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Abstract—Antenna arrays with shaped power patterns have many
applications in communications and radars. Many antenna array
synthesis techniques for shaped patterns have been developed in the
past years, and most of them deal only with uniformly spaced arrays.
In this paper, a new method is proposed for the synthesis of nonuniform
linear antenna arrays with shaped power patterns. The proposed
synthesis method consists of three steps. First, we find a satisfactory
power pattern for the required radiation characteristics by solving a
constrained least-squares problem which is obtained with the help of
non-redundant representation of squared magnitude of a linear array
factor. Then, we factorize the polynomial associated with the power
pattern by using polynomial rooting, and consequently obtain the
corresponding field patterns. Finally, the forward-backward matrix
pencil method is used to obtain a nonuniform linear array with
optimized excitation magnitudes, phases and locations for a specific
choice of field patterns. The synthesized array has a smaller number
of elements than the one with uniformly spaced elements for the same
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pattern performance. Several synthesis experiments are conducted to
validate the effectiveness and advantages of the proposed synthesis
method.

1. INTRODUCTION

Antenna arrays with shaped power patterns have many applications in
communications and radars. Many antenna array synthesis techniques
for the synthesis of shaped patterns have been developed in the
past years [1–11], and most of them deal only with uniformly
spaced arrays, such as in [1–9]. As is well known, the synthesis
of uniformly spaced arrays sometimes requires a large number of
antenna elements to radiate a desired pattern shape. Naturally, if
utilizing nonuniform element spacings can reduce the total number
of elements, it will be very useful in some applications, for example,
in satellite communications where the weight of antenna systems is
extremely limited. Hence, several methods for synthesizing nonuniform
antenna arrays have been developed [9–16]. However, nonuniform
array synthesis is a highly nonlinear inverse problem that involves
finding the solution of many unknowns (element positions, excitation
magnitudes and phases). Many iterative synthesis techniques cannot
guarantee a global optimum for all the variables. Some stochastic
optimization algorithms capable of finding the global optimal solutions
such as genetic algorithms [12] may be appropriate, but they can
be time-consuming. In addition, to our knowledge, most of existing
nonuniform array geometry synthesis techniques are proposed for the
case of pencil beam patterns, and it is not clear whether they can be
directly applicable to the synthesis of shaped-beam patterns.

Here, we present a new method for the synthesis of nonuniform
linear antenna arrays with shaped power patterns. The idea of
the proposed method is to factorize the whole synthesis process
into three steps. First, we find a satisfactory power pattern for
the required radiation characteristics by solving a constrained least-
squares problem which is obtained with the help of non-redundant
representation of squared magnitude of a linear array factor [7].
Then, we factorize the polynomial associated with the power pattern
by using polynomial root-finding [13], and consequently obtain the
corresponding field patterns. Finally, the forward-backward matrix
pencil method (FBMPM) [14, 15] is used to obtain a nonuniform linear
array with optimized excitation magnitudes, phases and locations for
any choice of field patterns. In general, the synthesized nonuniform
array has a smaller number of elements than the one with uniformly
spaced elements for the same pattern characteristics. Note that we can
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choose the ‘best’ one by scanning all the synthesis results for different
field patterns. Several synthesis experiments have been conducted, and
the results have shown the effectiveness of the proposed method and
the robustness for different radiation pattern requirements.

It should be noted that, a similar three-step synthesis idea was
used in the last synthesis example of our previous paper [15] for
providing a satisfactory field pattern for validating the performance
of the FBMPM. However, that paper focuses on how to reconstruct
the desired field pattern with fewer elements by the FBMPM, and the
current work instead deals with the problem of power pattern synthesis
which is more useful in real applications. To do so, the three-step
synthesis strategy will be formulated in detail, and be validated with
more synthesis examples.

2. FORMULATION AND ALGORITHM

2.1. Power Pattern Synthesis for Uniformly Spaced Arrays

First, we will derive the non-redundant representation of the squared
magnitude of a linear array factor. Consider a linear array with M
uniformly spaced identical antenna elements. The far field array factor
is given by

F (u) =
M−1∑

p=0

Rpe
jpu (1)

where j =
√−1, u = βd cos θ and β = 2π/λ. The parameter d is the

element spacing, Rp is the complex excitation coefficient of the pth
element, λ is the wavelength, and θ is the angle between the direction
of observation and the linear array geometry. The squared magnitude
of the above expression can be written as

P (u) = F (u)F ∗(u) =
M−1∑

p=0

M−1∑

q=0

RpR
∗
qe

j(p−q)u (2)

where the subscript ∗ indicates the complex conjugate of a variable.
The above equation can be reformulated into the following form

P (u) =
M−1∑

p=−M+1

Dpe
jpu (3)
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where Dp = D∗−p. Sampling the above equation with ul = 2πl/(2M −
1), we obtain

P (ul) =
M−1∑

p=−M+1

Dpe
j2πpl/(2M−1) (4)

Clearly, the sequence {P (ui)} is the discrete Fourier transform (DFT)
ot {Dp} [17], where l = −M + 1,M, . . . , M − 1 and p = −M +
1,M, . . . , M − 1. Therefore, {Dp} can be expressed as the inverse
DFT (IDFT) of {P (ui)}. That is,

Dp =
1

2M − 1

M−1∑

l=−M+1

P (ul)e−j2πpl/(2M−1) (5)

Substituting (5) into (3) and taking several mathematical operations,
we finally obtain [7]

P (u) =
M−1∑

l=−M+1

PlW (u− ul) (6)

where Pl = P (ui) and W (x) = sin[(2M − 1)x/2]/[(2M − 1) sin(x/2)].
Equation (6) is the non-redundant representation of squared magnitude
of array factor for the linear array with M uniformly spaced elements.
This means that for M uniformly spaced elements we actually have
(2M−1) degrees of freedom to approximate the desired power pattern.

Now consider the problem of synthesizing a linear array with a
shaped power pattern. Here, we formulate this problem as the least-
squares under a set of linear inequalities. That is,

{
minimize

Pl

‖P (βd cos θm)− T (θm)‖2
2 , θm ∈ shaped region

subject to L(θm) ≤ P (βd cos θm) ≤ U(θm), 0 ≤ θm ≤ π
(7)

where T (θ) is the desired power pattern function, L(θ) and U(θ)
represent the lower and upper bounds, respectively. By choosing
suitable T (θ), L(θ) and U(θ), we can describe complicated radiation
requirements including beam shaping and accurate sidelobe level (SLL)
control. Such a constrained least-squares solution is very robust for
different synthesis applications. In addition, the least squares problem
described by (7) can be easily solved, and some programs from standard
C or Matlab function library are available for this problem.

Note that since M is unknown, we need to try the solution of (7)
multiple times under different values of M to find the minimum number
of elements required for satisfying the inequality constraints.
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2.2. Pattern Factorization Using Polynomial Rooting

It is shown by Fejer-Riesz theorem [13] that, if P (u), the trigonometric
polynomial described in (3), is real and nonnegative for all real u, then
there must exist P (u) = |F (u)|2 and F (u) is described by (1). This
also means that for an arbitrary nonnegative real function P (u) which
is obtained from (7), we can always find a set of uniformly spaced
elements to radiate it. Clearly, it is possible that there are many field
patterns with different phase distributions corresponding to the same
power pattern. Therefore, we can choose a suitable field pattern for
getting a better excitation distribution. Here we apply the polynomial
rooting method [13] to factorize the power pattern function into the
field patterns. To do so, let

ψ(α) =
M−1∑

p=−M+1

Dpα
p (8)

Obviously, P (u) = ψ(eju). The polynomial ψ(α) has (2M − 2) roots.
In addition, since [ψ(1/α∗)]∗ = ψ(α), all the roots must exist as a pair
of {αi, 1/α∗i }. The field pattern can be constructed as follows

F (u) = c
∐I

i=1
(eju − αi)ri (9)

where ri is multiplicity of the root αi, and
∑I

i=1 ri = M−1. Note that
whether αi or 1/α∗i is chosen does not change the value of |F (u)|2.
Therefore, if there are M0 pairs of roots lying off the unit circle, we
will have 2M0 different field patterns (all are different in the phase but
the same in the magnitude) [3, 7].

2.3. Forward-backward Matrix Pencil Method (FBMPM)

In the previous sections, we have described the method for synthesizing
a uniformly spaced array with the desired power pattern. However, to
further reduce the number of elements, using nonuniform spacings is
required, but such a synthesis process is a highly nonlinear inverse
problem. Recently, reference [14] presents the matrix pencil method
(MPM) based synthesis technique which can approximate accurately
the desired field pattern by using a smaller number of nonuniformly
spaced elements. This method is very effective for the case of pencil-
beam patterns. More recently, [15] extends such a method to the
synthesis of shaped-beam patterns by using forward-backward matrix
pencil method (FBMPM). In the rest of this section, we will briefly
describe this method.
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Mathematically, the problem of reducing the number of elements
can be described as follows

F (βdη) =
Q∑

i=1

R′
ie

jβd′iη + ε (10)

where η = cos θ, d′i and R′
i the location and complex excitation of the

element, respectively. Note that here Q is smaller than or equal to
M (ε is the approximation error). Sampling the above equation with
ηn = n∆ = n/N , we obtain

F [n] =
∑Q

i=1
R′

i(z
′
i)

n + εn (11)

where z′i = ejβd′i∆. The sampling condition can be found in [14]. Then
the FBMPM-based synthesis method organizes the pattern data into
a Hankel-Toeplitz matrix [15]

Yfb =
[

y0 y1 . . . yL

y∗L y∗L−1 . . . y∗0

]
(12)

where yl = [yl, yl+1, . . . , y2N−L+l]T and yl = F [l−N ]. Here L is called
the pencil parameter.

To reduce the number of elements, the FBMPM-based synthesis
method performs the optimal lower-rank approximation of Yfb by
using the singular value decomposition (SVD) and then discarding
some small singular values. Assume that Q largest singular values are
retained. Denote the lower-rank matrix by Yfb

Q which corresponds to
an approximate pattern that is produced by fewer elements. Then the
FBMPM-based synthesis method finds the positions of new elements
by solving the following generalized eigenvalue problem(

Yfb
Q,f − z′Yfb

Q,l

)
v = 0 (13)

where Yfb
Q,f (resp. Yfb

Q,l) is obtained from Yfb
Q deleting the first column

(resp. deleting the last column). Denote the generalized eigenvalue by
ẑ′i. The new positions are given by

d̂′i =
1

jβ∆
ln

(
ẑ′i

)
(14)

It is proven in [15] that, the solution of (13) has the following property:
if {ẑ′i,v1} is a pair of generalized eigenvalue and eigenvector, then
{(1/ẑ′i)∗,v2} must be another pair of generalized eigenvalue and
eigenvector. That is, all the eigenvalues must exist as a pair of
{ẑ′i, (1/ẑ′i)∗}. This constraint has proven very useful for overcoming
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the problem of the eigenvalues lying off the unite circle which
arises in the original MPM-based synthesis method for reconstructing
the shaped-beam pattern [14, 15]. Once the element positions are
obtained, the excitations can be calculated by solving the least-squares
problems [14, 15]. Since the pattern to be synthesized in this paper may
be very complicated, a weighted least-squares solution will be better
for more accurate control of the sidelobe level. That is,

R̂′
i =

(
ẐHWẐ

)−1
ẐHWf (15)

where f and Ẑ are given by (17) and (18) of [14], respectively. In this
paper, the weight is set to be the upper bound of the desired pattern,
i.e., U(θ).

It is worth noting that for the same power pattern, choosing
different field pattern will give different element excitations and
locations. In addition, the choice of field patterns also affects the
correlation of rows or columns of Yfb, and may finally change the
minimum number of elements required for a satisfactory pattern
synthesis. In other words, we actually have many degrees of freedom
to choose the ‘best’ one from all the field synthesis results, for
example, the one with minimum number of elements or with the lowest
maximum-to-minimum excitation ratio.

Some comments should be given for the choice of parameter L
for the FBMPM. For the problem of estimating multiple complex
exponentials in noise, the MPM/FBMPM has the optimal value of
L depending on the number of data length in terms of the minimum
estimation variance, and this optimal value can be theoretically given
in the Gaussian noise model [18]. However, for the synthesis problem
we concerned here, the FBMPM is actually used to approximate the
sum of multiple exponentials with fewer exponentials. For such a
numerical approximation problem, the optimal value of L is hard to be
predicted. In general, we choose L within [2N/3, 4N/3], and the best
value of L can be determined by checking the synthesis results.

2.4. The Proposed Array Synthesis Procedure

The proposed procedure for the synthesis of nonuniformly spaced
arrays is shown in Figure 1. As can be seen, at the beginning of
the procedure we need to set the functions T (θ), L(θ) and U(θ) in (7),
which are combined to represent the desired radiation requirement.
The procedure at first finds a satisfactory power pattern by solving the
inequality-constrained least-squares problem described in (7). Then
the polynomial rooting is utilized to find all the roots of the polynomial
associated with the power pattern function. Then we can pick up the
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Figure 1. The proposed array synthesis procedure.

roots from each pair of {αi, 1/α∗i }, and construct the field pattern
according to (9). As pointed out previously, many field patterns
with different phase distributions are available, depending on the
choice of roots. The field pattern obtained at this step corresponds
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to a uniformly spaced array. Hence, the forward-backward matrix
pencil method (FBMPM) is then used to reduce the number of
elements by optimizing both the element locations and excitations.
At this stage, the initial can be automatically determined by using (7)
of [15]. The minimum number of elements required for a satisfactory
pattern reconstruction should be within a small range of this initial
guess [14, 15]. Note that since many field patterns for the same power
pattern are available which correspond to different synthesis results
in the number of elements, element excitations and locations, we can
choose the best one in the sense of the number of elements or the
maximum-to-minimum excitation ratio.

3. SYNTHESIS EXAMPLES

As a first example, consider the synthesis of a flat-top pattern that
was produced by [8]. For all synthesis examples, we set the sampling
parameter N = 2M , and the pencil parameter L is equal to 2N/3, N/3
or 4N/3 whichever gives the best synthesis results. According to the
radiation requirement, we set the upper and lower bounds as depicted
by thick lines in Figure 2(a). At the region of shaped beams, we set
the desired pattern function as T (θ) = [L(θ)+U(θ)]/2. By solving the
constrained least-squares problem of (8), we obtain a satisfactory power
pattern P (u). The result is shown by the thin real line in Figure 2(a).
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Figure 2. Synthesis of a flap-top pattern: (a) the pattern P (u),
the pattern reconstructed by 12 nonuniformly spaced elements, and
the pattern synthesized by [8]; (b) distribution of the roots of the
polynomial associated with the power pattern.
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We can observe that the synthesized power pattern has nearly equal
ripple within the upper and lower bounds at the shaped region. In
addition, it has narrower transition band than the pattern synthesized
by [8]. Figure 2(b) shows all the roots of the polynomial associated
with the power pattern and the ones that are chosen for constructing
the field pattern. The uniformly spaced array obtained at this step
has 18 elements. Then the forward-backward matrix pencil method
(FBMPM) is used to reconstruct the field pattern by fewer elements
with optimized locations and excitations. The new array requires only
12 nonuniformly spaced elements. Table 1 shows element locations
and excitations for this nonuniformly spaced array. The reconstructed
pattern is shown also in Figure 2(a) for comparison. As can be seen,
the reconstructed pattern is almost the same as the pattern P (u).
Note that the array synthesized by [8] requires 20 uniformly spaced
elements with the maximum-to-minimum excitation ratio of 6.83, while
the proposed synthesis requires only 12 elements with excitation ratio
of 3.60. The saving in the number of elements is 40%.

The second example is given for the synthesis of a nonsymmetrical
shaped power pattern. For comparison, the pattern synthesized by [3]
is considered. The desired pattern has the maximum at θ = 100◦,
and is equal to T (θ) = csc2(θ − 90◦) cos(θ − 90◦) for θ ∈ [100◦, 140◦].
Here, we set the upper and lower bounds as shown by the thick
lines in Figure 3(a). Figure 3(a) also gives the comparison of the

Table 1. The element locations and excitations synthesized by the
proposed method for the flat-top pattern shown in Figure 2.

i d′i/λ |R′
i| ∠R′

i(
◦)

1 −4.2222 0.27748 1.0741
2 −3.5416 0.34377 7.0909
3 −2.8671 0.50031 16.377
4 −2.1796 0.41221 51.078
5 −1.4624 0.5942 114.71
6 −0.7486 0.95783 133.11
7 −0.02566 1 134.18
8 0.6949 0.67907 120.96
9 1.4203 0.40474 63.212
10 2.1299 0.52789 17.993
11 2.8408 0.42523 6.5106
12 3.6231 0.30366 0.44723
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pattern function P (u), the pattern reconstructed by the FBMPM with
nonuniformly spaced elements, and the pattern synthesized by [3]. As
can be seen, the reconstructed pattern by the FBMPM has slightly
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Figure 3. Synthesis of a nonsymmetrical pattern: (a) the pattern
P (u), the pattern reconstructed by 13 nonuniformly spaced elements,
and the pattern synthesized by [3]; (b) distribution of the roots of the
polynomial associated with the power pattern.

Table 2. The element locations and excitations synthesized by the
proposed method for the nonsymmetrical pattern shown in Figure 3.

i d′i/λ |R′
i| ∠R′

i(
◦)

1 −3.7487 0.5706 0.4968
2 −3.2394 0.79232 78.366
3 −2.7173 1 132.9
4 −2.141 0.90363 −177.17
5 −1.4688 0.81698 −145.42
6 −0.7949 0.75715 −114.92
7 −0.0912 0.60235 −83.919
8 0.6200 0.56128 −58.481
9 1.3009 0.3924 −31.911
10 2.0304 0.31161 −7.6628
11 2.6541 0.26747 11.033
12 3.2221 0.09028 2.747
12 3.7513 0.29844 70.422
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lower ripple level than the pattern synthesized by [3]. Figure 3(b)
shows the roots of the polynomial associated with P (u) and the ones
used for the field pattern construction. Table 2 shows the locations and
excitations of the synthesized nonuniformly spaced array. Note that
this array requires only 13 elements, while the array synthesized by [3]
requires 16 elements. For this example, we save 18.75% elements.

The last example is to apply the proposed method to the synthesis
of a transmitting antenna array used for an outdoor antenna test
system. The geometry of the antenna test range is shown in Figure 4.
The antenna under test is located within 5 ∼ 9 meters from the
ground. The transmitting antenna array to be synthesized will be
mounted at a position that is 45 meters from the test antenna and 7
meters from the ground. The radiation requirement of the transmitting
array is translated into the upper and lower bounds of the desired
pattern. Figure 5 shows the pattern bounds. The sidelobe level
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Figure 4. Geometry of an outdoor antenna test range.
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Progress In Electromagnetics Research, Vol. 107, 2010 361

Table 3. The element locations and excitations synthesized by the
proposed method for the transmitting antenna array.

i d′i/λ |R′
i| ∠R′

i(
◦)

1 −2.4935 0.84266 0.321
2 −1.9602 0.99781 43.053
3 −1.3582 0.97502 62.55
4 −0.6912 0.85897 55.853
5 −0.0003 0.80626 36.573
6 0.6905 0.85888 17.155
7 1.3580 0.97451 10.447
8 1.9602 1 29.914
9 2.4935 0.84465 72.454

(SLL) is required to be less than −20 dB for θ ≤ 80◦ except at
the reflection region of [70.4◦, 75.1◦] where the SLL should be less
than −30 dB. The synthesized power pattern P (u) and the pattern
reconstructed by the FBMPM are shown in Figure 5. The pattern P (u)
requires 11 antenna elements, and the reconstructed pattern requires
9 nonuniformly spaced elements. Table 3 shows the element positions
and excitations for the reconstructed pattern.

4. CONCLUSION

We have presented a new method for the synthesis of nonuniformly
spaced antenna arrays with shaped power patterns. The proposed
method factorizes the original power pattern synthesis process into
three steps, which avoids the nonlinearities related with the power
pattern synthesis and element position optimization. For any desired
radiation requirement even with a complicated sidelobe level control,
we only need to set suitable upper and lower pattern bounds, and
the proposed method can efficiently find the satisfactory antenna
array pattern. This makes the proposed synthesis very robust for
different radiation requirements. The synthesized antenna array has
optimized element positions, excitation amplitudes and phases, and
therefore requires a smaller number of elements than the uniformly
spaced array or the array in which part of parameters are not well
optimized. In addition, multiple choices of field pattern for the same
power pattern are available in the proposed synthesis process, and
therefore we can choose the best synthesis results, for example, the



362 Liu, Nie, and Liu

array with the minimum number of elements or with the minimum
excitation amplitude ratio. The proposed synthesis method should be
very useful for many shaped power pattern applications.
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