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Abstract—The dipole impedance of an aperture in a plane conductor
is obtained by modifying the general network formulation of
electromagnetic apertures presented by Mautz and Harrington. The
derived dipole impedances are combined in parallel to form an effective
circuit description of low frequency aperture diffraction. Power
transmitted into the aperture by an incident wave is determined by
incorporating standard techniques for the transfer of wave power at
an impedance mismatch. This transmitted power is divided into
forward and backward scattered fields based upon the behavior of
image currents surrounding the aperture, leading to a peak in forward
scattered power above unity, consistent with known aperture behavior.
The presented aperture circuit maintains an excellent correspondence
with measurements of radiated power for an aperture excited by high
energy electrons and with the numerically calculated impedance of a
circular aperture using the finite element method.

1. INTRODUCTION

Previous work applies the method of moments [1] to the electromag-
netic boundary conditions in an aperture [2] to construct a general
network formalism capable of solving aperture coupling problems [3–
8]. The method has been used to study apertures in thick conduc-
tors [9], apertures surrounded by dissimilar media [10], the coupling
of an aperture with a wire [11] or a capacitor [4], as well as a cavity
backed slit [12].

In the long wavelength limit, this framework may also be
used along with known electric and magnetic aperture dipole
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moments [13, 14] to calculate the admittance of an aperture. However,
the equivalent impedances obtained in [4, 5, 7] are not consistent with
the Finite Element Method (FEM) results presented here. The FEM
analysis has been verified by comparison to [15] and [16], thus this
disparity is considered significant.

Modifications to [5] presented here are used to obtain a simple
analytic description of the aperture dipole impedance. The derived
impedance is consistent with FEM results and a calculation of radiated
power using the presented aperture model closely follows measurements
of a circular aperture excited by a high energy electron beam [17],
supporting the derived expressions.

One source of error in previous attempts [5] is the symmetric
(dot) product definition which introduces units of area. Combined
with normalizations chosen based upon this symmetric product, the
resulting aperture impedances are incorrect by a factor of aperture
area. The dot product also leads to an aperture electric dipole
impedance calculation that utilizes an equivalence between electric
and magnetic dipoles [5]. By adopting a modified symmetric product
here, the ratio of currents that create the equivalent electric/magnetic
dipoles are used instead. This change results in a new term in the
aperture impedance that is equivalent to the effective thickness of an
infinitely thin acoustic aperture [18, 19].

The impedance of an aperture previously [5, 10] depended upon
the materials on both sides of an aperture. However, numerical
results presented here demonstrate that the aperture impedance is only
dependent upon the region not containing the incident wave source. In
addition, the relationships between effective moments on either side of
the aperture are modified from the previous parallel distribution [5].
It is shown that the magnetic dipoles act in series while the electric
dipole has a parallel distribution.

The impedance of the magnetic and electric dipoles were
previously treated separately when calculating aperture fields. Here,
the impedances are combined together as if part of a single circuit. The
interaction of these electric and magnetic dipole impedances leads to a
radiated power that goes to zero in the high frequency limit. Previous
dipole solutions [4, 5, 7, 13, 14] along with more recent attempts using
a different methodology [20] lead to infinite radiated power in the high
frequency limit.

By obtaining the impedance of an aperture, the power transmitted
from a system through an aperture can be calculated incorporating
standard relations for waves at the interface between two media. Power
transmitted into the aperture impedance is divided into forward and
scattered fields by the use of image currents. In the low frequency
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limit, power is shared equally between the forward and backward
scattered fields. As wavelengths approach the size of the aperture,
the power radiated by the back scattered image field switches direction,
contributing to the forward scattered field. In this regime, the aperture
radiates more power than is directly incident upon it, consistent with
previous numerical solutions [15] and measurements of a single aperture
in a metal [17]. The increase in radiated power can be enhanced with
an array of apertures due to plasmon (surface wave) resonances [21, 22].

For clarity, the derivation of the modified network formulation is
presented in Section 2. This framework is then applied to the specific
case of the dipole response of a circular aperture in a plane conductor
in Section 3. The power transmitted into and radiated by the aperture
is constructed in Section 4 and compared to numerical (Section 5) and
experimental [17] results in Section 6.

2. NETWORK FORMULATION

Consider a plane perfect conductor with an aperture in Fig. 1. Region
1 to the left of the conductor is characterized by µ1, ε1, region 2 to the
right is characterized by µ2, ε2 and there are incident waves in both
regions. Bethe [13] found that if the aperture is small compared to
the incident wavelength a solution may be obtained by replacing the
aperture with a conductor containing magnetic currents. Replacing
the aperture with a conductor removes the mixed boundary conditions
present in the original formulation while the magnetic currents recreate
the aperture fields. A linear superposition of the incident wave
reflecting from the perfect conductor and the fields created by the
aperture equivalent magnetic currents recreate the fields in the original
problem. In this low frequency regime, the diffracted field can be
approximated using a combination of electric and magnetic dipoles in
place of the aperture.

To maintain equivalence between the introduced magnetic
currents and the aperture electric field, the magnetic current density
M is constrained by

M = E× n̂12 (1)

where E is the electric field in the aperture in the original problem and
n̂12 is a unit vector normal to the conductor pointing from region 1 to
region 2.

Building upon the framework detailed by Mautz and Harring-
ton [5], suppose that the electric and magnetic fields in region 1 may
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Figure 1. Geometry of original problem and an equivalent situation.

be written

E1 = E1(−M) + E1s (2)
H1 = H1(−M) + H1s (3)

where E1 is the total field in region 1 in the original problem, E1s is
the field produced by the incident plane wave and its reflection from
the plane conductor with shorted aperture (aperture replaced with
conductor) and E1(−M) is the field produced by the magnetic current
in place of the aperture in region 1. Similar relations are obtained
for region 2 where −M → M for continuity of the tangential electric
field [7].

The continuity of the tangential component of the magnetic field
across the aperture requires

−Htan
1 (M)−Htan

2 (M) = −(Htan
1s −Htan

2s ) (4)

and continuity of the normal component of the displacement field
requires

ε1Enrm
1 (M) + ε2Enrm

2 (M) = ε1Enrm
1s − ε2Enrm

2s . (5)

Given that the aperture may be considered as an electric and
magnetic dipole in the low frequency limit (ka << 1) [13], where a is
the aperture radius, the aperture equivalent magnetic current M may
be separated into three components [5]

M = VeM̂e + VhβM̂hβ + VhγM̂hγ (6)

where M̂e, M̂hβ and M̂hγ are current distributions over the aperture
(dimensionless) that lead to electric and magnetic dipoles in the far
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field, approximated here using constant unit vectors, M̂hβ = β̂, M̂hγ =
γ̂ and M̂e = θ̂. The vectors β̂, γ̂ are orthonormal and in the plane
of the aperture. Ve is the magnitude of the electric dipole current
while Vhβ, Vhγ account for the pair of magnetic dipoles in the plane
of the aperture. The combination of currents for the magnetic dipole
accounts for the orientation of the incident magnetic field with respect
to the aperture. In general it is presumed that the choice of M̂hβ, M̂hγ

diagonalize the aperture polarizability tensor [5].
Substituting the magnetic current expansion (6) into the magnetic

field continuity equation (4), the contribution from each current can
be isolated using an average symmetric product

< A,B >=
∫

A ·B dS

S
(7)

and the orthogonality of the basis functions. This symmetric product
differs from [5] by normalizing the product by the aperture area. This is
necessary to maintain the units of quantities in the symmetric product.

The contribution from aperture currents along M̂hβ is

−Vhβ < Htan
1 (M̂hβ) + Htan

2 (M̂hβ), M̂hβ >= − < Htan
1s −Htan

2s , M̂hβ >
(8)

where the linearity of the magnetic field allows

Htan
1 (VhβM̂hβ) = VhβHtan

1 (M̂hβ). (9)

Since Vhβ carries units V/m which Htan
1 (M̂hβ) now lacks,

[Y1 + Y2]hβ = − < Htan
1 (M̂hβ) + Htan

2 (M̂hβ), M̂hβ > (10)

is an averaged admittance of the aperture to magnetic fields.
Furthermore,

Ihβ = − < Htan
1s −Htan

2s , M̂hβ > (11)

is the averaged tangential magnetic field along M̂hβ exciting the
aperture, interpreted to be an effective input current. Substitution
into (8) yields a generalized Ohm’s law relating the averaged magnetic
current representing the aperture field (Vhβ) to the averaged effective
current representing the input magnetic field (Ihβ)

Vhβ[Y1 + Y2]hβ = Ihβ. (12)

A similar network relation can be found along γ by replacing β → γ.
Though (10)–(12) visually appear the same as found in [7], the

previous admittance and current vectors contain additional units of
area. Further, the magnetic currents were treated as point currents at
the aperture origin while here they are treated as averaged currents
over the aperture.
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Following the same procedure for the electric field, the magnetic
current expansion (6) is substituted into the continuity equation for
displacement fields (5). Since the magnetic current M̂e is orthogonal
to the electric field it produces, an equivalent electrical current is used
instead [5]. Consider that the electric dipole field created by a magnetic
current loop K surrounding area S will also be produced by an electric
current I over some length l normal to S [23, pg. 135] when

Il = −jωεiKS. (13)

Strictly, the equivalence of the fields produced by these currents
is only maintained when l is infinitesimally short and K, I are
infinitesimally thin. However, the restrictions may be relaxed if
equivalence is only required for fields far from the currents. Deviating
from [5] and supposing the aperture dipoles have a finite length yields
an admittance

I

K
= −jωεi

S

le
(14)

that relates a magnetic current to an equivalent electrical current in
the aperture. Further, for long wavelengths, the infinitesimal electric
and magnetic current elements may be replaced by electric (J) and
magnetic (M) current densities over the aperture,

J

M
= −jωεib (15)

which may be used to convert incident electric fields to equivalent
aperture input currents, where

b =
S

le
(16)

is interpreted as an effective minimum thickness of the aperture,
described in more detail below. Using (15), the electrical current
equivalent to the aperture magnetic current VeM̂e is

~Je = −jωεobVeẑ (17)

which differs from previous results [5] by the factor b.
The magnetic dipole length ln is obtained by integrating the path

length of the magnetic currents on both sides of the aperture,

ln = 2
∫ ∫

M̂n · dl̂′n dθ (18)

where θ = 0 is perpendicular to M̂n, for n = β̂, γ̂ and dl̂′n is a differential
length element along the current. Considering a circular aperture and
using the approximation that the basis functions are unit vectors in
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the aperture, ln = 8a, while a rectangular aperture longer (l) than it
is wide (w) has ln ≈ 4w. An aperture wider than long has ln ≈ 2πw
while a square aperture with length l has ln = πl.

For the electric dipole length, the equivalent magnetic current is a
loop current [5] and is not suitable for (18). However, it is known [24]
that the electric aperture polarizability (αe) is determined by a parallel
combination of magnetic polarizabilities (αmβ, αmγ) along M̂β, M̂γ

1
αe

=
1

αmβ
+

1
αmγ

. (19)

This relationship suggests that the electric dipole is the result of a
parallel combination of magnetic dipoles. Thus, the electric dipole
length le might be determined similarly.

Consider electric dipoles in the plane of the aperture by
substituting Ĵn for M̂n in (18). Since these electric dipoles are in the
aperture plane, no power is detected in the far field. Rotating these
electric dipole currents out of the aperture plane leads to radiated
electric dipole power with characteristics of two dipole lengths, lβ and
lγ . For long wavelengths, this field is equivalent to a purely normal
aperture electric dipole with a single characteristic length, le. Given
this equivalence and the parallel distribution of polarizability (19), the
effective electric dipole length is presumed to be a parallel combination
of the two possible magnetic current lengths

1
le

=
1
lβ

+
1
lγ

. (20)

For a circular aperture, le = 4a and b = πa/4, the same effective
thickness as an infinitely thin acoustic circular aperture radiating into
a half space [18]. This result motivates the interpretation of b as a
minimum effective thickness of an aperture for electromagnetic fields.

Applying the method of moments to the electric field including
(17) yields

Ve[Y1 + Y2]e = Ie (21)
where

[Y1 + Y2]e =<
ε1
εo

Enrm
1 (M̂e) +

ε2
εo

Enrm
2 (M̂e),−jωεobẑ > (22)

is the averaged admittance of the aperture for electric fields,

Ie =<
ε1
εo

Enrm
1s − ε1

εo
Enrm

2s ,−jωεobẑ > (23)

is the equivalent input current density for the source electric field
and Ve is the magnitude of the aperture equivalent magnetic current
density. The admittance and input current presented differ from [5] by
the factor b and by dimensions of meters.



408 Stoneback

3. APERTURE DIPOLE IMPEDANCES

The dipole impedance of an aperture can be determined using the
generalized Ohm’s law relations obtained in the previous section and
the aperture dipole moments [13]. The input currents are calculated
from the incident fields exciting the aperture and the aperture
equivalent magnetic current magnitudes are calculated using the known
aperture dipole moments. The general structure of the impedance
derivation follows [5], though differences exist and are noted.

For low frequencies, the basis functions have been chosen to be
constant directions, M̂hβ = β̂, M̂hγ = γ̂ and Ĵe ∝ ẑ [5]. In this regime,
the input currents reduce to

Ihβ = −|Htan
1s −Htan

2s | cos θ (24)

Ihγ = −|Htan
1s −Htan

2s | sin θ (25)
Ie = −jωb(ε1Enrm

1s − ε2E
nrm
2s ) (26)

where θ is the angle between β̂ and Htan
1s −Htan

2s . The total effective
current exciting the magnetic dipole is

Ih =
√

I2
hβ + I2

hγ = |Htan
1s −Htan

2s |. (27)

Given the continuity of fields within the aperture, the aperture
impedance must be the same in both regions 1 and 2. However, the
impedances listed in [5, Eqs. (33)–(34)] vary across the aperture. To
accurately reflect all of the fields in an aperture when determining the
impedance, the half space dipole moments for each side of the aperture
are combined rather than treated separately as in [5]. The half space
dipoles radiating into region 2 [25] are

pe2 =
ε2

ε1 + ε2
αe(ε1Enrm

1s − ε2E
nrm
2s )n̂12 (28)

pm2 =
−µ1

µ1 + µ2
(αmβ cos θβ̂ + αmγ sin θγ̂)Ih (29)

and the dipoles for region 1 are

pe1 =
−ε1

ε1 + ε2
αe(ε1Enrm

1s − ε2E
nrm
2s )n̂12 (30)

pm1 =
µ2

µ1 + µ2
(αmβ cos θβ̂ + αmγ sin θγ̂)Ih. (31)

Since the moments in each region have opposite orientations, the
difference between moments is used to determine the aperture
impedance. For a source in region 1, radiating through the aperture
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into region 2, the combined moments are

pe = pe2 − pe1 = αe(ε1Enrm
1s − ε2E

nrm
2s )n̂12 (32)

pm = pm2 − pm1 = −(αmβ cos θβ̂ + αmγ sin θγ̂)Ih (33)

with equivalent dipole currents [5]

Il = jωpe (34)
Kl = jωµ2pm. (35)

The fictional magnetic currents (M) in the aperture will produce
the same fields far from the aperture as the dipole currents (34), (35)
if

∫
Kd3r =

∫
Md3r within the aperture, or

M =
Kl

S
. (36)

The integral of the loop current K yields a product with the dipole
length, while the integral of the magnetic current density M distributed
over the aperture yields a product with the aperture area.

Substitute (35) and the magnetic current expansion (6) into (36)
to obtain Vhβ. Using the generalized Ohm’s Law (12) and the input
current due to the incident field (24), the total imaginary admittance
along β̂ is

Im[Y1 + Y2]
β
h =

S

jωµ2αmβ
(37)

with a similar relation along γ̂.
For the real admittance, the power radiated by a magnetic dipole

current near a conductor into region 2 with wave impedance Z2 [23]

P =
k2

2|Kl|2
6πZ2

(38)

is normalized by the aperture area and (36) is used to replace the
normalized dipole current with M = VhiM̂i,

P

S
=

Sk2
2

6πZ2
|Vhi|2 =

1
2
|Vhi|2Y. (39)

The radiated power density is used rather than the total radiated power
as in [5] since the symmetric product (7) generates an expansion based
upon an average field within the aperture, not the total field produced
by the aperture. By inspection, the real admittance is

Re[Y1 + Y2]h =
Sk2

2

3πZ2
. (40)

The real (40) and imaginary (37) impedances only depend upon
the material properties of region 2, while the combined impedances
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in [5, Eq. (31)] depend upon both regions. In addition, the derived
impedances differ from [5] by including the aperture area.

For the electric dipole admittance, divide (13) by b, substitute in
(34) and (36) with M = VeM̂e and solve for Ve. Using (21) and the
input current (26), the imaginary admittance is

Im[Y1 + Y2]e =
jωε2Sb2

αe
. (41)

Similarly, using the radiated power density of an electric dipole current
near a conductor along with (13) and (36), the real admittance is

Re[Y1 + Y2]e =
Sb2k4

2

3πZ2
. (42)

Like the magnetic dipole impedance, these impedances only depend
upon the material properties of a single region around the aperture,
and differ from [5] by a factor Sb2.

The aperture impedance for a given source is shared between both
sides of the aperture. A parallel distribution is adopted in [5] though no
justification is offered. Consider the dipole equivalent currents (34)–
(35) for the individual half space aperture dipoles (28)–(31) in each
region, where µ2 → µ1 in (35) for region 1,

Kl1 = −Kl2 (43)
ε1Il2 = −ε2Il1. (44)

The magnetic dipole current (43) is the same on both sides of
the aperture, implying a series distribution of impedance, while
the distribution of electric dipole current (44) indicates a parallel
distribution of impedance. While (43)–(44) are found in [5, Eqs. (27)–
(28)], the equations are used to illustrate the relative magnitudes
between the dipoles on both sides of the aperture, not to motivate
an impedance distribution.

The magnetic dipole impedance is given by combining (37) and
(40), inverting, then separating into two equal parts assuming a series
distribution,

Zβ
1h = Zβ

2h =
1
2

(
Sk2

2

3πZ2
+

S

jωµ2αmβ

)−1

. (45)

This impedance (45) is equivalent to a series combination of a resistor

and inductor. When
(

S
ωµ2αmβ

)2
>>

(
Sk2

2
3πZ2

)2
or k6α2 << 1, then the

equivalent inductance and resistance may be written as

L =
µ2αmβ

2S
(46)

R =
Z2α

2
mβk4

2

6πS
. (47)
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These equivalent circuit parameters are extracted simply by calculating
the real and imaginary parts of (45).

The electric dipole impedance assuming a parallel distribution is

Z1e = Z2e = 2
(

Sb2k4
2

3πZ2
+

jε2ωSb2

αe

)−1

(48)

equivalent to a series combination of a resistor and capacitor, with
extracted values of

C =
ε2Sb2

2αe
(49)

R =
2Z2α

2
ek

2
2

3πSb2
. (50)

when k6α2 << 1. When wavelengths approach the size of the aperture,
(45) and (48) must be used to generate the circuit impedance.

4. APERTURE CIRCUIT

While the aperture impedances in [5] are incorporated into a more
generalized matrix method, here the impedances are combined together
to form an effective circuit. Since both the electric and magnetic
dipoles can be excited simultaneously, the effective impedances
representing those aperture dipoles are combined in parallel. This
combined impedance forms the basis of the analytical description of
diffracted power through the aperture, calculated using the mismatch
in the source wave impedance compared to the aperture impedance.
This transmitted power is also limited by aperture boundary conditions
that reduce field strengths in the aperture based upon the materials
on each side. Power transmitted into the aperture circuit is radiated
into both regions, divided based upon the behavior of image currents
created around the aperture.

For a source in region 1, the aperture impedance along n = β̂, γ̂
is given by a parallel combination of magnetic and electric dipole
impedances for region 2 (45), (48)

Zn
a = Zn

2h||Z2e =
Zn

2hZ2e

Zn
2h + Z2e

. (51)

Since the aperture impedance depends upon the region containing the
source, a source in region 2 should be considered independently using
dipole impedances for region 1.

The power in the incident magnetic field and available to the
magnetic dipole is integrated over the aperture area to obtain the total
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available power

Pinc =
Z1S

2
| < H10, M̂hi > |2 (52)

where H10 is the incident field. The mismatch in impedance between
the source region and the aperture only allows a fraction of this total
power into the aperture. Using the fractional power transmitted for a
normally incident wave at the interface of two different impedances [26],
Z1 for region 1 and Zn

a for the aperture, the reduction in power (52) is

Pn
impd = Re

(
4Z1Z

n∗
a

|Z1 + Zn
a |2

)
(53)

where ∗ denotes the complex conjugate.
In addition, the materials on either side of the aperture reduce the

magnitude of the magnetic field within the aperture, further reducing
available power. This boundary condition on the magnetic field is
present in the half space magnetic moment (29), but was removed (33)
in the process of combining the two half space dipoles to determine
the aperture impedance. Imposing this boundary condition expressed
in terms of the incident magnetic field in (52) and including (53), the
total power transmitted into the aperture and radiated is

Pn
mag =

4µ2
1

(µ1 + µ2)2
Z1S

2
| < H10, M̂hi > |2Pn

impd. (54)

The equivalence of the parallel distribution of magnetic
polarizability (19) to the electric polarizability reduces the power
radiated by the aperture electric dipole. However, given the parallel
combination of electric and magnetic dipole impedances, only the
magnetic dipole impedance is observed below the aperture dipole
resonance. To obtain an electric dipole power required by the square
of (19)

Pe ∝
α2

mγα2
mβ

(αmγ + αmβ)2
(55)

some combination of magnetic dipole powers must be used. Since
the fractional power (53) is proportional to α2

mn, to obtain (55) it is
postulated that

P e
impd =

P β
impdα

2
mγ cos2 θ + P γ

impdα
2
mβ sin2 θ

(αmγ + αmβ)2
. (56)

The product P β
impdα

2
mγ replicates the numerator in (55) and similarly

when β → γ, dividing the electric dipole power based upon the
components of the incident magnetic field along β̂ and γ̂. This ensures
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that the electric dipole displays the same resonance characteristics of
the magnetic dipoles that are also excited by the incident wave. The
total power in the incident electric field available to the electric dipole
is

Pinc =
S

2Z1
| < E10, M̂e > |2. (57)

Including the boundary conditions from the half space dipole moment
in region 2, the total power radiated is

Pe =
4ε22

(ε1 + ε2)2
S

2Z1
| < E10, M̂e > |2P e

impd. (58)

Not all of the power transmitted into the aperture radiates into
region 2, some is radiated back into region 1. Previously [5], the back
scattered dipole was treated in the same way as the forward scattered
dipole field. Alternately, the back-scattered dipole is treated here as
the result of image currents.

The forward scattered dipole induces image currents in the
conductor surrounding the aperture to satisfy boundary conditions,
eliminating the tangential electric field caused by the aperture dipole
along the plane conductor. By continuity, these currents can not simply
stop at the aperture edge nor can the currents enter the conductor
replacing the aperture. Thus, it is presumed that the image currents
in region 2 travel through the aperture into region 1. This naturally
leads to an inverted orientation of region 1 currents compared to region
2, consistent with known behavior.

The image currents alone in region 1 produce an image dipole
field. Without a corresponding ‘real’ dipole, this image field violates
boundary conditions along the plane conductor. To satisfy the
boundary conditions, the image field must itself create a dipole image
in the aperture. An image of an image is real, thus creating a ‘real’
aperture dipole. Since the backscattered dipole only exists to support
the presence of the image currents, the power in the region 1 dipole is
the same as the power in the image field in region 1. Thus, the total
power radiated by the aperture is

Pe + Pmag = P2ap + P img
2 + 2P img

1 (59)
where P2ap is the power directly radiated by the aperture in region 2,
P img

2 is the power in the image field in region 2 and 2P img
1 accounts

for the image field and the ‘real’ dipole in region 1.
The power in the image fields is determined by using the total

power radiated by a dipole near a conductor [23, Eqs. (3)–(11)],
P = g(ki)Pdipole (60)

Pimage = (g(ki)− 1)Pdipole (61)
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where Pdipole [23, Eqs. (2)–(116)] is the power radiated by an isolated
dipole, Pimage is the power in the image field and g(ki) is the relative
increase in power due to the image currents,

g(ki) =
(

1− 3 cos 2kih

(2kih)2
+

3 sin 2kih

(2kih)3

)
(62)

where h is the effective distance of the aperture dipole from the plane
conductor. Substituting the power directly radiated by the aperture
into region 2 for Pdipole, the power in the image field is

P img
2 = (g(k2)− 1) P2ap (63)

2P img
1 = 2 (g(k1)− 1)P2ap. (64)

Since the magnetic currents recreating the aperture have an associated
length and the electric dipole is normal to the aperture, it will appear
to the far field observer to be located away from the aperture. The
minimum distance for a dipole of length l to adopt any orientation
without intersecting the plane conductor is h = le/2. For a circular
aperture, h = 2a.

Substituting (63)–(64) into (59) to solve for P2ap, the total power
radiated into region 2 is

P2 = P2ap + P img
2 =

g(k2)
2g(k1) + g(k2)− 2

(
P γ

mag + P β
mag + Pe

)
(65)

while the power radiated into region 1 is

P1 = 2P img
1 =

2g(k1)− 2
2g(k1) + g(k2)− 2

(
P γ

mag + P β
mag + Pe

)
. (66)

At low frequencies, g(k) = 2 and equal power is radiated into each
region. At high frequencies g(k) = 1 and P1 = 0, there is no
backscattered field. In the transition from wavelengths much larger
than the aperture to wavelengths comparable to the aperture, the
leading factor in P1 becomes negative, increasing the power radiated
into the forward direction.

For long incident wavelengths, the source impedance is greater
than the aperture impedance, Z1 >> Zn

a , and the power radiated by
the aperture can be compared to previous dipole solutions. Consider
the magnetic dipole power, (54). The fractional power (53) becomes
Re(4Zn∗

a /Z1) and the real part of the aperture impedance (45) reduces
to

Zn
a =

64Z2k
4
2a

6

54πS
. (67)

Substituting the magnetic dipole power (54) into (65) and (66), equal
power is radiated into each region. Consistent with previous results for
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aperture dipole power [7, 13, 25], the power radiated by the magnetic
dipole into region 2 is

Pn
mag =

4µ2
1

(µ1 + µ2)2
64Z2k

4
2a

6

54π
|Htan

10 |2 (68)

and the electric dipole power is

Pe =
4ε22

(ε1 + ε2)2
64Z2k

4
2a

6

216π

|Enrm
10 |2
Z2

1

. (69)

For an obliquely incident wave, the same radiated power relations
are expected. Given that fields in the aperture are the result of
global currents in the plane conductor scattering from the aperture as
indicated in [27], the power transmitted into the aperture is determined
by the global currents incident upon the aperture impedance. Since the
currents exciting the aperture are confined to the same plane regardless
of the orientation of the incident plane wave, the relations obtained
from normal incidence are expected to apply for oblique incidence.

5. NUMERICAL MODEL

To confirm the derived impedances, the behavior of an aperture in a
plane conductor was investigated using ANSYSr Academic Research,
v. 11.0, a commercial finite element method (FEM) software package.
A square transverse electromagnetic (TEM) waveguide was used to
direct an input wave towards a circular aperture in a perfect conductor,
radiating into an approximate half space. The half space is constructed
using perfectly matched layers (PML), a computational method that
absorbs incident radiation but produces little reflection, approximating
an infinite space.

The geometry is illustrated in Fig. 2. The aperture of radius a
and thickness d utilizes a curved transition to the plane conductor in
an effort to minimize gradients in the calculated field and maintain
numerical accuracy. Due to symmetry of the fields and geometry, only
one quarter of the system is modeled (not shown).

The TEM waveguide is constructed using perfect electric (PEC)
and magnetic conductors (PMC) along the transverse boundaries as
appropriate. The input wave is created using a matched impedance
port, producing little reflection for waves reflected back towards the
source.

The bulk of the input waveguide and radiation region was meshed
using brick elements while the aperture used a tetrahedral element. A
transition region utilized pyramid shaped elements to change smoothly
from the tetrahedrals in the aperture to the bricks outside. The use
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Figure 2. Numerical model geometry. Not to scale.

of pyramids limits all elements to first order; one component of the
electric field per element edge, and one normal component per element
face. There is a minimum of 4 elements along ẑ through the aperture.
Due to software restrictions, this could not be increased.

The power radiated by the aperture was calculated by summing
the time averaged Poynting flux through elements in a planar slice
cut through the middle of the aperture and parallel to the aperture
plane. Similar values are obtained using ANSYS supplied functions
for calculating power in the far field.

The impedance of the aperture was calculated using the field
definitions of voltage and current

−
∫ l2

l1

E · dl̂ = V (70)
∮

H · dl̂ = I (71)

in the plane of the aperture and using V/I = Z. The paths for the
electric and magnetic fields are along the incident fields through the
aperture center. The closed loop for the magnetic field traverses both
sides of the aperture. If the total field field is calculated using the FEM
rather than the scattered field alone, the magnetic field is integrated
along one side of the aperture and doubled due to symmetry.

6. RESULTS

Figure 3 compares the aperture circuit described in (Section 4) and
the ANSYS average real and imaginary impedance for an aperture



Progress In Electromagnetics Research B, Vol. 26, 2010 417

excited by a normally incident plane wave source in region 1. For low
frequencies, both the real and imaginary impedance of the aperture
circuit correspond extremely well with the numerical model. A reduced
real impedance is expected for the numerical model due to the decrease
in radiated power from the aperture thickness [15]. The computed
real and imaginary aperture impedance vary by less than 15% and
10% respectively over the whole aperture area (not shown), with less
than 5% variation between 0 < ρ < 0.8a. Thus, the average aperture
impedance description presented here is appropriate.

The power radiated into region 2 from the aperture circuit model
and ANSYS is compared in Fig. 3(c). The long dashed black line is
the transmission coefficient as determined by Bouwkamp [14] which
includes dipole, quadrupole, and octupole radiation. The circuit
power matches the power radiated by the aperture dipoles in the low
frequency limit, up to the peak in dipole impedance. As expected, at
higher frequencies the dipole moment is not sufficient. Even though the
total numerical impedance decreases after the dipole peak, the power
continues to increase, particularly noticeable as the material indices
for region 2 increase. This indicates that higher order aperture modes
should be considered individually when calculating radiated power.

The aperture circuit resonances in Fig. 3(b) for various materials
in region 2 occur near the numerically obtained resonances. Similar
results are observed for additional material configurations not
shown. The increasing difference between the dipole model and the
numerical aperture starting below resonance is consistent with a series
combination of impedance for higher order moments.

Figure 4 compares the Poynting flux in the aperture obtained
with ANSYS to the predicted transmitted (54) and radiated (65),
(66) power using the average ANSYS aperture impedance for Za. The
power transmitted into the aperture (54) is double the Poynting flux
into region 2 at low frequencies and similar at high frequencies. This
dependence is consistent with the assumed power distribution using
image theory where half of the power transmitted into the aperture
goes into the forward scattered field at long wavelengths and all of
the transmitted power is radiated through the aperture for short
wavelengths. The difference between predictions and the Poynting flux
at the peak in Fig. 4 is consistent with a need to treat the impedance of
each mode separately, rather than the combined impedance illustrated.

The association of the region 1 dipole with an image field (66) leads
to oscillations between radiating and absorbing power as the aperture
transitions from low frequency dipole behavior to higher frequencies.
The choice h = 2.1a in (62) leads to a null in power for the region
1 dipole at the intersection between the predicted transmitted power
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Figure 3. Magnitude of (a) real and (b) imaginary average impedance
of aperture excited by normally incident wave using the presented
aperture circuit and FEM; (c) power radiated into region 2. Numerics
obtained with aperture radius to thickness ratio a/d = 10.
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Figure 4. Distribution of power within the aperture for a normally
incident plane wave with vacuum in both regions. The black line is
the Poynting flux in the numerically modeled aperture. The blue line
is the power transmitted into the aperture using (54), the red line is
the power radiated into region 2 (65), and the green/brown line is
the power radiated/absorbed in region 1 (66), all calculated using the
average ANSYS aperture impedance and h = 2.1a.

and measured Poynting flux for vacuum near k1a ≈ 1. Thus, the
proposed aperture model satisfies the conservation of power with the
numerical model when using impedances obtained from the numerical
model. The slight increase in h from predictions of 2a may be due to
the thickness of the aperture d = 0.1a.

The accuracy of the numerical model has been estimated by
comparison to a theoretical description of a circular aperture in a thick
screen given by Roberts [16]. The method utilizes a sum of circular
waveguide modes to describe power radiated by the aperture; the first
fifteen modes were used to generate the solution for comparison with
ANSYS (Fig. 5, black). In the low frequency regime, the error is
less than 6%, reaching a maximum less than 20% as the aperture
passes through resonance. The generally low percent error validates
the ANSYS model.

The large percent error in radiated power between ANSYS and the
aperture circuit is due to the reduction in power from the thickness
of the aperture in ANSYS [15, 16]. However, the percent error for
both power and real impedance are nearly the same, confirming
the presented aperture real impedance. The percent error between
ANSYS and the aperture circuit for the imaginary impedance is under
10% below ka ≈ 0.7, at which point higher order moments become
important. These results validate the aperture dipole circuit.
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Figure 5. Percent error between the power radiated into region
2 in the FEM solution and a theoretical description of an aperture
in a thick screen [16] excited by a normally incident plane wave
(black). Percent error in real/imaginary (blue/red) impedance and
power (green) between numerical model and presented aperture circuit
for vacuum.

Figure 6. Radiated light (blue) for a circular aperture excited by a
high energy electron beam measured by Degiron [17] compared to the
predicted radiated power (65, red), using a = 135 nm, h = 2.1a.

The derived aperture circuit is compared to experimental
results [17] of light radiated by a circular aperture (a = 135 nm,
d = 200 nm) in a suspended Ag metal film excited by a high energy
electron beam. An advantage of using a high energy electron source
is there is no background signal from light not exciting the aperture
dipole [17]. The power radiated by the aperture due to the input
electron beam current is reproduced in Fig. 6 along with the predicted
radiated power of the aperture. The measured peak in transmission is
associated with a localized surface plasmon resonance and images of
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the resonance confirm a dipole distribution [17]. The dipole aperture
circuit yields a radiated power that closely matches the experimental
results, up to a constant multiplicative factor due to the presentation of
arbitrary units for the experimental results, supporting the presented
radiated power derivation. The peak in radiated power using the
presented aperture circuit is just under 1.1Po, where Po is the incident
power.

7. DISCUSSION AND CONCLUSION

The presented aperture circuit builds upon previous work [5] to
derive new expressions for the dipole impedance of an aperture. The
new impedances have been verified by comparison to a numerical
investigation of a circular aperture using ANSYS. While ANSYS
required significant computation times to determine the aperture
impedance, using the presented dipole circuit yields the same
impedance in seconds. The numerical model has been verified by
comparison to previous numerical investigations [15] as well as an
analytical description of an aperture using waveguide modes [16].
Further, the model presented for radiated power closely matches
experimental observations of an aperture in a metal film excited by
a high energy electron beam, supporting the derived expressions.

The presented aperture model also provides insight into low
frequency diffraction. The derived aperture impedances are
determined solely by the material properties of the region that does not
contain the wave source. Further, power transmitted into the aperture
is distributed into forward and backward scattered fields by image
currents surrounding the aperture. This method also indicates that an
aperture only produces a dipole for the forward scattered field. The
backward scattered field is a product of image currents driven by the
forward field. The derived impedances also demonstrate that apertures
have a minimum effective thickness for electromagnetic diffraction.
The same effective thickness is found for an aperture excited by an
acoustic wave, radiating into a half space.

The derived aperture circuit offers a simple and effective method
for describing the complex impedance and the power radiated by
an aperture in a plane conductor for long wavelengths. In contrast
to previous dipole solutions, the presented dipole circuit produces a
radiated power that goes to zero in the high frequency limit. By
converting Bethe’s dipoles to an equivalent circuit, it is expected that
a greater range of aperture problems may be solved without requiring
numerical methods with significant computation times.
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