the shape of the approximation of optimal
PFs generated with MOEA/D-DE for various combinations of these
two numbers. For the multi-objective design of monopulse array, a
fuzzy membership function based approach described in [29] is taken
to select the best compromise solution from the approximated PF.
Comparison with the single objective design results with DE, another
real parameter optimizer of current interest, called Particle Swarm
Optimization (PSO) [30] and a Hybrid Contiguous Partition Method
(HCPM) [12, 13] reflects the superiority of the multi-objective approach
in terms of final accuracy of design results. Since multi-objective
approach is superior to single objective cases where more than one
design objectives are combined through weighted sum, the trade-off
curves generated by a reliable MO algorithm, like MOEA/D-DE, can
provide a means of identifying the optimal number of design variables
(through number of elements and number of subarrays). To the best
of our knowledge, such study is undertaken here for the first time in
the related area.

2. FORMULATION OF THE DESIGN PROBLEM

An antenna array is a configuration of individual radiating elements
that are arranged in space and can be used to produce a directional
radiation pattern. For a linear antenna array with 2N isotropic
radiators the array factor can be expressed as below:

AF (θ) =
−1∑

n=−N

an·ej(n+ 1
2)kd cos θ +

N∑

n=1

an·ej(n− 1
2)kd cos θ, (1)
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where an is the excitation of the nth radiating elements, k is the
wave number of the medium in which the antenna is located, d is
the distance between the elements, and θ defines the angle at which
AF (θ) is calculated with respect to a direction orthogonal to the
array. The required sum pattern is obtained by the excitations as

n,
n = −N, . . . ,−1, 1, . . . , N , which are assumed to be symmetric about
the array centre and fixed. Thus we will have as

n = as−n. The
excitations are obtained by using the Dolph-Chebyshev method [31].
Using the symmetry property the array factor reduces to:

AFs(θ) =
N∑

n=1

as
n · cos

[
1
2

(2n− 1) · kd · cos θ

]
. (2)

Excitations for the difference pattern are obtained by:

ad
n = as

n

P∑

p=1

δcnpgp n = 1, 2, . . . , N. (3)

δcnp represents the Kronecker delta function [32], i.e., δcnp = 1 if cn = p,
otherwise δcnp = 0. If cn = 0, then ad

n = as
n. The subarrayed geometry

of the linear monopulse array has been schematically shown in Figure 1.
In order to obtain the difference pattern, the excitations must be anti-
symmetric, i.e., as

n = −as−n. Thus the array factor for the difference
pattern reduces to expression (4).

AFd(θ) =
N∑

n=1

ad
n · sin

[
1
2

(2n− 1) · kd · cos θ

]
. (4)

AFd(θ) is a function of θ which is symmetric about 0◦. Let θmax be the
angle at which AFd(θ) attains global maxima. We calculate AFd(θ)
for discrete values of θ picked up from the interval ψ = [0, π/2]. Let
the discrete steps in which AFd(θ) is calculated be ∆θ.

For obtaining multi-objective formulation of the present problem
we need to find the MSLL and the width of the principal lobe. MSLL
is taken as the decibel level of the maximum sidelobe. To calculate
MSLL, we first calculate where the array factor reaches local maxima,
and then the maximum value of all the local maxima gives us the
SLL value. Let, ζ = [θ ∈ ψ|{AFd(θ) > AFd(θ −∆θ)}Λ{AFd(θ) >
AFd(θ + ∆θ)}Λ{θ 6= θmax}] be the set of angles where local maxima of
AFd(θ) occur. One null of the principal lobe is located at 0◦ because
of the anti-symmetric property of difference pattern. Let:

Φ={θ ∈ ψ |AFd (θ)<AFd (θ −∆θ) Λ AFd (θ)<AFd (θ+∆θ) Λθ 6= 0◦}
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Figure 1. Geometry of subarrayed linear array.

be the set of angles where local minima of AFd(θ) is reached. Let the
local minimum closest to 0◦ be α. Therefore α = min(Φ). Now we are
in a position to define the two objective functions:

f1 = 10 log10

(
max

(
AFd (θmax)

AFd (ζ)

))
dB. (5a)

f2 = min (Φ) degrees. (5b)

The first objective function f1 actually deals with the Maximum
Sidelobe Level. It first takes the ratio of the maximum array factor
obtained and the array factor obtained at the maximum sidelobe.
The maximum array factor is given by AFd (θ) and the array factor
at the angle of maximum sidelobe is AFd (ζ). The second objective
function f2 stores the beamwidth of the array pattern. To calculate
the beamwidth we find the angles Φ where the array factor is a
minimum. The angle which belongs to Φ and is closest to 0◦ is the
angle corresponding to one end of the primary lobe. The other end
of primary lobe is 0◦ by virtue of antisymmetric property of difference
pattern.

3. THE MOEA/D-DE ALGORITHM-AN OUTLINE

Due to the multiple criteria nature of most real-world problems, Multi-
objective Optimization (MO) problems are ubiquitous, particularly
throughout engineering applications. As the name indicates, multi-
objective optimization problems involve multiple objectives, which
should be optimized simultaneously and that often are in conflict
with each other. This results in a group of alternative solutions
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which must be considered equivalent in the absence of information
concerning the relevance of the others. The concepts of dominance
and Pareto-optimality may be presented more formally in the following
way [33, 34]:

3.1. General MO Problems

Definition 1: Consider without loss of generality the following
multi-objective optimization problem with D decision variables x
(parameters) and n objectives y:

Minimize : ~Y = f
(

~X
)

= (f1(x1, . . . , xD), . . . , fn(x1, . . . , xD)), (6)

where ~X = [x1, . . . , xD]T ∈ P and ~Y = [y1, . . . , yn]T ∈ O and ~X

is called decision (parameter) vector, P is the parameter space, ~Y is
the objective vector, and O is the objective space. A decision vector
~A ∈ P is said to dominate another decision vector ~B ∈ P (also written
as ~A ≺ ~B for minimization) if and only if:

∀i ∈ {1, . . . , n} : fi( ~A) ≤ fi( ~B)∧∃j ∈ {1, . . . , n} : fj( ~A) < fj( ~B) (7)

Based on this convention, we can define non-dominated, Pareto-
optimal solutions as follows:
Definition 2: Let ~A ∈ P be an arbitrary decision vector.

(a) The decision vector ~A is said to be non-dominated regarding
the set P ′ ⊆ P if and only if there is no vector in P ′ which can dominate
~A.

(b) The decision (parameter) vector ~A is called Pareto-optimal if
and only if ~A is non-dominated regarding the whole parameter space
P.

3.2. The MOEA/D-DE Algorithm

Multi-objective evolutionary algorithm based on decomposition was
first introduced by Zhang and Li in 2007 [35] and extended with
DE-based reproduction operators in [24, 25]. Instead of using non-
domination sorting for different objectives, the MOEA/D algorithm
decomposes a multi-objective optimization problem into a number of
single objective optimization sub-problems by using weights vectors λ
and optimizes them simultaneously. Each sub-problem is optimized
by sharing information between its neighboring sub-problems with
similar weight values. MOEA/D uses Tchebycheff decomposition
approach [36] to convert the problem of approximating the PF into
a number of scalar optimization problems. Let ~λ1, . . . , ~λN be a set of
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evenly spread weight vectors and ~Y ∗ = (y∗1, y
∗
2, . . . , y

∗
M ) be a reference

point i.e., for minimization problem, y∗i = min{fi( ~X)| ~X ∈ Ω} for each
i = 1, 2 . . . M . Then the problem of approximation of the PF can be
decomposed into N scalar optimization subproblems by Tchebycheff
approach and the objective function of the j-th subproblem is:

gte( ~X|~λj , ~Y ∗) = max
1≤i≤M

{
λj

i |fi(x)− y∗i |
}

, (8)

where ~λj = (λj
1
, . . . , λj

M
)T , j = 1, . . ., N is a weight vector i.e., λj

i
≥ 0

for all i = 1, 2, . . ., m and
m∑

i=1
λj

i = 1. MOEA/D minimizes all these

N objective functions simultaneously in a single run. Neighborhood
relations among these single objective subproblems are defined based
on the distances among their weight vectors. Each subproblem is
then optimized by using information mainly from its neighboring
subproblems. In MOEA/D, the concept of neighborhood, based on
similarity between weight vectors with respect to Euclidean distances,
is used to update the solution. The neighborhood of the i-th
subproblem consists of all the subproblems with the weight vectors
from the neighborhood of ~λi. At each generation, the MOEA/D
maintains following variables:

1. A population ( ~X1, . . . , ~XN ) with size N , where ~Xi is the current
solution to the i-th subproblem.

2. The fitness values of each population corresponding to a specific
subproblem.

3. The reference point ~Y ∗ = (y∗1, y
∗
2, . . . , y

∗
M ), where y∗i is the best

value found so far for objective i.

4. An external population (EP), which is used to store non-
dominated solutions found during the search.

The MOEA/D-DE algorithm is schematically presented in
Table 1.

4. STUDY OF TRADE-OFF CURVES FOR DESIGNING
MONOPULSE ANTENNA

This section is primarily meant to study how the parameters such as
number of elements and number of subarrays affect design of monopulse
antennas in terms of two important figures of merit: the BW and
MSLL. For a fixed number of elements we can use an MO algorithm to
decide the number of subarrays that produces a good trade-off between
the two design objectives. Then we fix the number of elements and
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Table 1. The MOEA/D-DE algorithm.

1. Initialization Initialize the External Population (EP)

Compute the Euclidean distances between any two

weight vectors and find out the T closest weight vectors

to each weight vector where T is the neighborhood size.

Randomly generate an initial population ~X1, . . . , ~XN

and evaluate the fitness values.

Initialize the reference points by a problem-specific method.

2.Update Reproduction: reproduce the offspring ~Ui corresponding to

parent ~Xi by DE/rand/1/bin scheme (Page 37–42, [28]). For

j-th component of the i-th vector: ui,j = xri
1,j

+ F · (xri
2,j

−xri
3,j

), with probability Cr = xj,i, with probability 1− Cr

Repair: Repair the solution if ~U is out of the boundary and

the value is reset to be a randomly selected value inside

the boundary.

Update of reference points, if the fitness value of ~U is better

than the reference point.

Update the neighboring solutions, if the fitness value of ~U

is better.

Update of EP by removing all the vectors that are dominated

by ~U and add ~U to EP if no vector in EP dominates it.

3. Termination

Criteria
If stopping criteria is satisfied, then stop and output EP.

Otherwise, go to Step 2

number of subarrays to find the best solution from the PF considering
the same two design objectives, but this is taken up in Section 6. In
this section we will investigate the effects of the number of elements
and subarrays on the PF and thus on the final design results obtained
through MOEA/D-DE.

The best compromise solution was chosen from the OPF using the
method described in [13]. The ith objective function fi is represented
by a membership function µi defined as

µi =





1 fi ≤ fmin
i

fmax
i −fi

fmax
i −fmin

i
fmin

i < fi < fmax
i

0 fi ≥ fmax
i

(9)

where fmin
i and fmax

i are the minimum and maximum value of the ith
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objective solution among all nondominated solutions, respectively.
For each nondominated solution q, the normalized membership

function µq is caculated as:

µq =

Nobj∑
i=1

µq
i

Ns∑
k=1

Nobj∑
i=1

µk
i

, (10)

where Ns is the number of non-dominated solution. The best
compromise is the one having the maximum value of µq.

While running MOEA/D-DE, in all cases, for the DE operator we
took F = 0.5, CR = 1, distribution index η = 20, and the mutation
rate pm = 1/D as per [24]. In what follows we report the best results
obtained from a set of 25 independent runs of the algorithm where each
run was continued up to 3× 105 Function Evaluations (FEs).

4.1. Case 1: 20 Element Array

Fixing the number of elements to 20, we run MOEA/D-DE varying the
number of subarrays P from 2 to 10 in steps of 2. The corresponding
approximated PFs have been shown in Figure 2.

A close inspection of Figure 2 shows that the best trade-off can be
achieved for 10 subarrays as points near the knee of the approximated
PF are closest to the origin corresponding to least values of MSLL and
BW in comparison to the trade-off curves obtained with other numbers
of subarrays. The best compromise solution is chosen from the PFs
using the fuzzy based method as described. The solution for P = 6 is
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also sufficiently good. Beamwidth of 15.95◦ and MSLL of −38.78 dB
is obtained compared to 15.35◦ and −40.78 dB for 10 subarrays. We
could go for 6 subarrays because it gives sufficiently low beamwidth
and MSLL. Increasing the number of subarrays improves the result
slightly at the cost of design complexity.

4.2. Case 2: 40 Element Array

Figures 3 and 4 show the trade-off curve obtained for 40 element array
with number of subarrays = 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20. We
have presented the best compromise solution in Table 3. In comparison
to 20 element array it is clearly evident that 40 element array patterns
have very narrow beamwidth. From Table 3 we see that with lesser
number of subarrays sufficiently low SLLs are not obtained. Minimum
MSLL is obtained for 20 subarrays but it is only 3.69 dB lower than
that for 14 subarrays and 0.69 dB lower than for 12 subarrays. So for
designing a 40 element monopulse array with no exact specifications as
such, we could go for 14 or 12 subarrays because sufficiently low MSLL
is achieved with narrow beamwidth for these cases.

4.3. Case 3: Number of Subarrays Constant

Here we have fixed the number of subarrays to P = 8. In this case
we can observe that keeping P constant increasing N decreases the
beamwidth steadily.

We see that till N = 14 MSLL is steadily minimized. Increasing
the number of elements further leads to narrower beamwidth.
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Table 2. Optimal compromise table for 20 element array.

No. of Subarrays (P ) BW MSLL

2 11.54 −17.1

4 12.04 −24.98

6 15.95 −38.78

8 15.96 −40.41

10 15.35 −40.78

Table 3. Optimal compromise table for 40 element array.

No. of Subarrays (P ) BW MSLL

2 5.72 −18.86

4 5.48 −20.33

6 6.31 −29.16

8 11.44 −29.74

10 9.63 −30.32

12 14.89 −40.45

14 12.64 −37.45

16 11.3 −39.1

18 11.26 −38.6

20 12.6 −41.14
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Thus keeping subarrays constant and increasing N decreases the
beamwidth but increases Maximum Sidelobe Level. Maximum
Sidelobe suppression is obtained for N = 10 and minimum beamwidth
is obtained with N = 18. For N = 20 some solutions have extremely
low beamwidth but not so low MSLL. The best compromise solution
for N = 20 has higher beamwidth but much lower MSLL compared to
that for N = 18.

4.4. Case 4: P/N Constant

In this case we show how the quality of design improves when
the number of elements and subarrays are increased in the same
proportion. As N and P increases the improvement in Beamwidth and
MSLL is clear from the Optimal Compromise Table. The Beamwidth
improves from 20.17◦ for N = 5, P = 3 to 14.89◦ for N = 20, P = 12.
MSLL improves from −13.93 dB for N = 5, P = 3 to −42.45 dB for
N = 20, P = 12. From Figure 6 it is also evident that the improvement
of solution is less pronounced as N and P increases as the PFs get closer
and closer with increase in N and P . It can also be observed from the
PFs that greater number of elements can achieve a particular sidelobe
level in lesser beamwidth.

The aim of this section was to investigate how the optimal
combination of two vital parameters related to the design problem viz.
number of elements and number of subarrays can be estimated using
an MO algorithm. The next section is devoted to the actual design
of the monopulse array using MOEA/D-DE with the subarray weights
and the element grouping kept as decision variables.
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Figure 5. Trade-off curve for fixed number of subarrays (P = 8).
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Figure 6. Trade-off curve for P/N = 0.6.

5. DESIGNING MONOPULSE ANTENNA ARRAYS
WITH MOEA/D-DE

Suppose we have the task of designing a 20 element monopulse antenna
array with the following specifications:

i) SLL of sum pattern = −25 dB
ii) MSLL of difference pattern = −27 dB
iii) Beamwidth of difference pattern = 12◦

A good design would aim at minimizing the cost and complexity
simultaneously. Thus, it follows that we should go for the minimum
number of subarrays that meet the above design specifications for
20 element array. This can be easily achieved by a multi-objective
optimization approach. We can easily generate a sum-pattern that
meets the design specification using a standard technique like Dolph-
Chebyshev array design. Then we utilize the sum pattern excitations
to obtain the difference pattern excitations by appropriate subarray
weighting and grouping configuration. We generated approximated
PFs by running MOEA/D-DE for all possible number of subarrays till
we meet the design specification.

Figure 7 shows the approximated PFs for N = 10 and P = 2, 3, 4
and 5. The design specifications were met for 5 subarrays as is
evident from the figure. The Pareto curve consists of points each of
which corresponds to a specific subarray grouping and weighting. The
desired point on the Pareto curve has the following subarray weights
{0.6607, 0.7228, 0.3671, 0.1175, 1} and subarray grouping configuration
{4, 3, 1, 2, 0, 5, 0, 5, 0, 3}.
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Figure 7. Trade-off curves for 20 element design.

We also consider another set of design specifications for narrow
beamwidth and low SLL applications:

i) No. of elements = 40
ii) SLL of sum pattern = −25 dB
iii) MSLL of difference pattern = −30 dB
iv) Beamwidth of difference pattern = 7◦.

Figure 8 shows the approximated PFs obtained with MOEA/D-
DE for N = 20 and P = 2, 3, 4, 5 and 6. The design specifications
were met with 6 subarrays as is evident from the figure. The de-
sired point on the Pareto curve has the following subarray weights
{0.6095, 0.1, 0.2581, 0.4724, 0.9831, 0.7018} and subarray grouping con-
figuration {2, 3, 3, 4, 1, 6, 6, 5, 0, 0, 0, 5, 0, 0, 5, 1, 6, 1, 1, 4}. Thus multi-
objective design provides an extremely straightforward method for de-
signing monpulse antenna arrays which can be taken up the antenna
designers for their purpose.

6. COMPARATIVE STUDY WITH OTHER DESIGN
METHODS

In this section, we compare the design results obtained with MOEA/D-
DE with the Hybrid Contiguous Partition Method (HPCM) [12, 13]
and two single-objective optimization algorithms namely DE and PSO.
For DE and PSO we followed the same hybrid real/integer coding
as reported in [7, 8]. For DE the parametric setup is also taken
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Figure 8. Trade-off curves for 40 element design.

Table 4. Optimal compromise table for 8 subarrays.

No. of Elements/2 (N) BW MSLL
8 14.75 −26.25
10 15.96 −40.41
12 14.98 −38.41
14 14.75 −36.11
16 9.63 −27.98
18 7.52 −23.99
20 11.44 −29.74

Table 5. Optimal compromise table for P/N = 0.6.

N P BW MSLL
5 3 20.17 −13.93
10 6 15.95 −38.78
15 9 15.11 −39.56
20 12 14.89 −40.45

from [8]. For PSO, we used swarm size = 200, acceleration coefficients
C1 = C2 = 2.00, inertia weight ω linearly decreasing from 0.9 to 0.4
and for dth component of maximum velocity vd,max = 0.9 ∗ rd where
rd is the difference between the maximum and minimum values of the
dth decision variable.
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Below we provide the results for three instantiations of the design
problem corresponding to three different numbers of subarrays. The
sum pattern corresponds to a Dolph-Chebyshev array with distance
between elements d = λ/2 and SLL = −25 dB. The objective function
for single-objective algorithms was taken as f1 + f2 where f1 and f2

are given by (5a) and (5b).
HCPM was run according to the guidelines given in Rocca et

al. [12]. The reference Zolotarev pattern for Case A and Case B was
characterized by SLLref = −25 dB and for Case C SLLref = −42 dB
was assumed. Note that MOEA/D-DE, PSO and DE were run up to
3× 105 FEs for all problems. As results we provide the best solutions
found in 25 independent trials of each algorithm. The approximated
Pareto curves for MOEA/D-DE were first obtained for the three cases
which are shown in Figure 9. Then the best compromise solution was
chosen by the fuzzy membership based method described in Section 4.
The details of the best compromise solution are tabulated along with
results obtained by other competing algorithms. The array patterns
are also plotted for demonstrating the viability of our approach.
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Figure 9. Trade-off curve for comparative results section.
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6.1. Case A: 20 Elements, 3 Subarrays

Table 6. Subarray configuration (Case A).

Algorithms c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

MOEA/D-DE 3 2 1 1 0 0 0 0 0 2
HCPM 3 3 1 1 2 2 2 2 2 3

DE 1 1 3 2 2 2 2 2 2 2
PSO 3 2 1 1 1 0 1 2 2 2

Table 7. Subarray weights (Case A).

Algorithms g1 g2 g3

MOEA/D-DE 0.6513 0.3589 0.1079
HCPM 0.5211 1 0.2963

DE 0.2249 0.9938 0.4810
PSO 0.7763 0.7564 0.1007

Table 8. Design objectives achieved (Case A).

Objectives MOEA/D-DE HCPM DE PSO
BW (degrees) 11.32 11.56 12.81 11.438

MSLL −24.87 −18.12 −13.45 −14.97
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Figure 10. Normalized patterns for 20 elements array (Case A).
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6.2. Case B: 20 Elements, 5 Subarrays

Table 9. Subarray configuration (Case B).

Algorithms c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

MOEA/D-DE 4 3 1 2 0 5 0 5 0 3
HCPM 5 2 1 1 4 4 3 3 1 5

DE 3 2 1 4 4 5 4 1 3 3
PSO 3 3 1 0 2 2 5 4 0 1

Table 10. Subarray weights (Case B).

Algorithms g1 g2 g3 g4 g5

MOEA/D-DE 0.607 0.723 0.367 0.117 1.00
HCPM 0.681 0.385 0.999 1.000 0.182

DE 0.734 0.393 0.171 0.991 0.985
PSO 0.641 1.000 0.351 1.000 0.843

Table 11. Design objectives achieved (Case B).

Objectives MOEA/D-DE HCPM DE PSO
BW(degrees) 12.04 12.34 13.846 13.224

MSLL −26.95 −24.24 −23.73 −19.11
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Figure 11. Normalized patterns for 20 elements array (Case B).
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6.3. Case C: 20 Elements, 8 Subarrays

Table 12. Subarray configuration (Case C).

Algorithms c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

MOEA/D-DE 5 7 3 2 6 1 4 4 6 8
HCPM 2 7 1 5 4 6 6 3 8 5

DE 6 7 1 5 2 3 3 5 8 4
PSO 6 7 1 2 5 3 8 5 7 4

Table 13. Subarray weights (Case C).

Algorithms g1 g2 g3 g4 g5 g6 g7 g8

MOEA/D-DE 0.8056 0.5903 0.4408 0.8521 0.1000 0.7190 0.2824 0.7012

HCPM 0.5041 0.1012 0.9951 0.8241 0.6646 0.9235 0.3100 0.8191

DE 0.4757 0.6877 0.8107 0.1205 0.6953 0.1089 0.2885 0.3448

PSO 0.4744 0.6880 0.8189 0.1195 0.6937 0.1045 0.2287 0.8018

Table 14. Design objectives achieved (Case C).

Objectives MOEA/D-DE HCPM DE PSO
BW(degrees) 15.96 16.01 16.02 15.98

MSLL −40.41 −37.76 −28.49 −27.58
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Figure 12. Normalized patterns for 20 elements array (Case C).
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The subarray grouping configuration for three cases is provided in
Tables 6, 9 and 12. The subarray weights for the three cases are given
in Tables 7, 10 and 13. A keen observation of Tables 8, 11 and 14 and
also Figures 10–12 show that in all test cases, MOEA/D-DE achieves
much better design objectives as well as array factors with lower MSLL
in comparison with both the single-objective algorithms — DE, PSO,
and HCPM.

7. CONCLUSION

This article has presented a new approach to the synthesis problem
of the difference patterns of monopulse antenna arrays in a multi-
objective optimization framework. One of the most recent and best-
known MO algorithms, called MOEA/D-DE, has been applied over
different instances of the design problem, keeping minimum Maximum
Sidelobe Level (MSLL) and principal lobe Beam Width (BW) as two
design-objectives to be simultaneously achieved. Through extensive
simulation experiments, we illustrated that this design method can be
adopted by an antenna designer to detect an optimal combination of
the number of elements (2N) and number of subarrays (P ) such that
the best trade-off between quality of solution and design complexity is
maintained.

The subarray grouping information and weights are obtained from
the best compromise solution of the approximated PFs corresponding
to N and P as determined before. The best compromise solution for
N = 10 and P = 3, 5, and 8 are obtained from their approximated PFs
and the figure of merit of solution (i.e., MSLL and BW) are shown to
beat those obtained with two well-known single-objective optimization
algorithms DE, PSO, and HCPM. We have also demonstrated that the
optimal 20 element array design should be with 6 subarrays. Increasing
the number of subarrays increases the complexity of design without
improving the quality of solution appreciably. In conclusion we can say
that MO algorithms have a dual role in the design process viz. they
can be used for fixing N and P as well as for determining the subarray
configuration and subarray weights. The method of design presented
in this paper can be directly put to use by the antenna designers.

Finally, we would like to point out that in this article we presented
only one of the possible synthesis problems. There may be some
other design objectives based on different formulations and it will be
interesting to extend the multi-objective approach to those in future.
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