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Abstract—An initial-boundary value problem for the system of
Maxwell’s equations with time derivative is formulated and solved
rigorously for transient modes in a hollow waveguide. It is supposed
that the latter has perfectly conducting surface. Cross section, S, is
bounded by a closed singly-connected contour of arbitrary but smooth
enough shape. Hence, the TE and TM modes are under study. Every
modal field is a product of a vector function of transverse coordinates
and a scalar amplitude dependent on time, t, and axial coordinate, z. It
has been established that the study comes down to, eventually, solving
two autonomous problems: i) A modal basis problem. Final result
of this step is definition of complete (in Hilbert space, L2 (S)) set of
functions dependent on transverse coordinates which originates a basis.
ii) A modal amplitude problem. The amplitudes are generated by the
solutions to Klein-Gordon equation (KGE), derived from Maxwell’s
equations directly, with t and z as independent variables. The
solutions to KGE are invariant under relativistic Lorentz transforms
and subjected to the causality principle. Special attention is paid to
various ways that lead to analytical solutions to KGE. As an example,
one case (among eleven others) is considered in detail. The modal
amplitudes are found out explicitly and expressed via products of Airy
functions with arguments dependent on t and z.
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1. INTRODUCTION

In this work, a readily available technique is proposed for the study
of electromagnetic field propagation in waveguides accompanied with
transient processes in the time domain. This technique has been
developed for solving an initial-boundary value problem for the system
of Maxwell’s equations with time derivative, ∂t. It is known that
Maxwell’s equations with ∂t are invariant under relativistic Lorentz
transforms. The proposed technique leads to the complete set of TE
and TM waveguide modes, each of which has the same relativistic
properties as well. It is worth noting that relativistic Lorentz
transforms are inapplicable to the time-harmonic waveguide waves in
the frequency domain studied more than a century.

All time-domain methods, apart from the numerical ones, are
based on obtaining Klein-Gordon equation (KGE) from Maxwell’s
equations with ∂t, in one way or the other, since KGE is a relativistic
equation as well. To our best knowledge, Gabriel was the first
who succeeded in it starting directly from the relativistic covariant
form of Maxwell’s equations and resting on a new theorem on a
class of four-dimensional skew-symmetric tensors [1]. His work was
concerned with analysis of a network formalism within the concepts of
electromagnetism.

Another approach to time-domain electromagnetics was developed
in 80s [2, 3]. The key point of the studies is to extract some self-adjoint
operators acting on the transverse waveguide coordinates only, and
to preserve time as an independent variable in the process of solving
Maxwell’s equations with ∂t. This procedure leads to derivation of
KGE with time, t, and axial coordinate, z, as independent variables.
The solutions to KGE serve as the potentials generating time-
dependent modal amplitudes that are also relativistic.

One more time-domain study on the propagation of transient
electromagnetic waves in waveguides was performed in [4]. In this
work, an elegant method relying on wave splitting technique has been
proposed. The field in the waveguide is represented exactly as a time
convolution of a Green function and a source function. Exact numerical
data can be obtained effectively at small distances between source
point and the point of observation. However, when the distances are
large, the convolution integral requires an approximation yielding loss
of accuracy in the long run.

Comprehensive time-domain studies of nonsinusoidal signals
describable by Walsh functions was performed by Harmuth‡. To this
‡ Dr. Henning F. Harmuth is the author of more than 150 journal publications and of
fifteen books. Complete information about his input in science and digital communication
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purpose, he amended Maxwell’s equations by introducing magnetic
current density as a real physical quantity and also adding magnetic
equivalent of Ohm’s law to the set of constitutive relations. It is
possible, however, to study propagation of digital signals in waveguides
and oscillations in cavities excited by Walsh signals still remaining
within the scope of generally accepted theory [6, 7].

It is pertinent to note that there are other interesting publications
listed chronologically [8–18]. It is possible to find herein useful
mathematical details on the analytical methods and description of
various physical phenomena extracted from the analytical solutions.

Certainly, powerful computational methods delivered with the
impressive numerical results in the last decades. However, it is
appropriate to mention here that a physical explanation of the
numerical data can be achieved only under the presence of analytical
results.

Our method§ is based on solving differential Maxwell’s equations
presentable in a transverse-longitudinal form where ∂t participates.
The sets of TE and TM time-domain modes, each of which is complete
in Hilbert space, L2 (S) , have been derived. Every modal field is a
product of a vector function of transverse coordinates and a scalar
amplitude dependent on time, t, and axial coordinate, z. Study of the
waveguide modes comes down to solving two autonomous problems,
ultimately. The first is a modal basis problem. The vector functions of
transverse coordinates are elements of the modal basis. Actually, they
are the same as for the time-harmonic modes and hence, this facilitates
the time-domain studies. The second one is a modal amplitude
problem. The modal amplitudes both for TE and TM modes are
generated by the solutions to KGE with appropriate initial conditions.
This equation, derived directly from Maxwell’s equations, involves all
information about the type of modes (TE or TM) and the contour of
waveguide cross section (i.e., its form and size). There are two ways in
solving KGE rigorously. A standard way results in a convolution of
time-domain Green function and a source function [19]. However, the
convolution integral fails in calculations when t and z become relatively
large due to fast oscillations of the kernel in the integrand. We solved
this problem in a new way where the convolution integral does not
participate. It is explained in Section 4. We succeeded in an analytical
expansion of the initial data, given on time semi-axis, t ≥ 0, over the
whole domain of propagation, 0 ≤ z ≤ ct, where c is the light velocity

technology can be found in the special issue of the journal Electromagnetic Phenomena,
which is devoted to his 80 years anniversary, by link [5].
§ Rather simple mathematical technique was used for development, as compared to our
previous and other time-domain methods. Only vector analysis, backgrounds of the partial
and ordinary differential equation theories and electromagnetic field theory are needed.
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in vacuum. Eventually, the solutions are expressed explicitly in terms
of well-studied special functions of mathematical physics. This way is
equivalent to analytical calculation of the convolution integral without
approximations of its kernel.

In this article, we consider a special case where the modal
amplitudes are expressible explicitly via Airy functions. It is worth
noting that Airy functions appear as well in the study of Airy light
beams in optics. Comprehensive information on this topic can be found
in recent article [20]. In the light beam theory, Airy equation appears
as a result of paraxial approximation of a scalar wave equation. In our
theory, however, Airy equation is obtained as an exact form of KGE
which is derived rigorously from Maxwell’s equations with ∂t.

2. STATEMENT OF THE PROBLEM

In this work, we consider an ideal hollow (i.e., medium-free) waveguide
having a cross-section domain, S, invariable along the waveguide axis,
Oz. The domain S is bounded by a closed singly-connected contour, L.
We also assume that the contour has an arbitrary, but smooth enough
shape implying that none of its possible inner angles (i.e., measured
within S) exceed π. In the rest of the work, we will make use of a right-
handed triplet (z, l,n) of mutually orthogonal unit vectors (z× l = n,
and so on) where the vector n is the outer normal to the domain S, z
is oriented along the axis Oz and l is tangential to the contour L. We
now denote a point of observation within the waveguide by a three-
component vector R and an observation time t.

2.1. Standard Formulation of the Problem

We have to solve the system of vectorial Maxwell’s equations

∇× E (R, t) = −µ0 ∂tH (R, t) and ∇×H (R, t) = ε0 ∂tE (R, t) (1)

for the electric and magnetic field strength vectors E and H,
respectively. The scalar Maxwell’s equations

∇ · E (R, t) = 0 and ∇ · H (R, t) = 0 (2)

will be used as well, although they are the corollaries of the Eq. (1) .
Equations (1) and (2) hold within the waveguide volume, except

for its surface. Assuming that the surface has the physical properties
of the perfect electric conductor, we subject the field components to
the following boundary conditions

(n · H) |L = 0, (l · E) |L = 0 and (z · E) |L = 0 (3)

where the center dot stands for the scalar multiplication.
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As being partial differential equations (PDE s) of the hyperbolic
kind, a solution to Eq. (1) should be subjected to some given initial
conditions as

E (R, 0) = 0 and H (R, 0) = 0 . (4)

Thus, we have to solve the initial-boundary value problem (1)–
(4) in a class of the real-valued functions, provided that the expected
solution has appropriate physical properties of integrability. To this
aim, we introduce the following quadric characteristics for the real-
valued vectorial fields E and H

W (z, t) =
1

2S

∫

S
{ε0 (E · E) + µ0 (H · H)} ds

Pz (z, t) =
1
S

∫

S
z · [E ×H] ds (5)

where the center cross stands for the vectorial multiplication of the
vectors. The integration is performed at a fixed instant of time t over
the waveguide cross section S, located at a fixed coordinate z. Quantity
Pz (z, t) is z-component of the Poynting’s vector and W (z, t) is the
energy density of the field (both averaged over S), which are stored
in the same point z and instant t. The Poynting Theorem, applied to
Eq. (1) , yields the following differential equation

∂zPz (z, t) + ∂tW (z, t) = 0. (6)

The differential form for the law of conservation of the averaged
energy given in (6) is valid for the time-domain solutions. Square
integrability in Eq. (5) specifies the global property of the expected
solution, whereas the differentiability by the variables z and t in Eq. (6)
specifies the local property.

Maxwell’s equations (1) are invariant under the relativistic Lorentz
transforms. Hence, solution to the problem should be found out in
compliance with the causality principle. This aspect will be discussed
in the later sections.

2.2. Transverse-longitudinal Decompositions

The three-component position vector, R, and the vectorial operator
nabla, ∇, can be presented as

R = r + z z and ∇ = ∇⊥ + z ∂z (7)

where r is a projection of the vector R on the domain S, the differential
procedure ∇⊥ acts on the transverse coordinates (r) , but it takes the
variable z as a constant. In a similar fashion, we present the field
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vectors E and H as the sums of their transverse and longitudinal
components

E (R,t) = E (r, z, t) + zEz (r, z, t)
H (R,t) = H (r, z, t) + zHz (r, z, t) . (8)

Decompose vectorial Maxwell’s equations (1) onto their transverse
and longitudinal parts and add Eq. (2) to that result. These efforts
can be grouped into two systems of equations. One of them includes
only Ez component{ ∇⊥Ez = µ0∂t[H× z] + ∂zE (a)

ε0∂tEz = ∇⊥ · [H× z] (b)
∂zEz = −∇⊥ ·E. (c)

(9)

The other one includes only Hz component{ ∇⊥Hz = ε0∂t[z×E] + ∂zH (a)
µ0∂tHz = ∇⊥ · [z×E] (b)
∂zHz = −∇⊥ ·H. (c)

(10)

As is easy to see, Eq. (2) are placed in the lines (c) in (9) and (10) .
The first pair of the boundary conditions (3) yields

(n ·H) |L = 0 and (l ·E) |L = 0. (11)
Condition Ez|L = 0 in Eq. (3) yields the following pair

(∇⊥ · [H× z]) |L = 0 and (∇⊥ ·E) |L = 0. (12)
This follows from the equations which are placed in the lines (b) and
(c) in (9) . Later on, we shall establish under which stipulation the
boundary conditions (12) are the corollaries of the conditions (11) .

3. SOLVING THE PROBLEM

We approach the problem of solving (9)–(12) by the method of
incomplete separation of the variables [19]. In our case, it implies that
every field component participating in (9) and (10) can be presented as
a product of two factors. One should be dependent on the transverse
coordinates (r) only and the other one should be dependent on the
variables (z, t) solely.

3.1. Complete Set of the TE Time-domain Modes

The TE-modes are specified by the condition Ez (r, z, t) ≡ 0. Inserting
this condition to the system (9) , the equations placed in the lines (b)
and (c) should give identity 0 = 0 each. This suggests

E (r, z, t) = V (z, t) [∇⊥ψ (r)× z]
H (r, z, t) = I (z, t)∇⊥ψ (r) (13)
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because the identity [∇⊥×∇⊥ψ (r)] ≡ 0 holds. The functions ψ (r) ,
V (z, t) and I (z, t) should be found out thereafter.

Consider now the system (10) . Choose Hz as follows Hz =
A (z, t) ψ (r) , where A (z, t) is one more unknown function which
should be found out later. Substitution of the expression for Hz and
the vectors E and H, given in (13) , into the Eqs. (b) and (c) in (10)
yields, respectively,

−µ0ψ (r) ∂tA (z, t) = [−∇2
⊥ψ (r)]V (z, t)

ψ (r) ∂zA (z, t) = [−∇2
⊥ψ (r)]I (z, t) . (14)

Finally, Eq. (a) of the system (10) supplies with

A (z, t) = ε0∂tV (z, t) + ∂zI (z, t) . (15)

Each condition in (11) for the vectors E and H yields the same
boundary condition for the function ψ (r) as

∂nψ (r) |L = 0 (16)

where ∂n = n · ∇⊥ is the normal derivative on the contour L.
Substitution of the definitions (13) for the vectors into the

boundary conditions (12) both yields identity 0 = 0 each.
It is clear from (14) that the potential ψ (r) should be a twice

differentiable function. Following Sturm-Liouville Theorems, the
boundary condition (16) suggests using Neumann boundary eigenvalue
problem for transverse Laplacian, ∇2

⊥, as

∇2
⊥ψn (r) + ν2

n ψn (r) = 0 and ∂nψn (r) |L = 0 (17)

where r ∈ S, the eigenvalues ν2
n ≥ 0 (n = 0, 1, 2, . . .) are the

discrete values of a spectral parameter ν. Discreteness of the spectrum
is caused by the boundedness of the domain S. The elements of
spectrum

{
ν2

n

}∞
n=0

are real numbers. The spectrum has a single point
of condensation located at infinity. The subscript n regulates the
distribution of the eigenvalues on a real axis in increasing order of
their numerical values.

The set {ψn (r)}∞n=0 of the eigensolutions to the problem (17) ,

corresponding to all eigenvalues from the set
{
ν2

n

}∞
n=0

, is complete in
L2 (S) (for a proof of completeness, the readers are referred to [3]).
Hence, any potential ψ (r) satisfying (16) can be presented as a
decomposition with making use of the functions ψn (r) as the basis
elements. To this aim, the functions ψn (r) should be normalized later.

The complete set of functions ψn generates a complete set of
the TE-modes in the time domain, see [3]. In (13) and (14) ,
an eigenfunction ψn can be taken as the potential ψ. Substituting
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[−∇2
⊥ψn] = ν2

n ψn to the formula (14) and taking A (z, t) = ν2
nhn (z, t) ,

we obtain, respectively,
Vn (z, t) = −µ0∂thn (z, t) and In (z, t) = ∂zhn (z, t) . (18)

Substitution of (18) into Eq. (15) and inserting ν2
nhn for A result in a

differential equation for hn (z, t)

∂2
cthn (z, t)− ∂2

zhn (z, t) + ν2
n hn (z, t) = 0 (19)

where ∂ct = ∂/c∂t and c = 1/
√

ε0µ0. Eq. (19) is known as Klein-
Gordon equation (KGE) in mathematical physics [21].

To sum it up, all the field components can be listed as
E′

z n (r,z, t) = 0
E′n (r,z, t) = [−∂thn (z, t)]µ0∇⊥ψn (r)× z
H′

n (r,z, t) = [∂zhn (z, t)]∇⊥ψn (r)
H ′

z n (r,z, t) = [νnhn (z, t)] νnψn (r) (20)
where n = 1, 2, . . . and prime (′) is used for notation of the TE-modes.
Note that the terms in the square brackets of (20) are the modal
amplitudes in physical sense. In order to provide the field components
with appropriate physical dimensions, it is necessary to normalize the
functions ψn (r) properly. Making use of Eq. (5) , the functions ψn (r)
for n 6= 0 can be normalized as

µ0ν
2
n

S

∫

S
ψ2

n (r) ds = 1 . (21)

This enables us to rewrite the quadric characteristics of the field (20)
in the simplest form as

W ′
n (z, t) =

[
(∂cthn)2 + (∂zhn)2 + ν2

nh2
n

]
/2

P ′z n (z, t) = (−∂thn) (∂zhn) . (22)
This coincides with our previous result obtained by a more general
method requiring a deep mathematical background, see in [6].

The infinite set (20) of TE-modes is generated by the
eigensolutions to the problem (17) , corresponding to all the eigenvalues
ν2

n 6= 0 only. However, the problem (17) has one more solution, ψ0 (r) ,
corresponding to the eigenvalue ν2

0 = 0, which is distinct from zero.
Minimum-Maximum Theorem for the harmonic functions asserts that
it is a constant: ψ0 (r) = C for r ∈ L and r ∈ S . In turn, the solution
ψ0 generates a one-component modal field as

E ′0 (r, z, t) = 0 and H′0 (r, z, t) = zh0 (z, t) C. (23)
In the case of the hollow waveguide, the function h0 (z, t) is a constant,
as well. This fact follows from the equations which are placed in the



Progress In Electromagnetics Research, Vol. 105, 2010 179

lines (b) and (c) in the system (10) . Without loss of generality, we may
assume that C = h0 = 1.

Potentials ψn (r) , generating the modal field patterns in the
waveguide cross section, coincide with those known for the time-
harmonic waves. It can be illustrated with the following example.

Example 1 The typical contour of waveguide cross section is
rectangular, say, 0 ≤ x ≤ a, 0 ≤ y ≤ b. This contour is smooth
enough; none of its inner angles (equal to π/2 each) exceed π. The
eigensolutions to Neumann problem (17) are

ψn (r) ≡ ψn (x, y) = A′n cos (πpx/a) cos (πqy/b) (24)
where A′n is the normalization constant, p and q are the integers. The
eigenfunctions (24) correspond to the eigenvalues

ν2
n = (πp/a)2 + (πq/b)2 . (25)

Normalization condition (21) yields the constants A′n as

A′n =
√

(2−δp,0) (2−δq,0)/ (νn
√

µ0) (26)

where δa,b is Kronecker delta. Any combination of the integers p =
0, 1, 2, . . . and q = 0, 1, 2, . . . is available, provided that p + q 6= 0. The
subscript n, which was introduced above as a regulator of positions
of the eigenvalues on the real axis, can be interpreted as the doublet:
n → (p, q) .

Thus, we have established the complete set of the waveguide
TE-modes in the time domain. Their field components are given in
Eqs. (20) and (23) . The set of TE-modes is complete in L2 (S) . This
fact has been proven also resting on Weyl Theorem on orthogonal
detachments of L2 (S) [3]. The modal amplitudes depend on the
axial coordinate z and time t. They can be found via solving a
one-dimensional KGE (19) . This equation is invariant under the
relativistic Lorentz transforms. Hence, all the TE-time-domain modes
obtained above have the same relativistic properties as well.

3.2. Complete Set of the TM Time-domain Modes

The TM -modes are specified by the condition Hz (r, z, t) ≡ 0. Under
this condition, the systems (9) and (10) can be solved in a similar
fashion as was used for the TE-modes.

The set of TM -modes is generated by the complete set of
eigensolutions to Dirichlet boundary eigenvalue problem

∇2
⊥φn (r) + κ2

nφn (r) = 0
φn (r) |L = 0

ε0κ
2
n

S

∫

S
φ2

n (r) ds = 1 (27)
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where r ∈ S, the eigenvalues κ2
n ≥ 0 (n = 0, 1, 2, . . .) are discrete

values of a spectral parameter κ, and φn (r) are the eigenfunctions
corresponding to these eigenvalues. For n = 0, κ2

0 = 0 is also an
eigenvalue and φ0 (r) is an eigenfunction corresponding to it. When
the contour L is singly connected, then φ0 (r) = 0. This follows from
the Minimum-Maximum Theorem for the harmonic functions.

The complete set {φn (r)}∞n=1 of the eigenfunctions φn generates,
respectively, the complete set of the TM -modes. The field components
are

H ′′
z n (r,z, t) = 0
H′′

n (r,z, t) = [−∂ten (z, t)] z× ε0∇⊥φn (r)
E′′n (r,z, t) = [∂zen (z, t)]∇⊥φn (r)

E′′
z n (r,z, t) = [κnen (z, t)]κnφn (r) (28)

where n = 0, 1, 2, . . . and double prime (′′) is used for notation of
the TM -modes. The time dependent modal amplitudes in the square
brackets are specified by the function en (z, t) obeying KGE as well

∂2
cten (z, t)− ∂2

zen (z, t) + κ2
n en (z, t) = 0 . (29)

The quadric field characteristics for the TM -modes

W ′′
n (z, t) =

[
(∂cten)2 + (∂zen)2 + κ2

ne2
n

]
/2

P ′′z n (z, t) = (−∂ten) (∂zen) (30)
results from the normalization condition involved in (27).

Boundary conditions (12) follow from conditions (11) . This is
because the potentials φn obey Helmholtz equation present in (27) .

In addition to Example 1, the potentials φn (r) specifying the
modal field patterns in the waveguide cross section can be found also.

Example 2 Solving Dirichlet problem (27) for the same
rectangular cross section 0 ≤ x ≤ a, 0 ≤ y ≤ b results in

φn (r) ≡ φn (x, y) = A′′n sin (πpx/a) sin (πqy/b) (31)
where p = 1, 2, . . . and q = 1, 2, . . . . These eigensolutions correspond
to the following eigenvalues

κ2
n = (πp/a)2 + (πq/b)2 . (32)

Again, n → (p, q) . The normalization constants A′′n are equal to
A′′n = 2/ (κn

√
ε0) . (33)

Thus, we have obtained the complete set of the TM -modes.
Completeness in L2 (S) has been proven also in [3]. The TM -modes
possess all the appropriate relativistic properties in the time domain
similarly to the TE-modes.
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3.3. Several General Remarks

1. The presented theory can be extended on the waveguides with multi-
connected cross sections. For example, a coaxial waveguide is in general
usage, practically. Its cross section has a doubly-connected domain S.
In the studies of the multi-connected waveguides, the eigensolutions
to Dirichlet boundary eigenvalue problem (27) corresponding to the
eigenvalue κ2

0 = 0 should be carefully considered. In this case, the
formulation of (27) should be set as follows

∇2
⊥φ

(i)
k (r) = 0 and φ

(i)
k (r) |Li = Ci (34)

where i, k = 1, 2, . . . , N, N is a number of components in the multi-
connected contour L, Li are the components of L : L1, L2, . . . , LN . The
constants Ci are distinct for different components Li . A complete set
of a finite number of linearly independent solutions to (34) generates
the finite set of the TEM -modes. The constant Ci can be specified via
applying the Gramm-Schmidt orthonormalization procedure for the
functions φ

(i)
k . Useful details can be found in [3].

2. In the case of the time-harmonic fields propagating along Oz
axis, for example, KGE has the following particular solution

en (z, t) = An [sin (ωt− γnz + ϕn)] (35)

where An and ϕn are real constants, γn =
√

ω2ε0µ0−k2
n, ω and k2

n are
parameters, ω is a given frequency. For the TM -modes, k2

n should be
replaced by the eigenvalue κ2

n, but for the TE-modes k2
n is ν2

n.
Condition γn = 0 specifies the cut-off frequencies of the time-

harmonic modes. The eigenvalues ν2
n specify the cut-off frequencies ω′n

of the TE-modes, ω′n = cνn. In turn, the eigenvalues κ2
n specify the

cut-off frequencies ω′′n of the TM -modes, ω′′n = cκn.

3. In various books, KGE is given in the following canonical form

∂2
τ f (ξ, τ)− ∂2

ξ f (ξ, τ) + f (ξ, τ) = 0. (36)

The KGEs, both (19) and (29), have this form after scaling real time
t and coordinate z as follows

τ = νnc t = 2π t/T ′n, ξ = νn z = 2π z/λ′n ⇐ TE
τ = κnc t = 2π t/T ′′n , ξ = κn z = 2π z/λ′′n ⇐ TM

(37)

where T ′n and T ′′n are the periods corresponding to the cut-off
frequencies ω′n = νnc and ω′′n = κnc, respectively. Similarly, λ′n and
λ′′n are the cut-off wavelengths. When the scaled variables are chosen
as τ = νnct and ξ = νnz, the solution f (ξ, τ) to KGE (36) is hn (ξ, τ),
otherwise, f (ξ, τ) is en (ξ, τ) .
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Equation (36) should be supplemented with a pair of “initial”
conditions as

f (ξ, τ) |ξ=0 = ς (τ) and ∂τf (ξ, τ) |ξ=0 = υ (τ) (38)

where the functions ς (τ) and υ (τ) playing role of the source functions
are given on semi-axis τ ≥ 0 but ς (τ) = υ (τ) = 0 if τ < 0.

Thus, the variables τ and ξ have different numerical scaling t
and z, respectively, for different modal fields. However, the TE- and
TM -modal fields can be rewritten in a common form which enables
studying the amplitudes of the field components in parallel. Simple
manipulations with Eqs. (20) , (28) yield

E′
z n (r, ξ, τ) = 0

ν−1
n

√
ε0/µ0 E′n (r, ξ, τ) = A (ξ, τ) ∇⊥ψn (r)× z

ν−1
n H′

n (r, ξ, τ) = B (ξ, τ) ∇⊥ψn (r)
ν−1

n H ′
z n (r, ξ, τ) = f (ξ, τ) νnψn (r) ; (39)

H ′′
z n (r, ξ, τ) = 0

κ−1
n

√
µ0/ε0 H′′

n (r, ξ, τ) = A (ξ, τ) z×∇⊥φn (r)
κ−1

n E′′n (r, ξ, τ) = B (ξ, τ) ∇⊥φn (r)
κ−1

n E′′
z n (r, ξ, τ) = f (ξ, τ) κnφn (r) (40)

where the amplitudes A (ξ, τ) and B (ξ, τ) of the transverse field
components are generated by the amplitude f (ξ, τ) of the longitudinal
fields identically as A (ξ, τ) = −∂τf (ξ, τ) and B (ξ, τ) = ∂ξf (ξ, τ).

4. The quadric characteristics (22) and (30) both have the
following forms in terms of the new notation

k−2
n W (ξ, τ) =

(A2 + B2 + f2
)
/2

k−2
n Pz (ξ, τ) = cAB (41)

where k2
n is ν2

n for the TE-modes; otherwise, it is κ2
n. The conservation

of energy law (6) should be read as

∂ξPz (ξ, τ) + c ∂τW (ξ, τ) = 0. (42)

In the particular case (35) , the function f (ξ, τ) is

f (ξ, τ) = sin (ητ − ϑξ + ϕ) (43)

where η = ω/ωc
n ≥ 1, ωc

n is a cut-off frequency, ϑ =
√

η2−1 ≥ 0, the
constant An = 1. Calculations by formulas (41) yield

k−2
n W (ξ, τ) = ϑ2 cos2 (ητ − ϑξ + ϕ) + 1/2

k−2
n Pz (ξ, τ) = c ϑη cos2 (ητ − ϑξ + ϕ) . (44)



Progress In Electromagnetics Research, Vol. 105, 2010 183

Calculations of W̄ (energy density averaged over the period T
corresponding to the frequency, ω) and P̄z (Poynting’s vector averaged
in the same way) yield

k−2
n W̄ = k−2

n

1
T

∫ θ+T

θ
W (ξ, τ) dτ = η2/2

k−2
n P̄z = k−2

n

1
T

∫ θ+T

θ
Pz (ξ, τ) dτ = c ϑη/2 (45)

where coordinate ξ is arbitrary, θ is a constant, period T in time
τ is equal to 2π/η. Relation P̄z/W̄ specifies an averaged velocity v̄
of the wave energy transferred along the waveguide. The results of
integration (45) yield

v̄ = c
√

ω2−ω2
c/ω and vph = c ω/

√
ω2−ω2

c (46)

where the phase velocity vph is calculated by the standard manner.
These results coincide with the classical ones.

5. The KGE obeys the fundamental principle of relativistic
physics, i.e., form of KGE is invariant in any inertial reference frame.
It implies that KGE must maintain its form under the action of the
Poincare group within the framework of the Group Theory. This
fact enables us to use remarkable properties of symmetry, which the
solutions to this equation possess. These properties were disclosed by
Miller and published in his monographs [22].

4. NON-SINUSOIDAL ANALYTICAL SOLUTIONS

We will now explain one of Miller’s ideas which will be used in this
article. Miller has proposed interpreting an expected solution f (ξ, τ)
to Eq. (36) as a function of new independent variables u and v yet
unknown. It is supposed, however, that u and v are twice differentiable
functions of the “old” variables (ξ, τ) . The solution f (ξ, τ) to KGE
can be read as f [u (ξ, τ) , v (ξ, τ)] . The latter, being substituted to
Eq. (36) , yields an equation somewhat “ugly” in form

{[
(∂τu)2− (∂ξu)2

]
∂2

u +
[
(∂τv)2− (∂ξv)2

]
∂2

v

+2[(∂τv) (∂τu)− (∂ξv) (∂ξu)] ∂2
u v

+
[
∂2

τ u−∂2
ξ u

]
∂u +

[
∂2

τ v−∂2
ξ v

]
∂v + 1

}
f (u, v) = 0 (47)

which is equivalent, nevertheless, to that elegant Eq. (36).
Miller’s crucial idea follows. i) The functions u (ξ, τ) and v (ξ, τ)

should be found out using the properties of symmetry of KGE.
This enables us to express the coefficients in the square brackets as
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some given functions of the variables u and v. ii) Substituting these
functions of (u, v) into (47) results in the factorization of the solution
as f (u, v) = U (u) V (v) . Eventually, U (u) and V (v) appear as some
known special functions of mathematical physics with the arguments
dependent on (ξ, τ) . This enables us to obtain new analytical solutions
(unknown yet, to our best knowledge) for the time-domain modes.

Miller has established a complete set consisting of 11 pairs of the
inverse functions τ (u, v) and ξ (u, v) needed for derivation of u (ξ, τ)
and v (ξ, τ) , see Appendix A. The 1st pair leads to the time-harmonic
solutions. The 2nd pair was used for the studies of digital signal
propagation in waveguides [6]. The pairs 3) and 4) are still under
study. We consider here which solution can be supplied with the pair
placed in 5).

4.1. Time-domain Modes Expressible via Airy Functions

Inversion of the formulas given in 5) yields

u + v = (τ + ξ) /2 and u− v = ±√τ − ξ . (48)

When we read the double sign (±) as minus (−) , then

u = (τ + ξ) /4−
√

τ − ξ/2

v = (τ + ξ) /4 +
√

τ − ξ/2 . (49)

Calculations of the coefficients standing in the square brackets in (47)
result in [

(∂τu)2− (∂ξu)2
]

= −
[
(∂τv)2− (∂ξv)2

]
=

1
4 (u− v)

. (50)

All the other coefficients are zeros. Substitution of these coefficients
to Eq. (47) makes its form more attractive as

∂2

∂u2
f (u, v) + 4u f (u, v) =

∂2

∂v2
f (u, v) + 4v f (u, v) . (51)

It is evident now that f (u, v) is a product of two functions, U (u) V (v) ,
which should be found. Substitution of the product to Eq. (51) and
simple manipulations result in

1
U (u)

d2

du2
U (u) + 4u =

1
V (v)

d2

dv2
V (v) + 4v = 4α (52)

where α is a constant of separation of the variables.
At this point, it is convenient to slightly change notation for the

variables u and v. When we introduce the new ones as

ū = 3
√

4 (α− u) and v̄ = 3
√

4 (α− v) , (53)
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then Eq. (52) yields standard Airy differential equation‖

d2

dū2 U (ū)− ū U (ū) = 0 and d2

dv̄2 V (v̄)− v̄ V (v̄) = 0 (54)

the solutions U (ū) and V (v̄) of which depend on different arguments,
however. Airy functions, as the solutions to Eq. (54) , are real-valued,
provided that the constant parameter α in their arguments (53) is
chosen as a real number.

Suppose that the solution should have a beginning in time: say,
at t = 0. Physically, it implies that the field sources do not act before
the instant t = 0.

In compliance with the causality principle, a final solution to KGE
should be presented as the piecewise function

f (ξ, τ) =

{ 0 if τ < 0
U (ū) V (v̄) if 0 ≤ ξ ≤ τ

0 if ξ > τ .
(55)

The first line in Eq. (55) is written in accordance with a so-called weak
causality condition. This states that all fields are zero for t < 0 when
the sources of the field are zero at that time. The lower lines correspond
to the strong causality condition. This follows from the axiom of the
special relativity theory, which asserts that any electromagnetic field
transfers a signal with the velocity of light c. This implies jointly that
the modal fields are zero beyond the distance z = ct along axis Oz from
a source (located at z = 0) that turns on at instant t = 0. The solution
f (ξ, τ) = U (ū) V (v̄) assumes implicitly that the initial conditions (38)
are chosen as ς (τ)=U (ū)V (v̄) |ξ=0 and υ (τ)= −∂τ [U (ū) V (v̄)] |ξ=0 .
Hence, our procedure has sense of expansion of these initial values,
given for ξ = 0, over whole domain of propagation 0 ≤ ξ ≤ τ < +∞,
which is equivalent to exact calculation of the convolution integral.

4.2. Numerical Examples

Each equation in (54) has two linearly independent solutions

U (ū) = a1Ai (ū) + b1Bi (ū)
V (v̄) = a2Ai (v̄) + b2Bi (v̄) (56)

where a1,2 and b1,2 are arbitrary constants, Ai (∗) and Bi (∗) are Airy
functions. Their arguments, as the functions of time, τ, and coordinate,
‖ Airy equation y′′(x) − x y(x) = 0 yields two linearly independent solutions as Ai (x)
and Bi (x) . In mathematics, they were named as Airy special functions after the British
astronomer George Biddell Airy. The Airy functions describe an image of a star (a point
source of light) as it appears in a telescope. Airy functions are also solutions to Schrodinger
equation (quantum mechanics) for a particle confined within a triangular potential well.
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ξ, are

ū = 3
√

4
[
α− (τ + ξ) /4 +

√
τ − ξ/2

]

v̄ = 3
√

4
[
α− (τ + ξ) /4−

√
τ − ξ/2

]
. (57)

Denote for a while ū and v̄ both as x. When x is positive, Ai (x)
is positive, convex and decreasing exponentially to zero. Function
Bi (x) for positive x is also positive and convex, but is increasing
exponentially. When x is negative, Ai (x) and Bi (x) oscillate around
zero with ever-increasing frequency and ever-decreasing amplitude.
Function Bi (x) is defined as the solution with the same amplitude of
oscillation as Ai (x) (as x goes to −∞), which differs in phase by π/2.
In Fig. 1, the results of calculations of Ai (ū) and Bi (ū) are exhibited
provided that α = 10 and τ = 51. It is worth noting that the positive
values of the variable ξ provide negative values of the argument ū if
ξ > −τ +4α+2

√
τ−ξ. The functions Ai (ū) and Bi (ū) , which have the

negative values of the argument, oscillate both with weakly decreasing
amplitudes as ū−1/4 in average.

Observation of (57) enables concluding that all possible
combinations of the products of Airy functions

f1 (ξ, τ)=Ai (ū) Ai (v̄) f2 (ξ, τ)=Ai (ū) Bi (v̄)
f3 (ξ, τ)=Bi (ū) Ai (v̄) f4 (ξ, τ)=Bi (ū) Bi (v̄) (58)

can have physical sense as the solution f (ξ, τ) , provided that a value
of α is chosen properly.
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Figure 1. Dependence of Airy functions on the waveguide coordinate
ξ.
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Consider an interesting case when time, τ, and coordinate, ξ,
both are in vicinity of the characteristic line of Eq. (36) , τ = ξ.
The variables τ and ξ are coupled by the condition τ = ξ + δ where
δ ¿ 1 is a small parameter. In Fig. 2, the dotted line corresponds to
the function f1 (ξ, τ) specifying the longitudinal component of a three-
component modal field. In Eqs. (39) and (40) , it is either the amplitude
of ν−1

n H ′
z n-component for the TE-modes or it is the amplitude of

κ−1
n E′′

z n-component for the TM -modes. The dash-line corresponds to
function B = ∂ξf1 (ξ, τ) |ξ=τ−δ specifying a transverse component of
a three-component modal field. In Eqs. (39) and (40) , it is either
the amplitude of field ν−1

n H′
n for the TE-modes or it is the amplitude

of field κ−1
n E′′n for the TM -modes. The solid line corresponds to

the function A = −∂τf1 (ξ, τ) |ξ=τ−δ specifying the amplitude of a
two-component modal field. In Eqs. (39) and (40) , it is either the
amplitude of ν−1

n

√
ε0/µ0 E′n-component for the TE-modes or it is the

amplitude of κ−1
n

√
µ0/ε0 H′′

n-component for the TM -modes.
In Fig. 3, the modal amplitudes generated by the function f2 (ξ, τ)

are exhibited. System of the line notation is the same as given for
Fig. 2.

A reader can find some applications of Airy functions to various
fields of classical and quantum physics in [23]. These examples and
possible others, undoubtedly, have the waveguide analogies that will
be discussed elsewhere.
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5. CONCLUSION

After all the efforts made in the previous sections, study of the time-
domain modes comes down to solving two autonomous problems.

i) The modal basis problem. Determination of the complete set of
the modal field patterns in the waveguide cross section is the same, in
the final analysis, as for the classical time-harmonic modes. The two-
dimensional Dirichlet and Neumann boundary eigenvalue problems for
transverse Laplacian should be solved. This results in two complete
sets of eigensolutions: {φn (r)}∞n=0 and {ψn (r)}∞n=0 , respectively.
The eigenfunctions generate the basis elements and exhibit the field
pattern configurations of the modal field components. Practically,
one has a wide choice of the methods for solving these problems.
The already known results for the typical waveguides can also be
used after providing them with appropriate normalizations, which are
given in Eqs. (21) and (27) . Additionally, the physical dimension of
force (i.e., newton N) should be assigned to the constant at the right
hand sides of the normalization conditions. This provides electric and
magnetic strength vectors with required dimensions Vm−1 and Am−1,
respectively. Meanwhile, the modal amplitudes A, B and f remain
dimensionless in Eqs. (39) and (40) .

ii) The modal amplitude problem. We have derived a pair of
potentials which generate explicit formulas for the modal amplitudes
in the time domain. These potentials satisfy KGE with independent
variables (z, t) . The modal amplitudes A, B and f of the TE and
TM modes can be studied in parallel after replacing the independent
variables (z, t) by dimensionless (ξ, τ) .

Solving Klein-Gordon equation explicitly: The standard explicit
solution to KGE as a convolution integral can be found in handbooks,
e.g., [19]. However, exact calculations of that integral are often
troublesome in realistic situations. Therefore, a new technique is
proposed in present article for solving KGE analytically without
recourse to the convolution integral. This technique is based on
the properties of symmetry of KGE which were disclosed within the
framework of Group Theory [22]. It turns out that the solution to
KGE can be presented as a product of two functions, i.e., f (ξ, τ) =
U (u (ξ, τ))V (v (ξ, τ)) if and only if the functions u (ξ, τ) and v (ξ, τ)
are specified in pairs in compliance with the properties of symmetry.
A complete set of possible pairs is listed in Appendix A. The simplest
pair is given in case 1) as u = τ and v = ξ which leads to the time-
harmonic fields. This emphasizes that classical time-harmonic fields
are only one particular case. Hence, the other ten cases open new lines
of analytical studies in the time-domain electromagnetics.
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In this article, case 5) is studied in detail where the modal
amplitude f (ξ, τ) is expressed as a product of two Airy functions with
argument u and v. The other modal amplitudes are A = −∂τf and
B = ∂ξf. Actually, this solution is an exact expansion of the initial
data given on time semi-axis τ ≥ 0 as f (ξ, τ) |ξ=0 and ∂τ (ξ, τ) |ξ=0

over the whole domain of propagation, 0 ≤ ξ ≤ τ. This is equivalent
to exact analytical calculation of the convolution integral without
approximations of its kernel.

APPENDIX A.

A complete list of substitutions u (ξ, τ) and v (ξ, τ) which factorize
solution to Eq. (47) as f (u, v) = U (u)V (v) .

1) τ = u and ξ = v, where −∞ < u < ∞, −∞ < v < ∞, yield
f (u, v) as a product of the exponential functions.

2) τ = u cosh v and ξ = u sinh v with 0 ≤ u < ∞, −∞ < v < ∞
yield a product of an exponential and Bessel functions.

3) τ =
(
u2+v2

)
/2 and ξ = uv with 0 ≤ u < ∞, −∞ < v < ∞

yield f (u, v) as a product of parabolic cylinder functions.
4) τ = uv and ξ =

(
u2+v2

)
/2 with 0 ≤ u < ∞, −∞ < v < ∞

yield a product of parabolic cylinder functions.
5) τ + ξ = 2 (u+v) and τ − ξ = (u−v)2 with −∞ < u, v < ∞ yield

a product of Airy functions.
6) τ + ξ = cosh [(u−v) /2] and τ − ξ = sinh [(u+v) /2] with

−∞ < u, v < ∞ yield a product of Mathieu functions.
7) τ+ξ = 2 sinh (u−v) and τ−ξ = exp (u+v) with−∞ < u, v < ∞

yield a product of Bessel functions.
8) τ + ξ = 2 cosh (u−v) and τ − ξ = exp (u+v) with −∞ < u, v <

∞ yield a product of Bessel functions.
9) τ = sinhu cosh v and ξ = coshu sinh v with −∞ < u, v < ∞

yield a product of Mathieu functions.
10) τ = coshu cosh v and ξ = sinhu sinh v with −∞ < u < ∞,

0 ≤ v < ∞ yield a product of Mathieu functions.
11) τ = cos u cos v and ξ = sinu sin v with 0 < u < 2π, 0 ≤ v < π

yield a product of Mathieu functions.
The substitutions 1)–11) specify some orthogonal systems of

coordinates (u, v) . Besides, there are some non-orthogonal systems
which enable to separate the variables u and v as well in the KGE,
see paper [24].
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