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Abstract—Recently, the use of the particle swarm optimization
(PSO) technique for the reconstruction of microwave images has
received increasing interest from the optimization community due to
its simplicity in implementation and its inexpensive computational
overhead. However, the basic PSO algorithm is easily trapping into
local minimum and may lead to the premature convergence. When a
local optimal solution is reached with PSO, all particles gather around
it, and escaping from this local optima becomes difficult. To overcome
the premature convergence of PSO, we propose a new hybrid algorithm
of particle swarm optimization (PSO), simulated annealing (SA) and
tabu search algorithm (TS) for solving the scattering inverse problem.
The incorporation of tabu search (TS) and simulated annealing (SA)
as local improvement approaches enable the hybrid algorithm to
overleap local optima and intensify its search ability in local regions.
Reconstructions of dielectric scatterers from experimental inverse-
scattering data are finally presented to demonstrate the accuracy and
efficiency of the hybrid technique.

1. INTRODUCTION

The objective of microwave imaging is to reconstruct the geometrical
and/or physical properties of unknown objects belonging to an
inaccessible domain and probed by a set of known incident microwaves.
This is performed from measurements of the field scattered by
the object under various conditions of illumination. Microwave
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tomography has shown great potential in several application areas,
notably biomedical imaging [1–3], non destructive testing [4–6],
imaging of buried objects and geosciences [7–9]. Certainly, one of
the most challenging tasks in defining a microwave-imaging method
is to implement a reliable numerical procedure for the inversion of
scattered data. In this framework, microwave imaging techniques
have been widely investigated in recent years, but they have some
intrinsic drawbacks related to the nature of the inverse scattering
problems and to the complexity of the hardware setup required to
collect the necessary field measures. It is well known that the
exact inverse electromagnetic scattering problem, i.e., the quantitative
reconstruction of the complex permittivity of a scatterer from
measurements of the scattered field for a number of known incident
fields is ill-posed and non linear [10]. The main problem in this respect
is instability: in the presence of noise on the data, the reconstructions
tend to be very different from the actual permittivity profile. As a
result, the non-linear inverse scattering problem is reformulated as
an optimization problem and solved by iteratively minimizing a cost
function. Differences between methods then come from the nature
of the criterion and the type of minimization algorithm. Generally
speaking, two main kinds of approaches have been developed. The first
is based on gradient search approach such as the Newton-Kantrovitch
method [11], modified gradient method [12], Levenberg-Marguart
algorithm [13] and contrast source inversion method [14] since these
approaches apply the gradient search method to find the extreme of
the cost function. In general, during the search of the global minimum,
these techniques only converge to the exact solution under certain
conditions, otherwise, they may be trapped into a local extreme or even
diverge. To bypass the difficulties, global stochastic methods such as
the genetic algorithm (GA) and simulated annealing (SA) have become
attractive alternatives to reconstruct microwave images [15–17]. The
neuronal models were also employed to cure the previously quoted
disadvantages [18]. The particle swarm optimization (PSO) technique
is a relatively new technique for antennas and microwave communities.
It has received a huge attention and popularity due to its algorithmic
simplicity and effectiveness for solving design problems such as antenna
design [19, 20]. Recently, the application of PSO has been extended to
the reconstruction of microwave images and excellent results have been
reported in the literature [21–23]. One of the main advantages of PSO
over other stochastic optimization methods such as GA or SA, lies in
the ease with which it can be tuned and implemented, using only a
velocity operator to drive the search through out the hyperspace [24].
Although PSO is a good and fast search algorithm to the reconstruction
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of microwave images, there are still many complex situations where the
PSO has premature convergence and tends to converge to local optima,
especially in a complex high dimensional problem space. In the worst
case, when the best solution found by the group and the particles are
all located at the same local minimum, it is almost impossible, due to
the velocity update equation, for particles to fly out and do farther
searching.

Besides using meta-heuristics as stand alone approaches for solving
hard combinatorial optimization problems, during the last years, the
attention of researchers has shifted to consider another type of high
level algorithms, namely hybrid algorithms. The rationale behind
the hybridization resides in the “No Free Lunch Theorem” [25, 26]
stating that “all algorithms that search for an extremum of a cost
function perform exactly the same, when averaged over all possible
cost functions. In particular, if algorithm A outperforms algorithm B
on some cost functions, then loosely speaking there must exist exactly
as many other functions where B outperforms A”. Essentially, the
theorem states that there is no any search method for optimization
which outperforms all other search methods. All these clearly illustrate
the need for hybrid evolutionary approaches where the main task is to
optimize the performance of the direct evolutionary approach.

Thus, this paper develops a new hybrid technique which combines
PSO algorithm with the simulated annealing algorithm (SA) and
tabu search (TS) and apply it to solve the scattering inverse
problem. SA and TS are powerful optimization procedures that have
been successfully applied to a number of combinatorial optimization
problems. They have the ability to avoid convergence to local minima.
By integrating SA and TS to the PSO, the new algorithm, which we
call it PSO-SA-TS can not only escape from local minimum trap in the
later phase of convergence, but also simplify the implementation of the
algorithm. In other words, PSO contributes to the hybrid approach
in a way to ensure that the search converges faster, while the SA and
TS make the search to jump out of local optima due to their strong
local-search ability. To the best of our knowledge, there is still no
investigation on using hybrid technique based on PSO, SA and TS to
reconstruct the permittivity profile of dielectric scatterers in free space.

The remaining sections of this paper are organized as follows:
Section 2 states the theoretical formulation for the electromagnetic
imaging. Section 3 describes the implementations of PSO, SA and TS
in the proposed PSO-SA-TS hybrid algorithm. Numerical results for
various objects of different permittivity profiles are given in Section 4.
Section 5 is the conclusion.
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2. PROBLEM FORMULATION

Electromagnetic inversion using optimization techniques is achieved
by solving out for the profile which minimizes the error between the
observed data and the synthetic one which is obtained by solving the
forward problem. The forward problem is introduced first. Let us
consider two-dimensional (2-D) geometry as shown in Figure 1.
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Figure 1. Geometrical configuration of the problem.

A z-oriented cylindrical object of arbitrary cross section in the
(x, y) plane is embedded in investigation domain Ω. Only stationary,
linear, isotropic and non-dispersive materials are considered. The
cylinder is assumed infinite long in z direction, while the cross-section
of the cylinder is arbitrary. The material properties of the dielectric
scatterer which do not vary along the z-axis are modeled by the
contrast function c(r), defined as

c(r) = εr(r)− 1 + j
σ(r)

2Πfε0
(1)

where f indicates the working frequency and ε0 the dielectric
permittivity of the vacuum, while εr is the relative dielectric
permittivity and σ the electric conductivity. The cylindrical
object domain is illuminated by a set of V TM-polarized incident
electromagnetic plane waves (since the incident electric field is
polarized in the z-axis, (~ev

inc = ev
inc~z). Therefore, the scattering

problem is reduced to two dimensional. We assume that the time
dependence of the field is harmonic with the factor exp(−jωt). Under
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these considerations, the scattered field ~ev
s = ev

s~z and total field
~ev = ev~z are also parallel to the z-axis considering the scalar nature
of the problem. The forward problem which consists of computing the
scattered field from the knowledge of the object permittivity profile
is solved thanks to a boundary integral equation using the Kirchhoff
Helmholtz formula. This leads to two coupled contrast-source integral
equations. The first-kind Fredholm integral equation, the so-called
observation Equation (2), relates the scattered field ev

s to Huygens-
type sources induced within the target by the incident wave, i.e., to
the product of the total field ev by the contrast (or object) function
c(r) representative of the target electromagnetic parameters defined in
Ω and null outside:

ev
s(r) = K2

0

∫∫

Ω
g(r, r′)c(r′)ev(r′)dr′, r ∈ Γ (2)

where, K0 is the free-space wave number. Γ being the observation
domain external to Ω. g(r, r′) denotes the two-dimensional Greens
function for the background medium. The second Equation (3),
denoted as the coupling (or state) equation, is the Lippmann-Schwinger
equation. It relates the internal total field ev in Ω to the induced
sources, i.e., to itself and to the contrast c:

ev(r) = ev
inc(r) + K2

0

∫∫

Ω
g(r, r′)c(r′)ev(r′)dr′, r ∈ Ω (3)

In numerical practice, discrete versions of the above equations are
considered. The method of moments (MoM) with pulse-basis functions
and point matching [27] is then applied to compute the total field ev

for each excitation. The investigation domain Ω under consideration is
divided into N homogeneous elementary squares cells. The pixels are
selected small enough in order to consider the field and the contrast
function as constant over each of them. Once the total field ev is
obtained, secondary quantifies of interest such as the scattered field
can be computed. Therefore, (2) and (3) can be transformed into
matric equations as follow:

Ev = (I −GΩC)−1Ev
inc (4)

Ev
s = GΓC(I −GΩC)−1Ev

inc (5)

where Ev and Ev
inc are N × V matrices, theirs v-th columns vectors

represent the N elements of the total and incident fields on the test
domain Ω correspond to the v-th incidence, respectively. Ev

s is M ×V
matrix, its v-th column vector denotes the scattered fields at the M
receivers located in measurement domain Γ. GΩ is N×N square matrix
representing the integrated Greens function in the test domain Ω. GΓ

is M ×N matrix representing the integrated Greens function between
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Ω and Γ. I is the identity N×N matrix, while C is the diagonal N×N
matrix whose elements are the values of contrast at each pixel of Ω.

As it mentioned previously, the resolution of the forward
problem consists in determining the scattered field by knowing the
object function and the incident field. The computation of inverse
solution refers to the procedure of finding the spatial distribution
of electromagnetic properties of the scatterer assuming that the
permittivity of the embedding medium, the incident field and the
values of the measured scattered field at receivers are known. In this
study, the scattering inverse problem is reformulated as a nonlinear
global optimization problem and is solved by the application of a
hybrid particle swarm optimization. By starting from a defined
residual as the difference between the calculated scattered field, Ev

s
and the measured scattered field, Ev

meas. The dielectric permittivity
and electric conductivity profiles are determined in an iterative manner
in order to minimize a cost functional which gives the normalized
deviation between the computed field and the measured field. In
the inversion procedure, the hybrid algorithm is used to minimize the
following cost function:

F (X = [εr,1, εr,2, . . . , εr,N , σ1, σ2, . . . , σN ])

=

(
1
V

V∑

v=1

‖Ev
meas −Ev

s‖2

‖Ev
meas‖2

) 1
2

(6)

The objective of the optimization inversion algorithm is to find the
most suitable vector X which corresponds to the global minimum of the
error function given in Equation (6). The value of X which minimizes
the error function is supposed to reconstruct the electromagnetic
properties profiles close to the original profiles.

3. HYBRID OF PSO, SA AND TS (PSO-SA-TS)

The proposed hybrid algorithm PSO-SA-TS combines PSO with SA
and TS. Due to combination of different search mechanisms, not only
the PSO operators can keep diversity, but also SA and TS can keep the
balance of global search and local search, so the entire search ability of
the algorithm can be improved. In this section, PSO, SA and TS are
introduced first, followed by a detailed description of PSO-SA-TS.

3.1. Related Algorithms

Particle swarm optimization (PSO) is a population based stochastic
optimization technique developed by Kennedy and Eberhart in
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1995 [28], inspired by social behavior patterns of organisms. The
traditional PSO model consists of a number of particles moving
around in the search space. In a space of D dimensions, each
particle in the swarm is represented by the following characteristics:
Xi = [Xi1, Xi2, . . . , XiD]: The current position of the particle;
Vi = [Vi1, Vi2, . . . , ViD]: The current velocity of the particle; Pi =
[Pi1, Pi2, . . . , PiD]: The personal best position of the particle. The
personal best position of particle i is the best position visited by
particle i so far. The position of a particle i is influenced by
the local best position Pi visited by itself, i.e., its own experience
and the position Pg of the global best particle in the swarm. The
performance of each particle is measured using a fitness function that
varies depending on the optimization problem. PSO algorithm starts
with a group of NP random (or not) particles (solutions) and then
searches for optima by updating each generation. In each iteration,
the velocity and position of each particle are updated according to its
best encountered position and the best position encountered by any
particle, in the following way:

Vi,d(t + 1) = ωVi,d(t) + c1r1(Pi,d(t)−Xi,d(t))
+c2r2(Pg,d(t)−Xi,d(t)) (7)

Xi,d(t + 1) = Vi,d(t + 1) + Xi,d(t) (8)

where ω is the inertia weight. c1 and c2 are the acceleration coefficients
and the parameters r1 and r2 are two random numbers distributed
uniformly in [0, 1]. ω dynamically reduces during a run which facilitates
a balance in the exploration and exploitation of the search space.

Concerning the Simulated annealing algorithm(SA), it was
proposed by Kirkpatrik et al. in 1983 [29]. It was one of the
first minimization stochastic methods applied to electromagnetic
imaging [17]. SA is a probabilistic variant of the local search method,
but it can, in contrast, escape local optima. A standard SA procedure
begins by generating an initial solution at random. At initial stages,
a small random change is made in the current solution Xc. Then the
objective function (representing the cost functional F ) value of the
new solution Xn is calculated and compared with that of the current
solution. The probability p of accepting a new solution which called
Metropolis law is given as follows:

p =

{
1, if F (Xn) < F (Xc),
exp

(−|F (Xn−F (Xc|
T

)
, otherwise , (9)

The calculation of this probability relies on a parameter T , which
is referred to as temperature, since it plays a similar role as the
temperature in the physical annealing process. To avoid getting



8 Mhamdi, Grayaa, and Aguili

trapped at a local minimum point, the rate of T reduction should
be slow. In our case, T decrease as follow:

T (n + 1) = βT (n) (10)

where the annealing rate satisfies 0 < β < 1.
In this paper, the initial temperature is determined by the

following empirical formula:

T0 = −Fmax − Fmin

ln 0.1
(11)

where Fmax and Fmin denote the maximum and minimum objective
values of the solutions in the initial swarm, respectively.

Thus, at the start of SA most worsening moves may be accepted,
but at the end only improving ones are likely to be allowed. This can
help the procedure jump out of a local minimum.

As a third algorithm, it is the Tabu search (TS) was invented
by Glover in 1986 [30], and has been used to solve a wide range of
hard optimization problems. TS starts with a random solution and
evaluate the fitness function for the given solution. Then all possible
neighbors of the given solution are generated and evaluated. TS has
two main features: (1) the capability to avoid local optimization. TS
uses a tabu list (TL) to memory the better local neighbors which
have been searched and will be neglected; (2) the capability to find
better resolution. TS uses an aspiration rule to exploit a prohibited
resolution. During a situation that all the resolution in the TL
is prohibited, the aspiration can make the whole search processing
continue. In this work, the following aspiration criterion was employed
when all available moves are classified tabu: a tabu move that loses
its tabu status by the least increase in the value of current iteration is
freed from the tabu list.

3.2. The Proposed PSO-SA-TS Hybrid Approach

In PSO algorithm, particles always chase the current overall optimal
point and history optimal point found heretofore [31]. Then the
particle speed closes to 0 quickly and can not escape from local
minimum. In order to avoid earliness convergence, the algorithm
must escape from local minimum and search in other solution space,
until solve overall optimal solution. SA and TS algorithms accept
a worse solution, it has the ability of escaping from local optimal
solution and can restrain earliness convergence, increase the diversity of
PSO. The new developed hybrid technique, called PSO-SA-TS, consists
in a strong cooperation of PSO, SA and TS, since it maintains the
integration of the three techniques for the entire run. The proposed
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hybrid algorithm makes full use of the exploration ability of PSO and
the exploitation ability of SA and TS and offsets the weaknesses of each
other. Consequently, through introducing SA and TS to PSO, PSO-
SA-TS is capable of escaping from a local optimum. The algorithm
starts with a population of particles generated randomly and every
particle Xi searches its local best Xi,lbest using SA or TS algorithms
to update individual personal best Pi and the global Pg. The particles
are then subjected to PSO for further refinement. The PSO algorithm
handles the global search for the solution while SA and TS facilitates
the local search. The driving parameter of the PSO-SA-TS algorithm
is the hybridization coefficient (HC) beteween SA and TS; it expresses
the percentage of population that in each iteration is evolved with SA:
so HC = 0 means the procedure is a pure TS (the whole population
is updated according to TS operators), HC = 1 means pure SA,
while 0 < HC < 1 means that the corresponding percentage of the
population is developed by SA, the rest with TS. So, for HC = 0
the hybridization is carried out only between PSO and TS and the
algorithm will be named PSO-TS. If HC = 1, the hybridization is
carried out only between PSO and SA and the algorithm will be named
PSO-SA. The steps of PSO-SA-TS are given below:
Step 1: Randomly initialize the population of Np particles within the
variable constraint range.
Step 2: Evaluate each particle in the population from the fitness
function F .
Step 3:

• Select randomly the particles in population that are evolved with
SA.

• Every selected particle Xi generates a new neighbor X ′
i in its

local area and then according to the accepting rule of SA decides
whether to accept the new solution or not. After L iterations,
every particle finds its local best solution Xi,lbest.

• Calculate the new temperature T specified in Equation (10).

Step 4:

• The rest of the population is evolved with TS. Every particle finds
its local best solution Xi,lbest by applying a TS procedure.

• Update the tabu list (TL).

Step 5: Update personal best Pi and the global best Pg. For each
particle, the adaptive fitness value F (Xi,lbest) is compared with one of
the historical best position Pi, if the adaptive value is better than one
of Pi. Then, Xi,lbest is consider as the best position Pi, otherwise, Pi
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remain unchanged.

Pi =
{

Xi,lbest, if F (Xi,lbest) < F (Pi),
Pi, otherwise , (12)

After updating every particles personal best value, we can get the new
global best value Pg.
Step 6: Update the position and velocity of each particle by PSO
operators according to (7) and (8).
Step 7: Repeat Steps 2–6 until a stopping criterion, such as a
sufficiently good solution being discovered or a maximum number of
generations being completed, is satisfied.

4. NUMERICAL RESULTS

In this section, we discuss reconstruction results using experimental
data. We illustrate the performance of the proposed inversion hybrid
algorithm and its sensitivity to random noise in the scattered field. The
hybrid algorithm is applied to two different dielectric objects embedded
in the free space. The experimental setup under consideration, from
Institut Fresnel (Marseille, France), and the experimental data used
to test the retrieval algorithm are described in [32]. For these objects,
time harmonic multi-frequency and multi-bistatic data are measured
at 241 measurement points (M = 241) on a circle with a radius R
of 1.67m and for different emitter positions on a circle with a same
radius around the target. Relative to a fixed emitting antenna at 0,
the receiving antenna is rotated in a limited angular range from 60
to 300 with a 1 stepping. For all the reconstructions, we exploited
the experimental data witch corresponding to the frequency 4 GHz.
The investigation domain Ω of 0.15× 0.15m2 inside is partitioned into
20× 20 (N = 400) square cells.

As far as the PSO-based method for the retrieval process is
concerned, the following configuration of parameters has been adopted
according to the guidelines in the related literature [33, 34] and to the
heuristic study carried out in [35]. The size of population NP and
the maximum iteration Nmax are set to 300 and 400, respectively.
The cognitive coefficients c1 and c2 represent the weightings that pull
each particle toward pbest and gbest. Low values let particles wander
around their local neighborhood, while high values cause particles
to fly toward, or pass, optimal solutions [28]. Thus, we have set
c1 = c2 = 2 suggested by [33] and [34] for the sake of convergence.
To further accelerate the convergence, a time-varying inertial weight,
ω, is utilized and varies from 0.9 at the beginning to 0.4 toward the
end of the optimization [35]. Therefore, in each iteration i, ω is set to
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0.9 − i × (0.9 − 0.4)/Nmax. For the TS algorithm, TL is an essential
component, and stores points where the last label positions have been
changed. In some applications a simple choice of TL size in a range
centered around 7 seems to be quite effective [36]. In our case, the TL
size is set to 5. The temperature decrement cooling factor β is set to
a constant value of 0.9.

To evaluate the quality of the reconstructions, a relative error
ξεr of dielectric permittivity between the reconstructed profile and the
original one is defined as:

ξεr =

(
1
N

N∑

n=1

|εtrue
r,n − εcal

r,n|2
|εtrue

r,n |2
) 1

2

(13)

where the superscript cal and true stand for the reconstructed profile
and the true one, respectively.

In what follows, some reconstructions using the experimental data
are presented.

The first object consists of two purely dielectric targets: the first
target is a foam cylinder of diameter = 80 mm, its relative permittivity
was estimated to be εr = 1.45 ± 0.15. The second target is a plastic
cylinder of diameter = 31 mm, its relative permittivity was estimated
to be εr = 3±0.3. The dielectric cylinders being close together (see [32]
for more details on the experimental setup, in which the target under
test is referred therein as FoamDielExt).

Before performing further numerical assessments with different
test examples, it is worth analyzing the impact of the choice of
hybridization coefficient HC. Toward this aim, several reconstructions
of the first object have been performed. Figure 2 shows the variation
of the permittivity error ξεr according to HC parameter. It is quite
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Figure 2. The permittivity error ξεr vs. hybridization coefficient HC.
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clear that ξεr is minimal for HC values close to 0.5. Consequently,
0.5 will be selected as optimal value of HC and the employment of
PSO-SA-TS will indicate implicitly that HC = 0.5.

The reconstructed profiles using the standard PSO and the
others three versions of hybrid algorithms (PS0-TS, PSO-SA and
PSO-SA-TS) are shown in Figure 3. It is quite remarkable that
the reconstructions are close to the exact original profile of the
FoamDielExt object. However, it is clear that the best reconstructing
quality is obtained by the new hybrid algorithm PSO-SA-TS, indeed
the permittivity error ξεr is of 0.105, 0.047, 0.024 and 0.003 for PSO,
PSO-TS, PSO-SA and PSO-SA-TS, respectively. The convergence
status of the cost functional F for different generations corresponding
to the best particle in the swarm is shown in Figure 4. It is evident
from this figure that the hybridization of PSO, SA and TS has much
better effect on the speed of convergence.
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Figure 3. Reconstructions of the FoamDielExt. (a) Original object.
(b) Reconstruction using standard PSO. Reconstruction for different
value of HC, (c) HC = 0, (d) HC = 1 and (e) HC = 0.5.

The conductivity profile was found more or less homogeneous
inside the search domain and close to zero. Therefore, it is not
presented.

As a second example, we considered an object consisted of
two plastic cylinders and a Foam cylinder which have the same
characteristics as those of the first example but placed in a different
configuration. The experimental data are fully described in [32] and
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the target is referred therein as FoamTwinDiel. The gray-level
representations of the retrieved profiles as well as a cut of these profiles
in the object medium along the x axis are reported in Figures 5 and 6,
respectively. If we compare Figure 5(b) with Figure 5(c), the latter
provides a clear estimate of the shape of the FoamTwinDiel object
as well as of the inhomogeneity of this scatterer.

In the final generation, the permittivity error ξεr is about 5.62
and 0.64 for PSO and PSO-SA-TS, respectively. We note that the
reconstructed profiles of the conductivity which are not represented
here are almost found homogenous and practically tend towards zero.

A significant performance criterion of an optimization algorithm is
the computing times. The inversion using standard PSO and PSO-SA-
TS takes 72minutes 23 seconds and 26 minutes 43 seconds, respectively.

In order to investigate the robustness of the imaging algorithm
against random noise, an additive white Gaussian noise of zero mean
is added into the experimental electric fields. Several values of the
signal to noise ratio (SNR) are used to reconstruct FoamTwinDiel.
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Figure 4. Fitness function F at different generations in inversion of
FoamDielExt using both hybrid algorithms and standard PSO.
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Figure 5. Reconstructions of FoamTwinDiel. (a) Original object.
Reconstruction using: (b) Standard PSO, (c) PSO-SA-TS.
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Figure 6. Permittivity profiles of FoamTwinDiel along the x axis.
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Figure 7 shows the effect of random noise on PSO and PSO-SA-TS for
reconstructing the second example. From this figure, one concludes
that the hybrid algorithm is much more robust against noise than the
standard PSO.

Comparing the obtained simulation results by PSO-SA-TS with
those obtained by classic PSO, it is found that the PSO-SA-TS shows
a much higher level of robustness than standard PSO.

5. CONCLUSION

In this study, we have proposed a new optimization technique based
on the hybridization of the Particle Swarm Optimization with the
Simulated Annealing and Tabu Search to solve an inverse scattering
problem from laboratory-controlled data. The forward problem is
computed using the method of moments.
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The inverse problem is reformulated in to an optimization one,
and then the global searching scheme PSO-SA-TS is employed to
reconstruct the dielectric targets from experimental data. The
comparisons with standard PSO, demonstrate the superiority of
PSO-SA-TS in higher convergence accuracy and fewer cost function
evaluations. Numerical results have been carried out and good
reconstruction has been obtained even in the presence of additive
white Gaussian noise in experimental data. Future work will
involve evaluating the algorithm using 3D simulations and using an
experimental data.
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