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Abstract—This paper presents asynchronous particle swarm opti-
mization (APSO) applied to the time-domain inverse scattering prob-
lems of two-dimensional metallic cylinder buried in slab medium. For
this study the finite-difference time-domain (FDTD) is employed for
the analysis of the forward scattering part, while for the APSO is ap-
plied for the reconstruction of the two-dimensional metallic cylinder
buried in slab medium, which includes of the location and shape the
metallic cylinder. For the forward scattering, conceptually several elec-
tromagnetic pulses are launched to illuminate the unknown scatterers,
and then the scattered electromagnetic fields around are measured.
In order to efficiently describe the details of the cylinder shape, sub-
gridding technique is implemented in the finite difference time domain
method. Then, the simulated EM fields are used for inverse scattering,
in which APSO is employed to transform the inverse scattering prob-
lem into optimization problem. By comparing the simulated scattered
fields and the calculated scattered fields, the shape and location of the
metallic cylinder are reconstructed. In addition, the effects of Gaussian
noises on imaging reconstruction are also investigated.

1. INTRODUCTION

The detection and reconstruction of buried and inaccessible scatterers
by inverting microwave electromagnetic measurements is a research
field of considerable interest because of numerous applications in civil
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engineering and nondestructive testing. Numerical inverse scattering
studies found in the literature are based on either frequency or
time domain approaches. With frequency domain algorithms, the
interaction of the entire medium with the incident field is considered
simultaneously. In contrast, time-domain approaches can exploit
causality to limit the region of inversion, potentially reducing the
number of unknowns. Time domain inverse scattering problems
somewhat related to the present study commonly appear in the area
of remote sensing. However, it is well known that one major difficulty
of inverse scattering is its ill-posedness and non-unique in the inverse
scattering problems [1, 2].

In the past twenty years, the inversion techniques are developed
intensively for the microwave imaging both in frequency domain
and time domain [3–16]. Most of the inversion techniques are
investigated for the inverse problem using only single frequency
scattering data (monochromatic source) [3–5]. However, the time
domain scattering data is important for the inverse problem because
the available information content about scatterer is more than the
only single frequency scattering data. Finite-difference time-domain
(FDTD) method has advantage that compared with frequency domain.
FDTD method provides the capability to model arbitrary metallic
objects and lossy homogeneous backgrounds. Moreover, multiple
frequencies can be investigated without any extra computational effort.
Therefore, various time domain inversion approaches are proposed [6–
11] that could be briefly classified as the neural networks [6], the
iterative approach: Born iterative method (BIM) [7], and gradient-
based method [8], and optimization approach [9–11]. Traditional
iterative inverse algorithms are founded on a functional minimization
via some gradient-type scheme. In general, during the search of
the global minimum, they tend to get trapped in local minima
when the initial guess is far from the exact one. Asynchronous
particle swarm optimization (APSO) [12] is well-known evolutionary
algorithm of optimization strategy, which uses stochastic mechanism
to search through the parameter space. In recent year, most of the
researchers have applied APSO together with the frequency domain
EM solver for the inverse problems [13]. Fewer researchers had applied
the genetic/evolutionary algorithms in time domain for the inverse
scattering problem for target identification [14, 15] and penetrable
object reconstruction [16]. To the best of our knowledge, a comparative
study about the performances of particle swarm optimization (PSO)
and asynchronous particle swarm optimization (APSO) has not
yet been reported with application to the electromagnetic inverse
scattering problems.
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This paper presents a time domain computational scheme for
the microwave imaging of a 2D metallic cylinder with arbitrary
shape buried in the subsurface. The computational method combines
the FDTD method and the APSO [12]. The forward problem
is solved based on the FDTD method, for which the subgridding
technique is implemented to closely describe the fine structure of the
cylinder [17, 18]. Interpolation technique through the closed cubic B-
splines [19] is employed to describe a cylinder with arbitrary shape
more effectively. In Section 2, the details of the subgridding FDTD
method for the forward scattering are presented. In Section 3, the
numerical results of the proposed inverse problem are given. The
shadowing effect is shown, and the techniques proposed to overcome
it are demonstrated. Finally, in Section 4 some conclusions are drawn
for the proposed time domain inverse scattering.

2. FORWARD PROBLEM

Let us consider a two-dimensional three-layer structure with buried
conducting cylinder in the second layer as shown in Fig. 1, where
(εi, σi) i = 1, 2, 3, denote the permittivities and conductivities in
each layer. The metallic cylinder with cross section described by the
equation ρ = F (θ) is illuminated by an incident plane wave whose
electric field vector is parallel to the z axis. The cross section of the
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Figure 1. Geometrical configuration for the inverse scattering.
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object is starlike shape in the x-y plane with respect to the center
position (XO, YO). The metallic cylinder is illuminated by Gaussian
pulse line source located at the points denoted by Tx in the first layer.
Scattered waves are recorded at those points denoted by Rx in the
same layer. The computational domain is discretized by Yee cells. It
should be mentioned that the computational domain is surrounded by
the optimized perfect matching layers (PML) absorber [20] to reduce
the reflection from the environment-PML interface.

The E field data need to be obtained in the forward scattering
problem by the FDTD code with fine grids to mimic the experimental
measurement data. For the forward scattering problem the shape
and location of the metallic cylinder to be determined is given first,
and then the FDTD code is employed to calculate the scattered
electric fields that are utilized to mimic the experiments. It should
be noted that in the forward problem, the shape function F (θ) of
the 2-D metallic cylinder buried in a half space is described by the
trigonometric series as follows:

F (θ) =
N/2∑

n=0

Bn cos(nθ) +
N/2∑

n=1

Cn sin(nθ) (1)

In order to closely describe the shape of the cylinder for both the
forward and inverse scattering procedure, the subgridding technique
is implemented in the FDTD code, the details are presented in later
section.
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Figure 2. Structure of the TMz FDTD major grids and local grids for
the scaling ratio (1:3), H fields are aligned with the MG-LG boundary.
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A subgridding scheme is employed to divide the problem space
into regions of different grid sizes. The grid size in coarse region is
about ( 1

20 ∼ 1
10λmin) as in normal FDTD, while in the fine region the

grid size is scaled by an integer ratio. As an example, the Yee cells
with subgridding structure are shown in Fig. 2, of which the scaling
ratio is 1 : 3.

The capital and small case letters stand for EM fields on the
major grids and local grids, respectively. If the scaling ratio is set
at odd-ratio then the fields are collocated in space at coarse and fine
region. The e and h fields inside the fine region can be updated through
the normal Yee-cell algorithm except those at the main-grid-local-grid
(MG-LG) boundary. The noncollocated magnetic field at the MG-
LG interface can be obtained by linearly interpolation. The time
interpolation of the fine grid magnetic field at the MG-LG interface
is performed using the parabolic interpolation calculation. The above
is only a brief introduction to the subgriding FDTD. More detail on
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subgriding FDTD can be found in [20]. The flow chart associated upon
subgrid FDTD computing procedure is shown in Fig. 3.

3. INVERSE PROBLEM

For the inverse scattering problem, the shape and location of the
metallic cylinder are reconstructed by the given scattered electric field
obtained at the receivers. This problem is resolved by an optimization
approach, for which the global searching scheme PSO is employed to
minimize the following objective function (OF ):

OF =

Ni∑
n=1

M∑
m=1

Q∑
q=0

∣∣Eexp
z (n,m, q∆t)−Ecal

z (n,m, q∆t)
∣∣

Ni∑
n=1

M∑
m=1

Q∑
q=0

|Eexp
z (n,m, q∆t)|

(2)

where Eexp
z and Ecal

z are experimental electric fields and the calculated
electric fields, respectively. The Ni and M are the total number of
the transmitters and receivers, respectively. Q is the total time step
number of the recorded electric fields. The details of the proposed PSO
are represented as follows.

3.1. Modified Asynchronous Particle Swarm Optimization
(APSO)

Particle swarm global optimization is a class of derivative-free,
population-based and self-adaptive search optimization technique.
Particles (potential solutions) are distributed throughout the searching
space and their positions and velocities are modified based on social
behavior. The social behavior in PSO is a population of particles
moving towards the most promising region of the search space.
Clerc [21] proposed the constriction factor to adjust the velocity of the
particle for obtaining the better convergence; the algorithm was named
as constriction factor method. PSO starts with an initial population
of potential solutions that is randomly generated and composed Np

individuals (also called particles) which represents the location and
the geometrical radiuses of the cylinders.

After the initialization step, each particle of population has
assigned a randomized velocity and position. Thus, each particle has a
position and velocity vector, and moves through the problem space. In
each generation, the particle changes its velocity by its best experience,
called xpbest, and that of the best particle in the swarm, called xgbest.
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Assume there are Np particles in the swarm that is in a search
space in D dimensions, the position and velocity could be determine
according to the following equations (constriction factor method):

vk
id=χ·

(
vk−1
id +c1 ·ϕ1 ·

(
xpbest,id−xk−1

id

)
+c2 ·ϕ2 ·

(
xgbest,id−xk−1

id

))
(3)

xk
id=xk−1

id + vk
id (4)

where χ = 2∣∣∣2−φ−
√

φ2−4φ
∣∣∣
, φ = c1 + c2 ≥ 4. c1 and c2 are

learning coefficients, used to control the impact of the local and global
component in velocity Equation (3). vk

id and xk
id are the velocity and

position of the i-th particle in the d-th dimension at k-th generation,
ϕ1 and ϕ2 are both the random number between 0 and 1. It should
be mentioned that the Vmax method is also applied to control the
particle’s searching velocity and to confine the particle within the
search space [14]. The “damping boundary condition” proposed by
Huang and Mohan [18] to ensure the particles move within the legal
search space.

The key distinction between APSO and a typical synchronous PSO
is on the population updating mechanism. In the synchronous PSO,
the algorithm updates all the particles velocities and positions using
Equations (3) and (4) at end of the generation. And then update the
best positions, xpbest and xgbest. Alternatively, the updating mechanism
of APSO is that the new best position is found after each particle
position updates if the best position is better than the current best
position. The new best position will be used in following particles
swarm immediately. The swarm reacts more quickly to speedup the
convergence because the updating occurs immediately after objective
function evaluation for each particle.

The flowchart of the APSO (APSO) is shown in Fig. 4. APSO
goes through seven procedures as follows:

I. Initialize a starting population: Randomly generate a swarm of
particles.

II. Calculate E fields by a home-made FDTD code.
III. Evaluate the population using objective function: The APSO

algorithm evaluates the objective function (2) for each individual
in the population.

IV. Find xpbest and xgbest.
V. Mutation scheme: The particle swarm optimization (PSO)

algorithm has been shown to converge rapidly during the initial
stages of a global search, but when around global optimum, the
search can become very slow. For the reason, mutation scheme
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Figure 4. Flowchart for the modified APSO.



Progress In Electromagnetics Research M, Vol. 14, 2010 93

is introduced in this algorithm to speed up the convergence when
particles are around global optimum. The mutation scheme can
also avoid premature convergences in searching procedure and help
the xgbest escape from the local optimal position. As shown in
Fig. 4, there is an additional competition between the xgbest and
xpbestmu . The current xgbest will be replaced by the xgbestmu

if the
xgbestmu

is better than the current xgbest. The xgbestmu
is generated

by following way:

Xgbestmu=





Xgbest − ϕ3 ·
[
c3 − (c3 − c4) · k

kmax

]
· (xmax − xmin) ,

if ϕmu < 0.5
Xgbest + ϕ3 ·

[
c3 − (c3 − c4) · k

kmax

]
· (xmax − xmin) ,

if ϕmu ≥ 0.5
(5)

where c3 and c4 are the scaling parameter. ϕ3 and ϕmu are
both the random number between 0 and 1. k is the current
iteration number. kmax is the maximum iteration number. xmax

and xmin are the upper limit and lower limit of the search space,
respectively.

VI. Update the velocity and position.
VII. Stop the process and print the best individual if the termination

criterion is satisfied, else go to Step II.

3.2. Cubic Spline Interpolation Technique

It should be noted that in the inverse problem, the shape function
of the 2-D metallic cylinder is described by a cubic spline in this
study instead of the trigonometric series described in the section of
the forward problem. The cubic spline is more efficient in terms of
the unknown number required to describe a cylinder of arbitrary cross
section. By using the cubic spline the coordinates of local origin inside
the cylinder serve as the searching parameter and can move around
the searching space, which is impossible if the trigonometric series
expansion is used in the inversion procedure.

As shown in Fig. 5, the cubic spline consists of the polynomials
of degree 3 Pi(θ), i = 1, 2, . . . , N , which satisfy the following smooth
conditions:

Pi(θi) = Pi+1(θi) ≡ ρi

P ′
i (θi) = P ′

i+1(θi) i = 1, 2, . . . , N

P ′′
i (θi) = P ′′

i+1(θi)
(6)
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Figure 5. Geometry of the cubic-spline. (θi, ρi) is the polarized-
coordinate expression for each point and Pi(θ) is the function of the
cubic line which links the points (θi−1, ρi−1) and (θi, ρi).

and
P1(θ0) = PN (θN )
P ′

1(θ0) = P ′
N (θN ) ≡ ρ′N

P ′′
1 (θ0) = P ′′

N (θN )
(7)

Through the interpolation of the cubic spline, an arbitrary smooth
cylinder can be easily described through the radius parameters
ρ1, ρ2, . . . , ρN and the slope ρ′N , of which the details are referred to [19].
By combining the modified APSO and the cubic spline interpolation
technique, we are able to reconstruct the microwave image efficiently.

It should be noted that the coordinates of local origin inside the
cylinder plus the radiuses of the geometrical spline used to describe
the shape of the cylinder will be determined by the APSO scheme.

4. NUMERICAL RESULTS

As shown in Fig. 1, the problem space is divided in 128×68 grids with
the grid size ∆x = ∆y = 5.95mm. The metallic cylinder is buried in
region 2 (σ1 = σ2 = σ3 = 0). The transmitters and receivers are placed
in region 1. The permittivities in region 1, region 2 and region 3 are
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characterized by ε1 = ε0, ε2 = 8ε0 and ε3 = ε0, respectively, while
the permeability µ0 is used for each region, i.e., only non-magnetic
media are concerned here. The cylindrical object is illuminated by
a transmitter at two different positions, Ni = 2, which are located
at the (−143mm, 178.5 mm) and (143 mm, 178.5mm), respectively.
The scattered E fields for each illumination are collected at the five
receivers, M = 5, which are equally separated by 47.8 mm along
the distance of 48 mm from the half-space interface. The excitation
waveform Iz(t) of the transmitter is the Gaussian pulse, given by:

Iz(t) =
{

Ae−α(t−β∆t)2 , t ≤ Tw

0, t > Tw
(8)

where β = 24, A = 1000 V/m, ∆t = 13.337 ps, Tw = 2β∆t, and

α =
(

1
4β∆t

)2
.

The time duration is set to 300∆t(q = 300). Note that in order
to describe the shape of the cylinder more accurately, the subgridding
FDTD technique is employed both in the forward scattering (1 : 9)
and the inverse scattering (1 : 5) parts — but with different scaling
ratios as indicated in the parentheses.

Three examples are investigated for the inverse scattering of
the proposed structure by using the modified APSO. There are
eleven unknown parameters to retrieve, which include the center
position(XO, Y O), the radius ρi, i = 1, 2, . . . , 8 of the shape function
and the slope ρ′N . Very wide searching ranges are used for the modified
APSO to optimize the objective function given by (2). The parameters
and the corresponding searching ranges are listed follows: −47.6 mm ≤
XO ≤ 47.6 mm, −47.6mm ≤ YO ≤ 47.6mm, 5.95mm ≤ ρi ≤ 71.4mm,
i = 1, 2, . . . , 8, −1 ≤ ρ′N ≤ 1. The operational coefficients for the PSO
are set out below. The learning coefficients, c1 and c2, are set to 2, and
the population size is set to 30. The relative coefficient of the modified
APSO are set as below: The learning coefficients, c1 and c2, are set
to 2.8 and 1.3 respectively. The mutation probability is 0.1 and the
population size is set to 30 [12].

For the first example, the metallic cylinder with shape function
F (θ) = 29.75− 5.95 sin(2θ)mm is considered. The final reconstructed
shape by APSO at the 300th generation is compared to the exact
shape in Fig. 6. The final reconstructed shapes by PSO and APSO at
the 600th generation are compared to the exact shape in Fig. 7. The
discrepancy of shape Function (DF) of the reconstructed shape F cal(θ)
with respect to the exact values versus generations is shown in Fig. 8.
It is shown that the APSO scheme is able to achieve good convergences
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within 200 generations. Here, DF is defined as

DF =

{
1

N ′

N ′∑

i=1

[
F cal(θi)− F (θi)

]2
/F 2(θi)

}1/2

(9)

where the N ′ is set to 720. The r.m.s. error DF for PSO and APSO are
about 19.7% and 2.4% in the final generation, respectively. In order to
investigate the sensitivity of the imaging algorithm against the random
noise, the additive white Gaussian noise of zero mean is added into the
experimental electric fields. The relative noise level (RNL) is defined
as:

RNL =
σg√

Ni∑
n=1

Mi∑
m=1

K∑
k=0
|Eexp

z (n,m,k∆t)|2
(Ni)(Mi)(K−1)

(10)

The relative noise level of 10−5, 10−4, 10−3, 10−2 and 0.1 are
used in PSO and APSO for simulation purpose. Fig. 9 shows
the reconstructed results under the condition that the experimental
scattered field is contaminated by the noise. It could be observed
that good reconstruction has been obtained for shape of the metallic
cylinder when the relative noise level is below 10−3.

In the second example, the shape function of this object is given by
F (θ) = 29.75 + 5.95 cos(3θ) mm. Fig. 10 shows the final reconstructed
shape by APSO at the 300th generation as compared to the exact shape
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in the different levels of RNL. Fig. 11 shows that the relative errors of
the shape decrease quickly and good convergences are achieved within
200 generation without noise. The r.m.s. error DF is about 5.53% in
the final generation. This example show the imaging quality of the
backside of the scatterer is poor due to the shadowing effect.

For the third example, the metallic cylinder with shape function
F (θ) = 29.75 + 17.85 sin(θ) + 5.95 cos(3θ)mm is considered. The final
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reconstructed shapes by PSO and APSO at the 600th generation are
compared to the exact shape in Fig. 12. Fig. 13 shows that APSO the
relative errors of the shape decrease quickly and good convergences
are achieved within 200 generation. The r.m.s. error DF for PSO and
APSO are about 18.3% and 5.7% in the final generation, respectively.
From the reconstructed results this object, we conclude the APSO
scheme can be used to reconstruct metallic cylinder.

5. CONCLUSION

In this paper, we study the time domain inverse scattering of an
arbitrary cross section metallic cylinder buried in slab medium. By
combining the FDTD method and the APSO, good reconstructed
results are obtained. The key differences between PSO [11] and
APSO are about the convergence speed, the computation time and
the accuracy, since APSO includes “damping boundary condition”
scheme and mutation scheme. The inverse problem is reformulated
into an optimization one, and then the global searching scheme APSO
is employed to search the parameter space. By using the APSO, the
shape of the object can be successfully reconstructed. In our study,
even when the initial guess is far from the exact one, the APSO can still
yield a good solution for the properties of the object. Numerical results
have been carried out and good reconstruction has been obtained even
in the presence of white Gaussian noise in experimental data.
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