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Abstract—A simple finite difference time domain (FDTD) scheme
is proposed for modeling three-dimensional (3D) nondispersive chiral
media. Based on the recently reported new BI-FDTD mesh method
and rearranged curl equations, this scheme implements a simple
leapfrog algorithm. By adding the mirror layer, the perfect electric
conductor (PEC) condition is implemented in the BI-FDTD mesh
method of 3D problem. Results of this scheme are presented for
the scattering coefficients of discontinuity in waveguides, which are
partially filled with chiral or achiral media. The validation is performed
by comparing the results with those obtained from the literature and
software simulation.

1. INTRODUCTION

In contrast to isotropic media characterized by permittivity and
permeability, chiral media contain an additional parameter in their
constitutive equations, namely, the chirality parameter, which relates
the electric field E with magnetic flux density B, and the magnetic
field H with the electric displacement D [1–6]. Just because of
the magnetoelectric coupling term in the constitutive equations the
standard FDTD method cannot be directly applied to chiral materials.
In recent years, many attempts have been made to model chiral
media by using the FDTD method. These approaches include the
wavefield decomposition in bi-isotropic media [7, 8], the second-order
backward finite difference method [9], the BI-FDTD mesh method [10–
14] and some other techniques [15–17]. In this paper, a simple FDTD
scheme is proposed to model 3D nondispersive chiral media. The mesh
division in this approach employs the same technique as in [10]. By
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discretizing the rearranged curl equations [12], which is different from
literature [13], a leapfrog algorithm for chiral media is achieved. To
validate this method, we have calculated the scattering coefficients of
waveguides, which are partially filled with chiral or achiral media. By
comparing the results of [9] and Ansoft HFSS simulation, the accuracy
of this method is demonstrated.

2. FORMULATION

The constitutive relations for chiral media can be written as [1]

~D = ε ~E + ξ ~H (1a)
~B = µ ~H + ς ~E (1b)

The electromagnetic coupling coefficients ξ, ς are expressed as

ξ = −jκr
√

µε

ς = jκr
√

µε

where j2 = −1, κr is normalized chirality parameter. Substituting (1a)
and (1b) into the Maxwell’s curl equations, we have [12]

εc
∂ ~E

∂t
= ∇× ~H +

ξ

µ
∇× ~E (2a)

µc
∂ ~H

∂t
= −∇× ~E − ζ

ε
∇× ~H (2b)

where
εc = ε(1− κ2

r), µc = µ(1− κ2
r)

To implement a simple leapfrog algorithm for Equations (2a)
and (2b), the BI-FDTD mesh method proposed in [10], which is shown
in Figure 1, is used. The discretization forms of the above formulae
are:
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Figure 1. BI-FDTD mesh for 3D chiral media. (a) Field components
sampled at integer time step. (b) Field components sampled at half-
integer time step.

Take Ex1 for example, the update formula is the following:
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In (3) and (4), ∆t is the time step, ∆x, ∆y, ∆z are the cell size,
i, j, k are the indexes along the three dimensions (x = i∆x, y = j∆y,
z = k∆z), and n is the time index (t = n∆t).

Since ξ and ς are both complex numbers in the above equations,
and the source is real, it is obvious that the computed Ex1, Ey1,
Ez1, Hx1, Hy1, Hz1 are real, while Ex2, Ey2, Ez2, Hx2, Hy2, Hz2

are imaginary. In fact, we regard the real part of Ex1 as Ex in the
conventional FDTD algorithm to calculate the reflection coefficient.
The correctness of this method is demonstrated by the simulation
results.
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3. NUMERICAL RESULTS

To validate the proposed scheme, we calculate the scattering
coefficients of WR 75 waveguides partially filled with chiral or achiral
media as shown in Figure 2.
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Figure 2. Configuration of
a chiral media partially filled
rectangular waveguide.
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Figure 3. Mirror layer for the
BI-FDTD mesh method.

To implement the effect of PEC boundary, we only have to set the
tangential electric field values to zero in traditional Yee cell method.
However, in the BI-FDTD mesh method, that is not enough. In fact,
we add an additional layer to implement the effect of PEC. We called
this layer a mirror layer, which is one cell thick in three dimensions as
shown in Figure 3. Except setting the electric field value, on the PEC
surface, to zero, we also have to set the mirror electric or magnetic
field component’s value according to the character of PEC. As to the
tangential magnetic field and normal electric of the PEC surface, just
only update according to formulae (3).

When the WR 75 waveguide, with a width of a = 22.86 mm and a
height of b = 10.16mm, is operated in the 8–12 GHz frequency range,
only the dominant H10 mode can propagate [3, 4, 9]. The x and y
directions cell size are as follows: ∆x = 0.5443mm, ∆y = 0.3378mm.
Considering the mirror layer, the cell numbers of x and y directions
are 44 and 32, respectively. As to the z direction, the cell size ∆z and
whole cell number kmax are shown in Figures 4–7. The filled chiral
or achiral media are surrounded by free space terminated by uniaxial
perfectly matched layer absorbing boundary conditions (UPML ABC)
in z direction. Each UPML ABC has 8 cells with polynomial grading
m = 4. A sinusoidally modulated Gaussian pulse with T = 250 ps and
f0 = 10 GHz is used as the excitation source. The time-step size is
∆t = 0.5 ps, and the iteration number is 10000.

In the first simulation, we take d = b, w = 6 mm, ε = 8.2ε0,
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µ = µ0, and normalized chirality parameter κr = 0. In the next
simulations, we take d = 0.5b, ε = 2.56ε0, µ = µ0. The values of long
w and normalized chirality parameter κr are shown in Figures 5–7.

Figures 4–7 show the simulated results of reflection coefficients
|S11| verse frequency by the proposed method and HFSS software,
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Figure 4. Amplitude of re-
flection coefficients |S11| versus
frequency for a dielectric par-
tially filled rectangular waveg-
uide. Here, we take d = b,
w = 6 mm, ∆z = 0.3333mm and
kmax = 134.
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Figure 5. Amplitude of reflec-
tion coefficients |S11| versus fre-
quency for a chiral partially filled
rectangular waveguide. Here, we
take d = 0.5b, w = 7.62mm,
∆z = 0.3464 mm and kmax =
136.
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Figure 6. Amplitude of reflec-
tion coefficients |S11| versus fre-
quency for a chiral partially filled
rectangular waveguide. Here, we
take d = 0.5b, w = 10.16mm,
∆z = 0.3464mm and kmax =
146.
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Figure 7. Amplitude of reflec-
tion coefficients |S11| versus fre-
quency for a chiral partially filled
rectangular waveguide. Here, we
take d = 0.5b, w = 14 mm, ∆z =
0.3464 mm and kmax = 160.
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Table 1. The reflection coefficients at the frequency of 10 GHz.

|S11| κr = 0 κr = 0.1178

This work [9] HFSS This work [9]

W = 7.62mm 0.296 0.305 0.296 0.293 0.305

W = 10.16mm 0.220 0.222 0.218 0.217 0.218

W = 14mm 0.025 0.040 0.033 0.028 0.045

|S11| κr = 0.2356 κr = 0.3534

This work [9] This work [9]

W = 7.62mm 0.285 0.305 0.269 0.302

W = 10.16mm 0.207 0.204 0.190 0.173

W = 14mm 0.036 0.081 0.049 0.150

and excellent agreement is found. Table 1 presents the comparison
of reflection coefficients between our calculated results and those
from literature [9] and HFSS software simulations at the frequency
of 10 GHz. These results provide the validation of our method.

4. CONCLUSION

This work has proposed a simple leapfrog algorithm for 3D
nondispersive chiral media. The scattering coefficients of waveguides
partially filled with chiral or achiral media have been computed. The
validity and accuracy of the proposed approach have been tested
through the comparison between the results of our method and those
of others.
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