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Abstract—In this study, the transmission of planar single-layer
frequency selective surface (FSS) has been studied using modal analysis
method, and the maximum transmission that a planar single-layer FSS
structure with an infinitely thin array can reach is presented. The
results show that this transmission upper limit is independent of the
array and the element, which indicates that it is impossible to achieve
a transmission higher than this upper limit under a given incident
and dielectric-supporting condition by the design of the periodic array.
As the modal analysis method is an accurate method to solve the
scattering problem of planar FSS with an infinitely thin array, this
upper limit is also independent of the solution method. Results of
both numerical simulations and experiments show that the upper limit
presented in this paper is strict, but may be hard to attain when FSS
is supported by lossy dielectric mediums.

1. INTRODUCTION

Frequency selective surfaces (FSSs) are widely used as filters from
microwave band to infrared band [1–6]. Inband transmission is one
of the most important design indices of those filters, such as FSS
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radomes [5, 6]. Generally, a higher inband transmission is better for
a band-pass FSS. It is well known that the transmission strictly equals
1 when a free-standing metal screen, perforated periodically with
apertures, resonates without grating-lobe propagating. However, those
free-standing FSSs have limited application for their bad mechanical
properties. Nevertheless, a dielectric substrate is usually necessary
for a practical FSS structure [1, 2, 7]. Furthermore, the requirements
of bandwidth, angle stability, dual-polarized characteristic, as well
as environmental and mechanical performance need FSSs of some
functional medium coatings. The electromagnetic behaviors of FSS
will be seriously influenced by these medium coatings [1, 2, 7]. In this
paper, a short review of the research on the effect of the dielectric
mediums on the electromagnetic behaviors is presented, along with
the focus on the transmission performance of single-layer FSS.

Dielectric layers are viewed as one of the most important factors
of the electromagnetic performance of FSSs besides the shape of
the array, and have been investigated for several decades [7–21].
Luebbers and Munk investigated the effect of a covering layer on the
resonance frequency, bandwidth, and their angle stability of an array
of narrow rectangular slots. They noted that with proper design, the
angle stability of the resonance frequency and bandwidth could be
improved by the dielectric layers; however, some other effects might
be encountered, such as a reduction in the frequency of resonance
and Wood’s anomaly (surface wave) null [8]. In an earlier study [9],
Munk and Fulton demonstrated a double-layer FSS design that had an
almost perfect frequency response achieved by appropriately arranging
the dielectric layers. Callaghan, Parker, and Langley investigated
the change in the resonance frequency, bandwidth, and the shape
of transmission/reflection curves with the increase in the dielectric
thickness. Both the cases of arrays bonded on one side and embedded
centrally in the dielectrics were considered, and some important
conclusions were presented [10]. Munk and Wu summarized the effects
of the dielectrics on the electromagnetic performance of single-layer
and multilayer FSSs, based on previous works [2, 11]. Nowadays, the
design work of FSS has become increasingly complicated and novel
FSS structures are being continuously developed. However, dielectrics
are still playing important roles in those novel FSS structures,
such as active FSSs, tunable FSSs, dielectric periodic structures,
and so on [12–18]. Many researchers are still devoted to improve
the electromagnetic characteristic of FSSs using dielectrics for their
irreplaceable ability [19–21].

Although there is an overall understanding about the effects of
dielectrics on FSSs, we still need to find out solutions to some problems.
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Compared with resonance frequency, bandwidth, and the shape of
the transmission/reflection curves, the effects on the transmission
and reflection performance have attracted little attention. Barlevy
and Rahmat-Samii investigated the reflection analytic constraints of a
dielectric substrate-supported aperture array. They noted that there
was a theoretical limit on the amount of energy that can be lost and
this theoretical limit can be predicted by an approach presented in an
earlier study [22]. They also pointed out that their analysis could be
extended to any number of substrates and superstrates, but cannot be
extended to multiple periodic surfaces. Generally, there are too few
progresses in the effect of dielectrics on the transmission to satisfy the
requirements of FSSs design. Considering these, this paper focuses on
the effects of dielectrics on single-layer FSSs and attempts to provide
an analytic constraint for the effects.

It can be easily observed that the transmission upper limit
determined by the law of energy conservation equals 1 for a periodic
array without any dielectrics, irrespective of the design of the array
and element. Therefore, we presumed that dielectric-loaded FSSs may
also have a similar transmission upper limit, which is independent of
the shape of the array and element, and carried out our study based on
this presumption. Modal analysis method (MAM), which can also be
called as the mode-matching method, was employed to solve the FSS
problem.

In this paper, a derivation of the transmission upper limit of the
single-layer FSS with an infinitely thin array is presented in Section 2,
based on the analysis of energy conservation, and testing the reliability
and practicability of this upper limit, presented in Section 3. In
Section 4, the applicable condition is discussed. Lastly, in Section 5,
some possible applications of the transmission upper limit are given.

2. DERIVATION OF THE TRANSMISSION UPPER
LIMIT

2.1. Modal Analysis Method [1, 23, 24]

Figure 1(a) shows an FSS structure comprising of M dielectric
superstrates and N substrates. The array at z = zM is assumed to be
infinitely thin and perfect conductive. The FSS is of infinite extent in
both x- and y-directions but has a thickness in z-direction. The shape
of the array is shown in Fig. 1(b). Modal analysis method gives the
tangential fields in the dielectric mediums as series of Floquet modes,
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Figure 1. Description of a single-layer FSS. (a) z-x cross section of a
single-layer FSS with M dielectric superstrates and N substrates. (b)
x-y view of an arbitrary aperture array.
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We can define the inner product on the array’s unit cell as:
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The subscript “ij” of Ω+
rpq,ij and Ω−rpq,ij indicates the element of the

ith row and jth column of a matrix, respectively.
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Equation (5) is known as the magnetic field integral equation
(MFIE) of an aperture array, and can be solved with method of
moments (MoMs). The method of moments begins by expressing
⇀
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r t) in terms of a set of known basis functions {⇀
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where {xn} are the unknown coefficients to be determined.
Substituting it into (5) and taking the inner product with every basis
function, MFIE given in (5) is thus converted to a matrix equation:
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2.2. Energy Conservation and Resonance in Modal Analysis
Method
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The MFIE given in (5) describes the continuity of the aperture
magnetic, which is equal to
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It can be regarded as the average power produced by the aperture

magnetic field (
⇀

H
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t ) on the −z side of the array, and taken by the
nth basis electric field (

⇀

Fn) on a unit cell. The physical meaning of the
right-hand side of (10) is similar, and thus, the matrix Equation (8)
gives a component form of the energy conservation on a unit cell.

If the incident polarization state is represented by “R”, then
T inc
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Equation (13) is the full form of the energy conservation, which
signifies the average scattered power of the aperture field is equal to
the average incident power taken by the aperture electric field on a
unit cell.

With respect to the no dielectric case, we know that
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As cross-polarization fundamental mode of the scattered field
should be 0, the basis functions and the aperture electric field must
satisfy the following equation:

T!R00 = E!R00 = xTF!R00 = FT
!R00x = 0 (15)

where the subscript “!R00” indicates the cross-polarization mode of
R00.

With regard to the definition of the modal admittance, we know
that every ξrpq corresponds to an energy mode. The mode is a pure
propagation mode when ξrpq is real, and it is a pure evanescent mode
when ξrpq is imaginary. If ξrpq is a complex number, it corresponds to
a propagation mode, which has some dissipation. There are only two
kinds of modes in the free space: pure propagation modes and pure
evanescent modes. The ξr00 corresponds to the fundamental mode
(main lobe), and ξrpq(pq 6= 00) corresponds to the upper mode. If
ξrpq(pq 6= 00) ∈ R, then the upper mode will take a part of energy,
and is known as the grating lobe. If no grating lobe appears, then
ξrpq(pq 6= 00) ∈ I, and (14) can be written as a summation of
propagation modes and evanescent modes, as

ξR00 |TR00|2 +
∑

rpq 6=r00

ξrpq |Trpq|2 = ξR00T
∗
R00 (16)

The first part of the left-hand side of (16) is the traveling wave
component of the average power density of the transmitted field on a
unit cell, and the second part is the average power density in the form
of standing waves. The right-hand side of (16) is the incident power
density taken by the aperture field. As the second part of the left-hand
side of (16) is pure imaginary and ξr00 is real, the solution of (16) must
have the form of

TR00 = (1 + α)/2 (17)

and ∑

rpq 6=r00

ξrpq |Trpq|2 = 0 ⇔ TR00 = 1 (18a)

TR00 = 0 ⇒
∥∥∥∥∥∥

∑

rpq 6=r00

ξrpqF∗rpqF
T
rpq

∥∥∥∥∥∥
→ +∞ (18b)

where α is the unit complex.
Equation (17) shows the track of the fundamental mode

transmission coefficient TR00 to the frequency (Fig. 2). This
result can also be obtained by other analyzing method, such as
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Figure 2. Track of TR00 of a free-standing single-layer FSS.

equivalent transmission line theory, equivalent circuit theory and
mutual impedance approach by Munk [2].

As the real part of the complex Poynting vector indicates the
traveling wave component of the energy flux density, and the imaginary
part indicates the standing wave component, Equation (18a) shows
the energy performance of resonance — the standing component of
the power scattered by the aperture field equal to 0 at resonance. The
transmission null given by (18b) is known as “Wood’s anomaly,” which
indicates the mode change of the aperture-field distribution [2, 8, 24–
26].

For our convenience, we define the resonance of dielectric-loaded
single-layer FSS with reference to the free-standing case, such that
both sides of (13) are real numbers or the standing wave component
of the power scattered by the aperture field equals 0.

2.3. Transmission Upper Limit of Dielectric-loaded FSS

According to the energy definition of resonance, the standing wave
component of the power scattered by the aperture field equals 0 for a
dielectric-loaded FSS. Hence:

CR00,Im |ER00|2 +
∑

rpq 6=0pq

Crpq,Im |Erpq|2 = 0 (19a)

CR00,Re |ER00|2 +
∑

rpq 6=0pq

Crpq,Re |Erpq|2 = DR00E
∗
R00 (19b)

Expressions (19a) and (19b) describe the energy conservation of
FSS in the standing and traveling component form separately.
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It is easy to prove by mathematical induction that all signs of
Crpq,Re are the same. Hence, (19b) implicates:

|CR00,Re| |ER00|2 ≤
∣∣∣CR00,Re |ER00|2 +

∑

rpq 6=r00

Crpq,Re |Erpq|2
∣∣∣

= |DR00E
∗
R00| ⇒ |ER00| ≤ |DR00|/|CR00,Re| (20)

According to (9), Ω+
rpq,11 is only related to the dielectrics and the

incident condition. Therefore, by combining (9) with (20), we can
obtain

|TR00| =
∣∣∣ER00

/
Ω+

R00,11

∣∣∣ ≤ |DR00|
/∣∣∣Ω+

R00,11CR00,Re

∣∣∣
and define

TR,top = |DR00|
/∣∣∣Ω+

R00,11CR00,Re

∣∣∣ (21)

where TR,top is the transmission upper limit of single-layer FSS.
As this derivation is not relevant to the incidence condition,

dielectrics, the shape of array, and aperture-field basis functions, the
transmission upper limit given by (21) is suitable for any planar
single-layer FSS of infinite extent. The expression shows that TR,top
depends on the dielectrics and the incident condition, indicating that
the calculated transmission coefficient of a given FSS structure excited
by certain plane wave cannot exceed TR,top, if analyzed by MAM.
As MAM is known to be an accurate method to solve the scattering
problems of the FSSs of infinite extent, the upper limit is independent
of the solving technique.

3. VERIFICATION AND PRACTICAL EFFECTS

3.1. Testing by Simulated Results

Numerical simulation was conducted to test the reliability and
practicability of the transmission upper limit given by (21). Both
MAM and finite elements method (FEM) are employed to ensure that
the conclusions are independent of the solving technique.

Figure 3 shows a comparison between the calculated transmission
response and the upper limit of a compact cross-loop aperture array
supported by a lossless dielectric superstrate for both TE and TM
wave incidences at the incident angle θ = 60◦. The results obtained by
MAM are strictly controlled by the upper limit given by (21), and the
result for TM wave incidence computed by FEM slightly exceeds the
limit, but shows the same trend.
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As an example of the application in predicting the transmission
of FSS loaded by lossy dielectric, we evaluated the frequency response
of a rectangle-loop array loaded by a lossy dielectric superstrate at the
incident angle θ = 45◦. Both the results calculated by MAM and FEM
were well constrained by (21), as shown in Fig. 4.

The dielectric symmetrically loaded FSS corresponding to Fig. 4
was also considered, and the results are presented in Fig. 5. The
calculation condition and the array of Fig. 5 were the same with
those given in Fig. 4. It demonstrated that the transmission upper
limit of dielectric symmetrical loaded FSS is obviously higher than
the dissymmetrical structure, and the transmission of the dielectric
symmetrical loaded FSS calculated by MAM is still strictly lower than
the upper limit.

To test the capacity of dealing with complex FSS structure, a
model consisting of six lossy dielectric mediums (3 substrates and 3
superstrates) was evaluated. The parameters of those six dielectric
mediums were set at random, and the incident angle was θ = 30◦.
Fig. 6 shows the transmission spectra of this complex FSS structure
with different arrays. The results revealed that the transmission
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Figure 6. Frequency response of an FSS with six dielectric mediums.
(Dipole array: Du = 10 mm, Dv = 5 mm, αu = 0◦, αv = 90◦,
L = 10 mm, w = 0.4mm; Y-loop array A: Du = Dv = 10mm,
αu = −30◦, αv = 30◦, L = 7.2 mm, W = 3.0mm, w = 0.5mm; Y-
loop array B: Du = Dv = 16mm, αu = −30◦, αv = 30◦, L = 7.2mm,
W = 3.0mm, w = 0.5mm; Cross-loop array: Du = Dv = 8mm,
αu = −66.8◦, αv = 23.2◦, L = 5.6 mm, W = 2.8mm, w = 0.5 mm).

calculated by MAM is still constrained by the analytic constraint,
though the structure is much complex. Furthermore, for an FSS
consisting of lossy dielectrics, the upper limit given by (21) can be
approached by adjusting the array and element, but is impossible to
exceed.

3.2. Testing by Experimental Results

A series of experiments were conducted to give a further verification
to the reliability and practicability of the transmission upper limit.
The operating principle of the transmission measurement system is
sketched in Fig. 7. The measured power transmission of an FSS board
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is defined as:
TM =

Srecv,FSS

Srecv,0
(22)

In the above equation, Srecv,FSS is the received power of the
receiving antenna when FSS board is laid and Srecv,0 is the received
power without FSS board.

PNA8363B 

Reflector

Emission antenna

FSS

Rotating floor

Receiving antenna 

Figure 7. Schematic representation of the transmission measurement
system.
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Figure 8. Measured frequency response of FSS samples in group
A. (a) Geometries of the ring element and the regular-polygon
element. (b) Comparison between the measured transmission and the
transmission upper limit.
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Two groups of FSS boards with different arrays printed in a
dielectric substrate were fabricated. The detailed parameters of the
FSS samples are listed in Table 1. Group A consists of six FSS boards
which have the same dimension of 400 mm× 400mm× 0.963mm. The

Table 1. Parameters of the FSS samples.

Group Substrate Array Unit Cell

A

εr = 4.6

tan δ = 0.02

t = 0.963mm

Ring A1
Du = Dv = 10.5mm, α = 90◦,

Ro = 3.775mm, w = 0.45 mm

Ring A2
Du = Dv = 13.0 mm, α = 90◦,

Ro = 3.775mm, w = 0.45mm

Cross loop

Du = Dv = 10.5mm, α = 90◦,

L = 3.275mm, W = 1.85mm,

w = 0.35 mm

Octagon loop
Du = Dv = 13.0mm, α = 90◦,

Ro = 3.725mm, w = 0.3 mm

Y-loop B1

Du = Dv = 12.5mm, α = 90◦,

L = 3.520mm, W = 1.8mm,

w = 0.3mm

Y-loop B2

Du = Dv = 10.5 mm, α = 90◦,

L = 3.848mm, W = 2.35mm,

w = 0.35mm

B

εr = 4.6

tan δ = 0.02

t = 1.463mm

Hexagon loop C1
Du = Dv = 15.0mm, α = 60◦,

Ro = 3.73mm, w = 0.3mm

Hexagon loop C2
Du = Dv = 15.0mm, α = 60◦,

Ro = 3.78mm, w = 0.3mm
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Figure 9. Measured frequency response of FSS samples in group B.
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substrate has an approximately constant relative permittivity εr = 4.6
and loss tangent δ = 0.02 in the frequency band 8–12 GHz. Fig. 8
shows the measured transmission response of the six FSS samples in
group A illuminated by a plane wave with oblique incidence (θ = 15◦).
The comparison with the transmission upper limit determined by (21)
shows no exception but the theoretical upper limit is hard to attain
for the arrays are not dense enough.

There are two FSS samples in group B. Both of them have
the same substrate material with group A but a greater thickness
t = 1.463mm. Fig. 9 shows their frequency response for both TE
and TM incident waves at angle θ = 15◦. The theoretical upper limit
is still proved to can not be exceeded.

3.3. Comparison with the Performance of Corresponding
Multilayer Dielectric Structure

The transmission coefficient of the multilayered dielectric structure can
be easily deduced by a similar process

TR =
1

Ω+
R00,11

DR00

CR00
(23)

Obviously, |TR| ≤
∣∣∣TR,top

∣∣∣. This means that the transmission
of FSS is still constrained by (21) even if the shape of the aperture is
infinity or the aperture area ratio (Saperture/Sunit cell) approximates
1 (while FSS degenerates to a multilayered dielectric structure). It also
shows that the presence of the conductive array significantly improves
the impedance-matching performance of the dielectric structure.

Another challenge to the transmission upper limit comes from
the perfect transmission of the multilayered dielectric structure. We
can define the perfect transmission coefficient as the transmission
coefficient in an ideal state when there is no reflection on each dielectric
interface. Thus,

Tperfect =

∣∣∣∣∣
M+N∏

n=1

e−γ
(n)
00 (zn−zn−1)

∣∣∣∣∣ (24)

Figure 10 shows a comparison between the transmission upper
limit of FSSs given in Figs. 4 and 5 and the perfect transmission
determined by (24). A comparison between the transmission upper
limit of the FSS structure shown in Fig. 6 and the perfect transmission
is present in Fig. 11(a), while the transmission of the corresponding
dissymmetrical structure is compared in Fig. 11(b). Generally,
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dielectric symmetrically loaded FSS has a higher transmission than the
dissymmetrical one. Both Figs. 10 and 11 show that the transmission
upper limit equals the perfect transmission only for a free-standing
periodic surface, and that the former is lower than latter for all other
cases.
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Figure 10. Comparison between the transmissionupper limit and
the perfect transmission for a single-layer FSS loaded by one dielectric
medium. (FSS structure with dielectric loaded as a superstrate is same
as that calculated in Fig. 4, while the symmetrically loaded structure
is similar to that given in Fig. 5. The incident condition is also the
same as given in Fig. 6.)
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Figure 11. Comparisons between the transmission upper limit and
the perfect transmission for complex single-layer FSSs. (a) FSS
structure is the same as that calculated in Fig. 6. (b) Dielectric
mediums are symmetric with respect to the array,and the superstrates
are same as shown in Fig. 6. Both incident conditions are also same
as given in Fig. 6.
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The two previously mentioned comparisons not only tested the
reliability of the transmission upper limit, but also offered a general
picture of the degree of interaction between the array and dielectrics.

4. APPLICABLE CONDITION

4.1. Scope of Application

Based on the derivation in Section 2, we can conclude the scope of
application of the transmission upper limit given in (21) as follows:

(1) Single-layer FSS of infinite extent.
(2) The array is infinitely thin and perfect conductive.
(3) A plane wave incidence.
(4) The properties of the dielectrics do not change in the tangent

direction (x- and y-directions).

Though the aperture-array assumption was made just for our
convenience to match the boundary conditions for building the MFIE,
because the essential of the field continuity was independent of the
assumption, (21) may still be suitable for FSSs with patch array. The
form of (21) signifies that if the equivalent admittances of the dielectrics
(Crpq and Drpq) can be obtained, then the transmission upper limit
should exist. In other words, constraint (4) can be relaxed, such that
the properties of the dielectrics have the same period as the array.
Furthermore, if FSSs is not excited by a plane wave, then (21) can be
applied by expanding the incident field in terms of plane waves.

5. POSSIBLE APPLICATIONS

There are many possible applications of the transmission upper limit
present in this paper, such as evaluating the feasibility of a design or
the reachability of a design goal, explaining some characteristics of the
frequency behavior of single-layer FSS, and so on.

5.1. Evaluating the Feasibility of a Design or the
Reachability of a Design Goal

A common misunderstanding in the design of FSS components is the
design goal has been set too high to reach, or the selected form of
the FSS structure is unsuitable which make it is hard to satisfy the
requirements by designing the array and unit cell. The transmission
upper limit present in this paper is well in solving those problems.
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Figure 12 shows a possible structure form of an FSS radome. This
typical form consists of an aperture array on the outer side of a medium
radome and two functional coatings. A possible design state may
be: coating 1 is a flashing coating of thickness t = 0.1mm, relative
permittivity εr = 3.0 and loss tangent tan δ = 0.05, coating 2 is an
anti-static coating of t = 0.1mm, εr = 6.1 and tan δ = 0.11, and the
medium radome is made of a resin slab of t = 8 mm εr = 4.5 and
tan δ = 0.02. The design goal requires the transmission in the band
of 10 ± 0.5 GHz be no less than 80% at incident angle θ ≈ 70◦. The
transmission upper limit determined by (21) has been calculated as
given in Fig. 13. The results show that the transmission upper limit
of the TE polarization on the required incident condition is ≤ 78.4%,
which is less than the design index. This means the selected structure
form of the FSS radome is infeasible which make it is impossible to
satisfy the design goal by adjusting the array and element, or the

Coating 1 

Coating 2 

Force-bearing material

Aperture array on conducting screen

Figure 12. A typical structure form of the FSS radome.
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Figure 13. The transmission upper limit of the given structure form
of the FSS radome.
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design goal is too impractical to reach. Possible improvements include
changing the structure form of the FSS radome, instituting the resin
with some low loss and high strength materials, decreasing the design
index and the combination of the above.

5.2. Explaining Some Characteristics of the Frequency
Behavior of Single-layer FSS

Some characteristics of the frequency response of a single-layer FSS
are hard to understand in other way. Fig. 14 shows the transmission-
frequency curve of a single-layer FSS for normal incident. The FSS
structure consists of a conducting screen perforated by a dipole array
and a dielectric slab of thickness t = 8.6mm. The transmission-
frequency curve shown in Fig. 14 has a “flat-top” shape and an
obvious valley near the in-band center frequency, which is similar
to the behaviors of a double-layer FSS. However, the mechanism of
this phenomenon is much different from that of a double-layer FSS.
The “flat-top” in-band characteristic is caused by the dense array
of the dipole and the in-band valley is due to the mismatching of
the impedance. A strong reflection is inevitable in the band of 11–
15GHz for such an FSS structure for the impedance of the dielectric
slab can not match well with the wave impedance in the free space.
The transmission upper limit curve in Fig. 14 shows us how badly the
transmission performance influenced by the impedance mismatching.
This is also the reason why authors chose the energy definition of the
resonance other than the maximum transmission definition.
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Figure 14. Frequency response of an infinite dipole array (L =
8.3mm, w = 0.3mm, Du = 8.4mm, Dv = 3.0 mm).
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Similarly, some frequency behaviors of single-layer FSSs which
have more complex structures also can be explained by (21). And (21)
may be a key to help us realize the action of dielectric loading on the
resonance performance of an FSS

6. CONCLUSION

Dielectric is one of the most important factors to determine the
frequency behavior of FSS. This study showed that for an FSS
structure in a given dielectric loading form, there is a transmission
upper limit for each plane-wave incidence. It was observed that it
is impossible to obtain a higher transmission than the upper limit
by designing the array and element of FSS. The transmission upper
limit for single-layer FSS with an infinitely thin array is present as
(21). This transmission upper limit was found to be independent of
the solution technique, which was proved by both theoretical analysis
and experiments.

The transmission upper limit presented in this paper describes the
possible degree of the effect of dielectrics on the frequency response
of FSS. The expression of this upper limit is much simple and easy
to compute, which makes it possible to make a rapid evaluation of
different dielectric loading plans in the design of FSS. This result might
also be helpful for realizing the mechanism of loss and reflection in FSS
structure.
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