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Abstract—A new method is presented for analysis of transient
electromagnetic fields in regular structures with abrupt discontinuities.
The method is based on mode expansion of the fields in the Time
Domain. The modes propagate independently in the regular parts
of the structure and are coupled at the discontinuity. The main
idea consists in solving 1D FDTD equations for each independent
mode channel in the regular waveguides and using mode-matching
at the junction cross-section in order to relate the mode amplitudes
in all the channels at the same time instant via imposing boundary
conditions. As examples the problems of pulse signal diffraction at
a step discontinuity in a parallel-plate waveguide, diffraction at a
junction of circular and coaxial waveguides, and pulse radiation of a
bi-conical antenna are considered. The latter problem is treated as a
junction of two conical lines (one of which is the free space) that are
regular in spherical coordinates.

1. INTRODUCTION

Quite frequently in short pulse electromagnetics one faces problems
that can be considered as diffraction at a junction of regular
transmission lines. Among such problems we can mention diffraction
at step discontinuity in a waveguide, irises, junction of two or more
waveguides via some common aperture (see Fig. 1). Even radiation of
some antennas as bi-conical, bow-tie, TEM-horn, etc. can be described
as diffraction at a junction of two regular conical lines, one of which
being the free space, and thus it can be treated within the common
framework presented here.

Traditionally in the Frequency Domain (FD) such problems
are treated with mode-matching technique that consists in applying
Method of Moments to the field continuity boundary conditions written
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Figure 1. Structures that can be modeled by the mode matching
method.

in terms of mode expansions of the fields in the regular waveguides
being joined. Some useful reviews of Mode Matching Technique in FD
can be found, for example, in books [5,,37,,38] and paper [39].

Short pulse signals occupy a wideband spectrum in the FD,
which is why FD methods in this case would require calculations at a
large number of frequency points and are not appropriate for physical
analysis of the waveforms. So such kind of problems is most naturally
treated directly in the Time Domain (TD).

There are several numerical techniques available for TD analysis
of the problems under consideration. Among them the most popular
are the method of Integral Equations in TD (IETD) [1] and Finite
Differences in TD (FDTD) [2]. These methods sample surface currents
or spatial field distribution and suffer both from numerical problems
in achieving high accuracy and from lack of physical insight into the
process.

In this paper, we are going to introduce a new calculation method
that is based on applying long known in FD methods such as mode
expansion [3, 4] and mode matching [5] to the problem being considered
in TD.

Transient fields in a regular line can be presented in TD in the
form of mode series expansion [6–34] (see detailed description of the
publications at the beginning of Section 3 below). Based on such
presentation of transient fields in the waveguides we propose an explicit
FDTD scheme that consists of 1D FDTD equations for the mode
channels and some coupling equation that allows one to update the
mode amplitudes at the waveguide junction.

The proposed method reduces errors and computational costs as
compared to full-wave FDTD since spatial sampling of the fields is
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required only at the junction cross-section and a set of 1D FDTD
equations replaces 3D space grid in traditional full-wave FDTD.

The proposed approach has been first presented in conference pa-
per [40, 41]. This contribution is intended to describe more thoroughly
the general framework of the method and its implementation details
both for cylindrical and conical waveguides along with some illustrative
examples.

2. FRAMEWORK

In this section, we are going to describe shortly main ideas of the
method, show how it relates with mode matching in FD and with full-
wave FDTD, and finally give outline of the paper structure.

Among several available FD methods for solving the problem of
wave diffraction at abrupt discontinuities in a waveguide the simplest
and hence popular is the Mode Matching Technique (MMT) [5]. In
this method the structure is considered as a multiport device loaded
by characteristic impedances of the corresponding mode channels (see
Fig. 2). The field at the discontinuity cross-section is presented in the
form of mode series, and then the boundary conditions are imposed in
the spatial domain to the sum of the modes. The resulting functional
equations are projected onto some testing functions. The testing
functions can be chosen to be the same as expansion functions (Ritz-
Galerkin method), or some piece-wise interpolating functions (finite
elements method), or delta-functions (method of collocations). After
applying such a projection one arrives to a System of Linear Algebraic
Equations (SLAE) in terms of unknown scattered mode amplitudes.
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Figure 2. A waveguide junction presented as a multiport device
loaded by characteristic impedances of the mode channels.
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Now let us consider how FDTD method can be applied to
solving the waveguide diffraction problem [2]. The structure again
is considered as a multiport device. Some spatial domain around
the scatterer is sampled over a regular grid points, and the fields
in these points are updated in time step-by-step. The incident
wave is introduced into the calculation domain via “modal source”
typically with Total Field/Scattered Field (TF/SF) technique [2]. The
waveguide ports are closed with some Absorbing Boundary Conditions
(ABC) (usually UPML [2] is used) that are intended to imitate semi-
infinite regular waveguide sections. In some cross-section in the
scattered field region near the ABC the wave spatial distribution is
projected onto mode functions in order to obtain the waveforms of the
reflected and transmitted mode amplitudes. The recorded waveforms
can further be subjected to Fourier transform and divided by the
incident waveform spectrum in order to obtain frequency spectra of the
elements of the S-matrix row that corresponds to the excited modal
wave port.

Instead of applying ABC in the spatial domain it was proposed
in [45] to use modal matching conditions for launching an incident
wave and for separating the scattered fields into the individual mode
channels for their further modeling with 1D FDTD. We apply the
same approach of using 1D FDTD for the mode channels but we move
the FDTD-to-modal interface to the very discontinuity. Actually the
spatial domain where the fields should be sampled on some grid is
reduced to immediate left and right vicinities of the cross-section that
joins the regular waveguides.

So we use 1D FDTD updating formulae for modeling mode
channels in the regular parts of the waveguide. The open ends are
terminated with effective modal absorbing boundary conditions [36].
In the common cross-section we should sum up the mode functions
multiplied by the corresponding mode amplitudes in order to obtain
spatial distribution of the field. This distribution should be subjected
to Perfect Electric Conductor (PEC) boundary conditions on the
flange, the edge singularity condition, and field continuity conditions on
the common aperture (or several apertures). Imposing the boundary
conditions leads to some equations that should be satisfied for all the
spatial points at the flange and the aperture in any time instant. We
project these equations on some test functions and obtain a System of
Linear Algebraic Equations (SLAE) that relates the mode amplitudes
in all the channels on the left and right of the discontinuity. This SLAE
being supplemented with the finite difference schemes in each channel
results in an explicit formula for updating the mode amplitudes at the
discontinuity. The coefficients of the SLAE describe mode coupling,



Progress In Electromagnetics Research B, Vol. 22, 2010 261

they don’t depend on time and should be calculated only once before
starting the time marching.

The procedure that was briefly described above is detailed in the
subfollowing sections of the paper. In the third section, we consider
mode expansion of the fields, the problem that defines mode functions,
and evolutionary equations for the mode amplitudes. The fourth
section is devoted to describing a finite difference scheme for solving
the evolutionary equations. The procedures of mode channels coupling
on the discontinuity, obtaining the coupling matrices, and joining the
numerical schemes for different channels are presented in the fifth
section of the paper. Some examples of the method implementation
are given in the sixth section. The paper ends with conclusions that
are formulated in the seventh section. Some mathematical details on
derivation of the explicit update FDTD formula are provided as an
Appendix to the paper.

3. MODE EXPANSION IN TIME DOMAIN

For the first time METD method was proposed by Kisunko in [6] for
studying transient fields in homogeneous multi-connected waveguides
with Perfect Electric Conductor (PEC) walls. The main idea of the
method consists in presenting the sought fields in a waveguide as
expansion over independent uncoupled modes with mode amplitudes
being governed by some evolutionary equations describing evolution
of the waveforms with propagation. Later, Tretyakov has formalized
and advanced this approach as Mode Basis Method (MBM) or
Evolutionary Approach to Electromagnetics [11–13]. Mode expansion
in TD for studying transient fields in different waveguiding structures
and cavities has also been used in [14–34].

METD method has been applied to guiding wave problems in
several possible geometries by Borisov, namely for cylindrical, conical,
and sectorial waveguides [7–10]. A similar technique for spherical
coordinate system in the free space, radial inhomogeneous medium,
and conical lines has been used later by Shlivinski and Heyman [31].
MBM in spherical coordinate system for angular inhomogeneous
conical structures was considered in [34].

We are going to consider METD in cylindrical and spherical
coordinates. The former allows consideration of any closed cylindrical
waveguide (rectangular, circular, coaxial, parallel-plate, etc.), while the
latter allows analysis of conical line structures including free space, bi-
conical lines, cones, planar cones (bow-tie antennas), TEM-horns, and
similar structures that are widely used as ultrawideband antennas.
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3.1. METD in Cylindrical Coordinates

Mode Basis Method is based on presenting sought fields in the form
of mode series with mode amplitudes being functions of longitudinal
coordinate and time [12]. For example modal series for TM-waves can
be written as [19]

ε
1/2
0

~E (~r⊥, z, t) =
∑

n

[
Vn (z, t)∇⊥ϕn (~r⊥) + ~z0en (z, t)κ2

nϕn (~r⊥)
]
,

µ
1/2
0

~H (~r⊥, z, t) =
∑

n In (z, t) [~z0 ×∇⊥ϕn (~r⊥)]
(1)

Here ϕn (~r⊥) are scalar potentials that define mode configurations.
They can be found as solutions to the following Dirichlet boundary
eigenvalue problem [12]:

(∇2
⊥ + κ2

n) ϕn(~r⊥) = 0; ϕ|L = 0 (2)

κn are the eigenvalues that determine cutoff frequencies for a hollow
waveguide; n is the mode index. A similar presentation can be written
for TE-waves with scalar mode functions satisfying a similar Neumann
problem.

The mode amplitudes in the expansion (1) are governed by the
following System of Evolutionary Equations (SEE) [12, 20]





enκ2
n = ∂τIn + ∂zVn,

In = −∂τen,
∂zIn = −∂τVn

(3)

here τ = ct, ∂τ = c−1∂/∂t =
√

ε0εµ0∂t, c = c0/
√

ε is the speed of light
in the medium. This system can be reduced to a single Klein-Gordon
equation (KGE) for each mode:

(
∂2

τ − ∂2
z + κ2

)
I = 0 (4)

This equation describes propagation of an arbitrary wave in a
regular uniformly filled waveguide. Analytical solution to this equation
is known in the form of convolution of initial-boundary condition with
a transport operator expressed in terms of Bessel functions [19, 35].

3.2. METD in Spherical Coordinates

A similar approach formulated in spherical coordinate system can be
applied for description of electromagnetic fields in conical lines and
free space [21, 34]. In further derivation for brevity sake we will
only consider TEM- and TM-waves as an example; TE-waves can be
considered similarly.
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The full fields in spherical coordinate system can be written in
angular-radial form as follows:

~E (~r, t) = ~E (~r, t) + ~r0Er (~r, t)
~H (~r, t) = ~H (~r, t)

(5)

where ~r0 is the unit radial ort, ~r = {r, θ, ϕ} are coordinates in the
spherical coordinate system, t is the time coordinate, ~E and ~H are the
angular field components (θ and ϕ components).

The angular and radial components of the sought fields can be
presented in the form of mode series as follows [31, 34, 41]:

√
ε0

~E (r, θ, ϕ, t)= 1
r

{∑
n

Vn (r, t) ~En (θ, ϕ)+
∑
k

V T
k (r, t) ~ET

k (θ, ϕ)
}

√
µ0

~H (r, θ, ϕ, t)= 1
r

{∑
n

In (r, t) ~Hn (θ, ϕ)+
∑
k

IT
k (r, t) ~HT

k (θ, ϕ)
}

√
ε0Er (r, θ, ϕ, t)= 1

r2

∑
n

en (r, t) qnϕn (θ, ϕ)

(6)

The scalar and vector functions dependent on angular variables are
the basis functions of the expansion; they constitute the so-called mode
basis. The expansion coefficients that are scalar functions dependent
only on the radial and time variable are called as mode amplitudes.
The quantities with superscript T describe TEM-waves. There can be
only finite number of TEM-waves that depends on connectivity of the
PEC cones. There are no TEM-waves in the expansion of fields in the
free space.

Scalar basis functions for TM-modes in a conical line can
be obtained from the following eigenvalue problem with Dirichlet
boundary conditions at the cones:{

∇⊥ · ∇⊥Φn + q2
nΦn = 0

Φn|L = 0 (7)

where qn are the eigenvalues; Φn are the eigenfunctions; ∇⊥ =
~θ0 ∂/∂θ+~ϕ0 (1/ sin θ) ∂/∂ϕ is the angular part of Hamilton∇ operator,
L is the contour of the PEC cones.

Vector basis functions of the conical line can be expressed via the
scalar basis functions as follows:

~En = q−1
n ∇⊥Φn

~Hn = q−1
n [~r0 ×∇⊥Φn] (8)

Scalar basis functions for TEM-mode in the conical line are
determined from the following inhomogeneous boundary problem:{

∇⊥ · ∇⊥ΦT = 0
ΦT

∣∣
Lj

= dj
(9)
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where dj are some constants on the j-th part of the multi-connected
contour L.

Vector basis function of the TEM-wave can be expressed via the
scalar basis function as follows:

~ET = ∇⊥ΦT ~HT =
[
~r0 ×∇⊥ΦT

]
(10)

By solving problem (7), (9) and applying formulae (8), (10) a
mode basis can be constructed in any conical line (in the free space as
well)

Substitution of field expansion (6) into Maxwell equations yields
the following system of radial evolutionary equations for the mode
amplitudes [34, 41]





∂τIn(r, t) + ∂rVn(r, t)− ( qn

r

)2
en(r, t) = 0,

∂τen(r, t) + In(r, t) = 0,
∂τVn(r, t) + ∂rIn(r, t) = 0.

(11)

This system holds for TM-waves in a conical line and in the free
space. For a TEM-wave in a conical line the governing equation can
be reduced to {

∂τI
T
k (r, t) + ∂rV

T
k (r, t) = 0,

∂τV
T
k (r, t) + ∂rI

T
k (r, t) = 0

(12)

From (11) one can derive the following 2-nd order equation known
as Klein-Gordon-Fock equation (KGFE) [31, 34]:

[
∂2

τ − ∂2
r + (qn/r)2

]
en (r, t) = 0 (13)

Analytical solution to the Klein-Gordon-Fock equation exists only
for free space when q2

n = n(n + 1) [21, 31].
System (12) yields the wave equation:

[
∂2

τ − ∂2
r

]
V T

k (r, t) = 0 (14)

4. NUMERICAL SOLUTION OF THE SYSTEM OF
EVOLUTIONARY EQUATIONS

The obtained evolutionary equations (3) and (11) should be
supplemented with initial and/or initial-boundary conditions. The
resulted problem is solved numerically using finite-difference method.
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4.1. Numerical Solution of the Waveguide Evolutionary
Equations

Using finite-difference approximation to the derivatives in (3) it is easy
to obtain the following explicit update formulae (details can be found
in [19, 35]):





I|k+1/2
i = I|k−1/2

i + κ2∆τ e|ki − ∆τ
∆z

(
V |ki+1/2 − V |ki−1/2

)
,

e|k+1
i = e|ki −∆τ I|k+1/2

i ,

V |k+1
i+1/2 = V |ki+1/2 − ∆τ

∆z

(
I|k+1/2

i+1 − I|k+1/2
i

)
,

(15)

The time-space grid and the stencils of these equations are
sketched in Fig. 3.

Solution of these finite-difference equations yields approximation
to the solution of the original SEE. It converges quadratically to the
exact one with error decreasing as C1(∆τ)−2 + C2(∆z)−2.

It is known that for the wave equation a solution of the finite-
difference equation can yield an exact solution when ∆τ, ∆z are chosen
properly (at the stability limit) [2]. In such case the dispersion relation
of the finite-difference equation coincides with that of the original
differential equation. A similar situation holds for KGE, though the
dispersion relations don’t equal exactly but the discrepancy grows not
as ω3.5 but as ω1 (for ω À cκ) when ∆τ, ∆z are chosen at the stability
limit, which for KGE is [35]:

∆τ ≤ 2∆z√
κ2∆z2 + 4

(16)

For larger time steps the update equations (15) result in unstable
(increasing) solution. By choosing ∆z slightly greater than the stability
limit (16) it is possible to adjust the numerical dispersion error to be

i − 1/2

k + 1/2∆τ

τ

∆z

Figure 3. Finite-difference stencils used in the SEE.
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minimal in some frequency range. We exploit this property in the
further analysis by choosing different ∆z in each of the coupled mode
channels while ∆τ being common in order to avoid time interpolation
while matching.

4.2. Numerical Solution of the Radial Evolutionary
Equations

Numerical solution of the radial evolutionary equations is not widely
known so we describe it in more details. It is important to notice
that since the cutoff frequency of a spherical mode depends on the
radial coordinate (ωc(r) = q2

n/r2) [21] FDTD solution of the SEE
with uniform radial step for the conical line can result in large
computational errors at small r. So we need to vary radial steps
with radius. The radial step for each mode channel is chosen from
two conditions. First, at any radius the mode cut-off wavelength has
to be sampled sufficiently densely (we use 40 points per the cut-off
wavelength in the simulation). Second, the smallest wavelength of
interest in the excitation signal has to be sufficiently sampled. Based
on these conditions a non-uniform radial grid for the mode amplitude
of the transverse electric field component (V in (11)) is chosen. For
convenience the nodes for the others mode amplitudes (e and I) are
placed in the middle between the nodes for V . As a result a grid for e
and I also has non-uniform radial steps.

Using non-uniform steps is important for the centre vicinity where
the cut-off frequency becomes large enough at some radius so that
any constant-size step becomes too coarse compared with the cut-
off wavelength. Another consequence of this growth of the cut-off
frequency is that any wave becomes evanescent at some small radius so
absorbing boundary conditions can be specifically designed assuming
evanescent regime or can be considered needless because of natural
decay of the evanescent waves. From the other hand the radial step
at large radius cannot grow constantly because of requirement of fine
sampling the smallest wavelength of interest in the excitation signal.
So it is convenient to choose a constant step starting from some radius.

In particular, considering a problem of wave radiation into free
space by a finite length conical-line antenna, the radial step at the end
of the conical line in each mode channel is chosen to be sufficiently
small so that there is at least 40 points per minimum wavelength of
interest (cut-off wavelength or minimal wavelength in the excitation
signal spectrum whichever is smaller). Then the inner region mode
channels (antenna region) use non-uniform radial steps decreasing as
∆r ∼ r while the outer region (free space) mode channels use constant
radial step.
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Figure 4. Non-regular radial step.

Time sampling of the mode amplitudes in (11) is based on the
widely known “leap-frog” scheme [2]. The mode amplitudes of the
electric fields (e and V ) are calculated at time instants k∆τ and the
mode amplitude of the magnetic field I is evaluated at (k + 1/2)∆τ .
Time step should be common to all the mode channels, it is defined by
the smallest ∆r used in calculations and is chosen based on stability
criterion. In order to derive finite difference expressions for the SEE in
the case of varying radial step we integrate the evolutionary equation
over the finite segments.

For the first equation in (11) the integration interval is from
rV
i to rV

i+1 (see Fig. 4). In order to obtain a second order accurate
scheme e and I mode amplitudes are assumed to be constant within
the integration interval. Integrating ∂rV and q2e/r2 and using central
finite difference for approximation of time derivative we have derived
the following update formula

∂τI + ∂rV − q2e/r2 = 0

⇒ I|k+1/2
i+1/2 = I|k−1/2

i+1/2 +
q2∆τ

rV
i rV

i+1

e|ki+0.5 −
∆τ

∆rV
i+1/2

(
V |ki+1 − V |ki

)
(17)

where ∆rV
i+1/2 = rV

i+1 − rV
i .

The second equation in (11) does not depend on the spatial
coordinate and is easily approximated by the time finite difference:

∂τe = −I ⇒ e|k+1
i+1/2 = e|ki+1/2 −∆τ I|k+1/2

i+1/2 (18)

In the third equation in (11) the integration is performed from(
rV
i−1 + rV

i

)
/2 to

(
rV
i + rV

i+1

)
/2. As a result we have derived the
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following updating formula

∂τV = −∂rI ⇒ V |k+1
i = V |ki−

2∆τ

∆rV
i+1/2 + ∆rV

i−1/2

(
I|k+1/2

i+1/2 − I|k+1/2
i−1/2

)

(19)
Gathering all together, the explicit update formulae for marching

on time can be written as:



I|k+1/2
i+1/2 = I|k−1/2

i+1/2 + q2∆τ
rV
i rV

i+1
e|ki+1/2 − ∆τ

∆rV
i+1/2

(
V |ki+1 − V |ki

)

e|k+1
i+1/2 = e|ki+1/2 −∆τ I|k+1/2

i+1/2

V |k+1
i = V |ki − 2∆τ

∆rV
i+1/2

+∆rV
i−1/2

(
I|k+1/2

i+1/2 − I|k+1/2
i−1/2

) (20)

In order to solve the SEE efficiently one needs some absorbing
boundary conditions bounding the finite simulation domain. For the
coordinate centre vicinity we can do without any absorbing condition
since each mode becomes evanescent at any given frequency when
the radial coordinate becomes less than some radius. The absorbing
boundary condition for the TEM-wave can be easily derived as
impedance boundary condition since there is no dispersion in this
channel. The channels in the free space region can be efficiently
bounded by the ‘exact’ absorbing boundary condition proposed by
Sirenko in [46].

5. MODE MATCHING IN NUMERICAL SIMULATION

The modes can be calculated independently everywhere except for the
waveguide junction point. At this point we should apply boundary
conditions at the aperture and the flange in order to relate all the
mode amplitudes on the left and right from the junction.

In further consideration, in order to speak more specifically,
we consider a junction like a waveguide step where there are two
waveguides: a narrow one and a wide one, which are coupled via
aperture that occupies the whole cross-section of the narrow waveguide
(see an example of such a structure on the inset in Fig. 5).

In order to derive update formulae for matching the mode
amplitudes we are going to use the equation for time derivative of
electric mode amplitude that looks similarly for cylindrical (see 3rd of
Eq. (3)) and spherical (see 3rd of Eq. (11)) coordinate systems

∂τV = −∂rI for conical waveguide
∂τV = −∂zI for cylindrical waveguide (21)

So the following derivation will be valid for both cases with the
only difference in changing notation for propagation coordinate r ↔ z.
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It is known that if the numerical boundary conditions have one
order less accurate than the interior accuracy, then the order of the
global accuracy is preserved [48]. That’s why at the boundary we will
use left finite differences instead of the central one used in (15) and
(20). It yields the following update formula for each mode channel:

V (n)
∣∣∣
k+1

0
= V (n)

∣∣∣
k

0
− 2∆τ

∆r
(n)
−1/2

(
I(n)

∣∣∣
k+1/2

0
− I(n)

∣∣∣
k+1/2

−1/2

)
(22)

The spatial index |0 corresponds to the junction position. At
that I(n)|k+1/2

−1/2 denotes magnetic field mode amplitude in the left mode

channel #n at distance ∆r
(n)
−1/2/2 before the junction; ∆r

(n)
−1/2 is the

radial step before the discontinuity (it can be different for each mode
channel and is varied for conical lines as described in Section 4.2).

The update formula (22) can be written for all the channels
simultaneously using matrix notation:

v(1)|k+1
0 = v(1)|k0 − 2S(1) ·

(
i(1)|k+1/2

0 − i(1)|k+1/2
−1/2

)

S(1) = diag
(
∆τ/∆r

(n)
−1/2

) (23)

here small bold values v(1) and i(1) are the vectors of the corresponding
mode amplitudes for all the channels in the waveguide #1 (the narrow
one), and S(1) is the diagonal matrix of Courant-Friedrichs-Lewy
numbers S = ∆τ/∆r in the mode channels [1]. Similarly to (23) one
can write for the wide waveguide (#2) the following update formula
using right finite difference:

v(2)|k+1
0 = v(2)|k0 − 2S(2) ·

(
i(2)|k+1/2

1/2 − i(2)|k+1/2
0

)

S(2) = diag
(
∆τ/∆r

(n)
+1/2

) (24)

The boundary conditions require continuity of tangential field
components at the common aperture and zero tangential electric field
at the flange:

∑
m

(
v(1)|k0

)
m

~E
(1)
m (~r⊥)=

{ ∑
m′

(
v(2)|k0

)
m′ ~E

(2)
m′ (~r⊥), ~r⊥ ∈ Aperture

0, ~r⊥ ∈ Flange∑
m

(
i(1)|k0

)
m

~H
(1)
m (~r⊥) =

∑
m′

(
i(2)|k0

)
m′ ~H

(2)
m′ (~r⊥), ~r⊥ ∈ Aperture

(25)

We apply Method of Moments procedure in order to reduce these
functional equations to a set of linear algebraic equations for the
moments. As testing functions for field projection we use the basis
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of mode functions of the wide waveguide #2 in the first continuity
condition (25), and the basis of the narrow waveguide #1 — in the
second continuity condition. It yields the matrix formulation of the
boundary conditions as

{
M · v(1)|k0 = v(2)|k0
i(1)|k+1/2

0 = MT · i(2)|k+1/2
0

(26)

where T denotes transposition, and the transform matrix M is defined
as follows:

Mmm′ =
∫

~E(1)
m (~r⊥) · ~E

(2)
m′ (~r⊥) dS (27)

Using formulae (23), (24), and (26) the following update equations
for the electric field modal amplitudes at the junction can be derived
(see Appendix A for details):

v(1)|k+1
0 = v(1)|k0 + 2F−1 ·

(
i(1)|k+1/2

−1/2 −MT · i(2)|k+1/2
1/2

)
,

v(2)|k+1
0 = M · v(1)|k+1

0 .
(28)

where matrix F has been introduced as follows:

F =
(
S(1)

)−1
+ MT ·

(
S(2)

)−1
M (29)

6. NUMERICAL RESULTS

6.1. Step in a Parallel-plate Waveguide

The first structure that we are going to analyze is a step discontinuity
in a parallel-plate waveguide. Diffraction of a TEM-wave launched in
a wide waveguide (a = 1) towards a junction with a narrow waveguide
(b = 0.6) is considered (see inset in Fig. 5). The problem was solved
by the proposed method and results were compared against the exact
solution obtained by MMT in FD [5]. The mode functions in this case
are expressed via trigonometric functions [3], and the corresponding
coupling matrix (27) can be easily obtained in a closed-form.

We take into consideration TEM-mode in the wide and narrow
sections and additionally 8 TM-modes in the wide waveguide and 5
TM-modes in the narrow one in accordance with Mittra rule [5], which
requires that the transverse wavenumbers of the highest considered
modes in the matched waveguides are approximately equal. Excitation
pulse has Gaussian waveform (see Fig. 5) with parameters T = 0.4 a/c0,
t0 = 3 T.

In the FDTD modeling the time step was chosen so that the
maximal cut-off frequency for all the considered modes was sampled
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Figure 5. The waveforms of the incident and diffracted TEM-modes.

Figure 6. Transmission and reflection coefficients.

with at least 8 points per period. In this simulation ∆t = 0.03. The
spatial steps ∆z for each mode are chosen individually at the limit of
stability criterion (16). We performed 4096 time steps in the modeling.
The resulted waveforms of the incident, reflected, and transmitted
TEM-modes are shown in Fig. 5.

In Fig. 6 the calculated spectra of the reflection and transmission
coefficients for TEM-modes are presented. The solid (dashed) vertical
lines in the picture mark the cut-off frequencies for the wide (narrow)
waveguide. The calculated data match well with the reference results
obtained by FD MMT [5]. The discrepancy grows with frequency
(due to quadratic order of approximation of FDTD-scheme) and has
spikes at the cut-off frequencies due to spectrum discontinuities at these
points.

6.2. Junction of Coaxial and Circular Waveguides

Next we consider a junction of coaxial and circular waveguides (see
geometry on the inset in Fig. 7). The outer radius is b = 0.5, the inner
radius is a = 0.1.



272 Legenkiy and Butrym

Figure 7. TEM-mode waveforms.

Figure 8. Waveforms of transmitted (top) and reflected (bottom)
TM-modes.

Mode functions for the coaxial and circular waveguides are well
known [4], the coupling matrix elements are easily calculated as
integrals from Bessel functions. In the circular waveguide we took
into account 5 TM-modes. In the coaxial waveguide we considered
TEM-mode and 4 TM-modes in accordance with Mittra rule [5].

The TEM-wave is launched in the coaxial waveguide towards the
junction. The excited waveform has Gaussian form (see Fig. 7) with
parameters T = 0.2 a/c0, t0 = 5 T. The time step was chosen similarly
to the previous case but with 15 points per smallest cut-off wavelength,
it yields ∆t = 0.013. Spatial steps ∆z were chosen for each mode at the
stability limit. 4096 time steps were performed in the modeling. The
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resulting waveforms are depicted in Figs. 7–8. Fig. 9 shows comparison
of the calculated reflectivity spectrum for TEM-mode with the results
obtained by a commercial solver. Solid/dash lines in the graph mark
the cut-off frequencies of the circular/coax waveguides correspondingly.

6.3. Bi-conical Antenna

Now we are going to consider some radiation problem. A bi-conical
antenna shown in Fig. 10 is widely used for radiating ultrawideband
short pulses. It is the simplest multi-cone like line that supports
propagation of TEM-mode. We chose it for consideration since its
mode functions can be obtained in a closed-form.

The antenna is excited with a TEM-wave that diffracts into TM-
waves at the open end (antenna aperture), at this TE-waves are
not excited and there is no radial magnetic field component due to
symmetry.

Figure 9. S11 for TEM-wave.

1
θ

y

2
θ

x

z

Figure 10. Bi-conical antenna.
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6.3.1. Basis in the Bi-cone Region

The solution to the boundary problem (7) for a nonsymmetrical bi-
cone (Fig. 10) can be presented via Legendre functions of first kind
Pµn( ) as follows [21, 34, 49]:

ΦTM
n (θ) = Cn

[
Pµn (cos(θ))− Pµn (cos(θ1))Pµn (− cos(θ))

Pµn (− cos(θ1))

]
(30)

where µn are defined from the following dispersion relation:∣∣∣∣
Pµn (cos(θ))|θ=θ1

Pµn (− cos(θ))|θ=θ1

Pµn (cos(θ))|θ=θ2
Pµn (− cos(θ))|θ=θ2

∣∣∣∣ = 0

µn 6= 0,±1,±2, . . . θ ∈ [θ1, θ2] n ∈ N
(31)

Eigenvalues qn of the problem (7) can be expressed via µn as
follows:

q2
n = µn (µn + 1) (32)

The normalization constants Cn in (30) are defined by the condition:

1
4π

∫

Ω

ΦTM
n (θ)ΦTM

n′ (θ)dΩ = δnn′ (33)

The corresponding vector basis functions can be found using (8) as:

~ETM
n (θ) = ~θ0q

−1
n ∂ΦTM

n /∂θ, ~HTM
n (θ) = ~ϕ0q

−1
n ∂ΦTM

n /∂θ (34)

TEM-mode can be obtained as a solution to the boundary problem
(9) that yields:

ΦT (θ) = C ln
1− cos θ

sin θ
(35)

~ET (θ) = ~θ0
C

sin θ
, ~HT (θ) = ~ϕ0

C

sin θ
(36)

where normalization constant C is determined from the condition:
1
4π

∫

Ω

[
~ET (θ)

]2
dΩ = 1 (37)

6.3.2. Basis in the Free Space

In order to build a mode basis for TM-waves in the free space
one should solve the eigenvalue problem (7) assuming finiteness and
periodicity boundary conditions on the unit sphere. The solution
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to this problem is well known and has the following form (spherical
harmonics) [31]:

ΦTM
n (θ) =

√
2n + 1 Pn (cos(θ))

q2
n = n(n + 1), n ∈ N, θ ∈ [0, π] (38)

The corresponding vector basis functions are:

~ETM
n (θ) = ~θ0

sin θ

√
n(n+1)
2n+1 [Pn+1 (cos(θ))− Pn−1 (cos(θ))]

~HTM
n (θ) = ~ϕ0

sin θ

√
n(n+1)
2n+1 [Pn+1 (cos(θ))− Pn−1 (cos(θ))]

(39)

For numerical simulation we consider a symmetric bi-conical
antenna with radius R = 10 mm and the cone angle θ1 = 46, 98◦.
Such a bi-conical line has wave impedance 100Ω [47]. The antenna
is fed at apex by a Gaussian pulse with parameters T = 50 ps and
t0 = 5T (see Fig. 11) that launches a TEM-wave propagating from
centre to the open end of the antenna.

In the free space we take into account 20 TM-modes in order to
describe properly all the harmonics that can be exited by the used pulse
at antenna end. In the bi-conical line we considered the TEM-mode
and 9 TM-modes in accordance with Mittra rule [5].

The spatial grid in the conical line is nonuniform, the radial step
size is chosen as described in Section 4.2. The time step was chosen
from the stability criterion for the minimal used radial step. 4096 time
steps were performed. The calculated return loss is plotted in time
and frequency domains in Fig. 11. The data are compared against the
results obtained by a commercial 3D FDTD solver. There is a small
discrepancy at early time that is caused by errors in modeling vicinity
of the feeding point in 3D FDTD, while at the later time agreement
is near perfect. The discrepancy in the frequency domain is caused by
the above mentioned reflection at the feed point in the FDTD.

Figure 11. Return loss in the bi-cone antenna.



276 Legenkiy and Butrym

Figure 12. Waveforms calculated in the near zone.

Figure 13. Near field waveforms.

The waveforms of the radiated spherical harmonics in the free
space were obtained in MMTD modeling at radius R1 = 15 mm. Then
they were summed up with the angle dependencies of the harmonics in
order to obtain time dependence of Eθ at some angles. Fig. 12 shows
comparison of the calculated for θ = 60◦ waveform with the results of
3D FDTD solver. An excellent agreement is observed.

More waveforms of Eθ at R = 15mm for several angles θ are
plotted in Fig. 13.

Typically of interest are the waveforms in the far zone. In order
to calculate them we need to perform some transformation from the
near zone where we evaluate the fields with FDTD-scheme into the far
zone. To this aim let us apply Fourier transform to Equation (13) that
yields an ordinary differential equation:

(
d2

dr2
− (

(qn/r)2 − ω2
))

En(r, ω) = 0 (40)

Equation (40) is supplemented with initial condition En(R,ω) =
E0

n(ω), where E0
n(ω) is the spectrum of the mode amplitude recorded at

radius R in the near zone. The solution to this problem that describes
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outgoing wave can be written as follows:

En(r, ω) = E0
n(ω)

√
r

R0

H
(2)
bn

(ωr)

H
(2)
bn

(ωR0)
(41)

here H
(2)
ν ( · ) is Hankel function of the second kind, bn =√

1/4 + n(n + 1).
Formula (41) allows obtaining spectrum of the radiated field at any

distance off the antenna. Using asymptotic of the Hankel function for
large argument we obtain the following formula for the mode amplitude
spectrum in the far zone:

En(ω, r)|r→∞ =
√

2
R0π

E0
n(ω)

√
ωH

(2)
bn

(ωR0)
e

π
2
i(bn+1/2)−iωr (42)

It should be noted that the r−1 decay was factored earlier in (6).
This formula can be used for near-to-far zone transformation of the

mode amplitudes. Waveforms of the mode amplitudes are recorded at
some radius during FDTD marching in time; then they are transformed
into FD by FFT; there formula (42) is applied, and the resulted spectra
are turned back to TD by IFFT yielding waveforms in the far zone.
Finally the mode amplitudes are summed up in series (6) with mode
functions for free space (39) calculated for directions of interest. It
allows one to calculate the waveforms of the fields in the far zone for
any given direction. Alternatively, if one is interested in calculating a
radiation pattern at some frequency then the last IFFT step should
be omitted and the mode amplitudes spectral density at the frequency
of interest being summed up with the spherical harmonics yield the
radiation pattern.

Figure 14. Radiation patterns and radiated waveforms in the far
zone.
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Some examples of calculated radiation patterns at several
frequencies and waveforms at several polar angles are plotted in Fig. 14.

7. CONCLUSIONS

A new method is proposed for Time Domain analysis of struc-
tures consisting of regular waveguide regions with abrupt discontinu-
ities/junctions. It is based on applying the technique of mode match-
ing, which is widely used in the Frequency Domain, to a similar prob-
lem considered in the Time Domain.

We considered several numerical examples of applying the
proposed method and demonstrated good agreement with reference
results.

The method of Mode Matching in Time Domain possesses all the
benefits of time domain techniques (obtaining the waveforms and as
a result a wideband spectra in one simulation) and allows separate
treating of the independent mode channels with 1D FDTD schemes
that significantly reduces dimensionality of the problem.

The method was demonstrated to be able to efficiently calculate
the pulse radiation of some kind of antennas that can be presented as
a finite length regular conical line. Besides the considered bi-conical
antenna in this way the following antennas can be considered: TEM-
horn, bow-tie antenna, disc-cone antenna, V-antenna, ridge antenna
etc.

Further improvement of the proposed method can be done
by explicitly accounting edge conditions in the field matching
procedure [43, 44] similar to how it is done in Coupled-Integral-
Equations Technique [42].

APPENDIX A.

In this appendix, we are going to derive the update equations for the
mode amplitudes at the matching cross-section (28).

To this end we use single sided finite differences (23)–(24) in order
to obtain the mode amplitudes for the magnetic fields at the aperture:

v(2)|k+1
0 = v(2)|k0 − 2S(2) ·

(
i(2)|k+0.5

0.5 − i(2)|k+0.5
0

)

⇒ i(2)|k+0.5
0 = i(2)|k+0.5

0.5 + 1
2

(
S(2)

)−1
(
v(2)|k+1

0 − v(2)|k0
)

v(1)|k+1
0 = v(1)|k0 − 2S(1) ·

(
i(1)|k+0.5

0 − i(1)|k+0.5
−0.5

)

⇒ i(1)|k+0.5
0 = i(1)|k+0.5

−0.5 − 1
2

(
S(1)

)−1
(
v(1)|k+1

0 − v(1)|k0
)

(A1)
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Then we substitute these expressions into the second matrix
equation in (26) that represents the condition of magnetic field
continuity over the aperture:

i(1)|k+0.5
−0.5 − 1

2

(
S(1)

)−1 (
v(1)|k+1

0 − v(1)|k0
)

= MT ·
(
i(2)|k+0.5

0.5 +
1
2

(
S(2)

)−1 (
v(2)|k+1

0 − v(2)|k0
))

(A2)

The first matrix equation from (26) is used in order to exclude
v(2) from the above equation:

v(2)|k0 = M · v(1)|k0 ⇒
(
v(2)|k+1

0 − v(2)|k0
)

= M ·
(
v(1)|k+1

0 − v(1)|k0
)

(A3)
By substituting it into (A2) we arrived to:

i(1)|k+0.5
−0.5 − 1

2

(
S(1)

)−1 (
v(1)|k+1

0 − v(1)|k0
)

= MT ·
(
i(2)|k+0.5

0.5 +
1
2

(
S(2)

)−1
M ·

(
v(1)|k+1

0 − v(1)|k0
))

(A4)

It can be considered as a linear equation relating the sought
increment of electric modal amplitudes

(
v(1)|k+1

0 − v(1)|k0
)

with the
known values of magnetic modal amplitudes from the left and right of
the junction at time step k + 0.5:

1
2

((
S(1)

)−1
+ MT ·

(
S(2)

)−1
M

) (
v(1)|k+1

0 − v(1)|k0
)

= i(1)|k+0.5
−0.5 −MT · i(2)|k+0.5

0.5 (A5)

This equation is solved by inverting the nonsingular matrix F (see
(29)) that yields the final updating formula (28) for v(1)|k+1

0 .
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