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Abstract—We experimentally characterize the pulse propagation in
a two-dimensional composite right- and left-handed transmission line,
whose shunt capacitors are replaced with the Schottky varactors.
A properly designed line structure should produce that nonlinearity
rendered by the varactors creating a self-focused pulse on the line and
finally collapses, which allows it to be engineered for pulse processing
systems. We built a test breadboard circuit and observed self-focused
pulses.

1. INTRODUCTION

Composite right- and left-handed (CRLH) transmission lines have
been intensively investigated to produce important breakthroughs
in the management of electromagnetic continuous waves [1] in both
one and two spatial dimensions. Several investigations have been
done for managing dispersion [2–5] and for introducing nonlinearity
to develop time-invariant envelope pulses [6, 7]. In particular, the
2D CRLH lines exhibit extraordinary refractive properties [8]. The
highly dispersive nature of CRLH lines suits the development of
electrical nonlinear Schrödinger (NS) solitons. In particular, the 2D
NS equation has no stable spatially localized soliton solutions because
its nonlinearity cannot be balanced with the dispersion under any
conditions [9]. It is impossible to develop soliton-like pulses in any
systems governed by 2D NS equation. Because diode currents screen
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voltage waves in the forward-biased regions of shunt varactors, self-
focusing due to the nonlinearity occurs only at reversely-biased voltage
levels. This restricted nonlinearity might restore the balance between
the nonlinearity and dispersion. A simplified line model validated
this expectation through numerical evaluations. Management of the
localized pulse can realize a variety of pulse control devices, including
splitters, switches, variable delay rendering, and an i/o separator [10].
For these applications, it is important to observe the self-focused pulses
in 2D Schottky CRLH lines.

First, we briefly review the fundamentals of 2D Schottky CRLH
lines, including the configuration and the dispersion/nonlinearity
coefficients of the 2D NS equation. Recently, we discussed
line properties using the second-order accurate long-wavelength
approximation [10]. However, the discrepancy between the
approximated and exact dispersions is very large at short wavelengths
for the formulation to describe the properties of short solitonic pulses.
We improved the design criteria by applying the sixth-order long-
wavelength approximation. Next, we discuss the results of several
experiments, including those with self-focused pulse waveforms, and
examine how much the focused pulse depends on the input amplitude
and carrier frequency. To validate the circuit’s operation principles, it
is desirable that we can fix erroneous operations by reformation of the
test circuit and detect easily voltages at any cells. We thus employ
a standard breadboard. As a penalty of advantages, the experiments
had to be carried out at MHz frequencies, being much smaller than
microwave frequencies at which CRLH lines are vastly utilized.

2. FUNDAMENTAL PROPERTIES OF 2D SCHOTTKY
CRLH LINES

Figure 1 shows the unit cell of the 2D Schottky CRLH line, where
LR, CL, and LL are the series inductance, series capacitance, and
shunt inductance, respectively. The shunt capacitance CR is given by
Schottky varactors. Using CL, we can set the required bias voltage for
each cell (V0 in Fig. 1). The dependence of the capacitance on the line
voltage V is given by

CR(V ) = C0

(
1− V

VJ

)−m

, (1)

where C0, VJ , and m are the zero-bias junction capacitance, junction
potential, and grading coefficient, respectively. The capacitance at
V = −V0, which we hereafter denote as C

(0)
R , determines the linear
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Figure 1. Unit cell of 2D Schottky CRLH line. The presence of CL

allows individual biasing of shunt varactors.

dispersion of the line, which is given by
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where ω(kx, ky) is the angular frequency of the wave specified by the
wave vector (kx, ky). In Eq. (2), the minus and plus at the head
of the 3rd line correspond to the left- and right-handed branches,
respectively. For convenience, cells are used as a spatial unit in this
paper, because it allows the use of the per-unit-cell quantities such
as CL and LR in the following expressions. Evaluating ωRH and
ωLH at kx = ky = 0, the upper and lower transition frequencies

of the CRLH line are given by ωu = max(1/
√

CLLR, 1/

√
C

(0)
R LL)

and ωl = min(1/
√

CLLR, 1/

√
C

(0)
R LL), respectively. For the Schottky

varactors, the capacitance decreases as V0 increases. At sufficiently
large V0, the condition C

(0)
R LL < CLLR is satisfied. When V0 decreases,

ωu decreases while ωl is fixed until ωu becomes equal to ωl. As V0

decreases more, ωl starts to decrease while ωu is fixed.
By introducing the spatial continuous variables x and y, and

replacing the differences by differentials, the function V = V (x, y, t)
becomes the continuous counterpart of the voltage at the (i, j)th
cell Vij . For the reductive perturbation [11], we prepare spatial and
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temporal coordinates for the envelope and carrier waves. We use x, y,
and t as the spatial and temporal coordinates, respectively, to describe
the carrier wave. For the envelope wave, ξ ≡ ε(x−Vgt), η ≡ ε(y−Ugt),
and τ ≡ ε2t are used as the spatial and temporal coordinates, where Vg

and Ug are given by ∂kxω(kx, ky) and ∂kyω(kx, ky), respectively, where
ω = ω(kx, ky) denotes the dispersion. We then expand the voltage
variable as

V =
∞∑

m=1

εm
∞∑

l=−∞
u

(m)
l (ξ, η, τ)eil(kxx+kyy−ωt). (3)

As a result, we obtain the following two-dimensional NS equation that
describes u

(1)
1 ,

i
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2
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where the dispersion coefficients p1, p2, and p3 are given by
−∂2

kx
ω(kx, ky)/2, −∂kx∂kyω(kx, ky), and −∂2

ky
ω(kx, ky)/2, respectively,

and the nonlinearity coefficient q is given by
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where

N(kx, ky) = −45(1 + m) + 4
(
45C(0)

R LL + CL

(
4
(
45

(
k2

x + k2
y

)

−15
(
k4

x + k4
y

)
+ 2

(
k6

x + k6
y

))
LL + 45LR

)
(1 + m)

)
ω2

−720CLC
(0)
R LLLRω4, (6)

D(kx, ky) =
(
45− 4

(
45C

(0)
R LL + 4CL

(
45

(
k2

x + k2
y

)− 15
(
k4

x + k4
y

)

+2
(
k6

x + k6
y

) )
LL + 45CLLR

)
ω2 + 720CLC

(0)
R LLLRω4

)

×
(
− CL

(
360

(
k2

x + k2
y

)− 30(k4
x + k4

y) + k6
x + k6

y

)
LL

−360CLLR + 360C
(0)
R LL

(−1 + 2CLLRω2
) )

, (7)

where ω = ω(kx, ky) (See Ref. [7] for detailed derivation).
For the development of self-focused pulses traveling in the y

orientation, q must have the same sign as p1 and p3. Fig. 2 shows
the sample frequency dependence of the dispersive and nonlinearity
coefficients. We set C0 = 64.77 pF/cell, VJ = 3.561V and M = 1.259
to simulate a TOSHIBA 1SV101 varactor. The bias voltage V0 was
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(a) (b)

Figure 2. Dispersion and nonlinearity coefficients of 2D Schottky
CRLH lines. (a) The dispersion and (b) nonlinearity coefficients for
kx = 0. The dotted and solid curves in Fig. 2(a) show p1 and p3,
respectively.

set to 1.0V, CL was set to 47 pF · cell, and LR and LL were set
to 100µH/cell and 100µH · cell, respectively. For these parameters,
the line becomes balanced, i.e., ωu = ωl at V0 = 1.0V. The unique
transition frequency is calculated to be 2.3MHz. Fig. 2(a) shows the
dispersion coefficients for kx = 0. The dotted and solid curves represent
p1 and p3, respectively. Note that p2 is always zero for kx = 0. Fig. 2(b)
shows the nonlinearity coefficient. For frequencies from f0 (2.3MHz)
to fH (3.5MHz), all three coefficients become negative; therefore, the
pulse is expected to be self-focused at these frequencies.

3. EXPERIMENTAL OBSERVATIONS

We built a 45 × 35-cell 2D Schottky CRLH line on a standard
breadboard. The Schottky varactors are TOSHIBA 1SV101 diodes.
Shunt inductances and series capacitances were implemented using
100µH inductors (TDK EL0405) and 47 pF capacitors (TDK
FK24C0G1), respectively. The wavenumber is calculated to be
0.53 rad/cell for the 3.0-MHz wave propagating in the y orientation;
therefore, the electrical lengths are 23.9 and 18.6 radians for the x and
y orientations, respectively. As a result, the wave velocity is much
smaller than the free-space light velocity. The middle 13 cells at the
left boundary of the test line were fed by a pulse signal generated
by an Agilent 81150A function generator, as shown in Fig. 3(a). An
envelope pulse with a triangle waveform whose pulse width was set
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(a) (b)

Figure 3. Structure of the test 2D Schottky CRLH line. (a) The
signal application and (b) the photo of the test circuit. The test line
consists of 45 and 35 cells in the x and y orientations, respectively.
An identical envelope pulse is applied to the middle 13 cells at the left
edge.

to include 20 cycles of carrier sinusoidal wave was input. The signals
along the test line were detected by Agilent 10073C passive probes
and monitored in the time domain by using an Agilent DSO90254A
oscilloscope. Fig. 3(b) shows the top-view photo of the test circuit. The
circuit has 252 and 1925 millimeters long in the x and y orientations,
respectively.

We examined the differences in the test line response to the input
signal amplitude. As shown in Fig. 2, we set the carrier frequency
to 3.0 MHz, where we expect the self-focusing to occur. First, we
measured the response to small signal inputs. The amplitude of
the input pulse was set to 0.5 V. Fig. 4(a) shows the spatial pulse
profile recorded when the input pulse becomes maximal at the left
edge. Figs. 4(b), (c), and (d) show the profiles recorded at succeeding
points in increments of 0.05µs. As expected, the peak travels in the
+y direction and its spread is almost unaltered. Moreover, the peak
amplitude decreases due to attenuation and diffusion.

On the other hand, Figs. 4(e), (f), (g), and (h) show the profiles
for the large amplitude input signals recorded at the same timing as
Figs. 4(a), (b), (c), and (d), respectively. To obtain these profiles, we
set the amplitude of input pulse to 3.0 V. In contrast to the linear case,
the peak amplitude increases with a reduced spread.

In order to see this more clearly, Fig. 5(a) shows the profiles in
the x orientation for y in [1, 6], where we recorded the maximum
voltage observed in the measured temporal span of each cell for a
large amplitude input. The voltage spread clearly converges to the
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Figure 4. Pulses in the 2D Schottky CRLH line. Spatial pulse
profiles are shown in [10, 35] × [1, 10]. Some profile divisions are
omitted for clarity, but they are identical with those in Figs. 4(a)
and (e). Figs. 4(a), (b), (c), and (d) present spatial profiles for small
amplitude inputs and Figs. 4(e), (f), (g), and (h) present profiles for
large amplitude inputs.

central cell. Fig. 5(b) shows the profile at x = 23 in the y orientation.
The figure shows the maximum voltage of each cell, normalized by
that of the input cell, which is considered as a good indicator of self-
focusing. The solid and dotted curves correspond to the profiles for
large and small amplitude inputs, respectively. The solid curve exhibits
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Figure 5. Self-focusing observed in the test 2D Schottky CRLH
line. (a) The voltage profile in the x orientation, (b) the normalized
amplitude profile in the y orientation and (c) the dependence of
the normalized amplitude on the input amplitude. The normalized
amplitude is the peak amplitude divided by that of the input.

a remarkable increase up to y = 5. Note that the normalized amplitude
becomes twice as large as the input at y = 5. At 5 < y < 15,
the amplitude decays relatively steeper than the small amplitude
profile, and becomes so small that nonlinearity is weakened, resulting
into the two profiles becoming almost identical at y ≥ 15. The
dependence of the maximum normalized amplitude on the input pulse
amplitude is shown in Fig. 5(c). For small inputs having 1.0 V at most,
the maximum normalized amplitude is almost unity. It drastically
increases at larger inputs.

Finally, we examine the carrier frequencies where the self-focused
pulse can develop for varactors biased at several different voltages. The
lower and upper limits for self-focusing are represented by the circles
and the squares, respectively, in Fig. 6. Analytically, self-focused pulses
can develop only for carrier frequencies ∈ (f0, fH). The solid and
dashed curves in Fig. 6 show the locations of f0 and fH , respectively,
and the measured self-focused pulses satisfy the analytical requirement.
Moreover, the measured lower limit frequencies are well explained by
f0.
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Figure 6. Carrier frequencies for developing self-focused pulses. The
solid and dashed curves show the locations of f0 and fH , respectively,
and the shaded region corresponds to carrier frequencies where p1, p3

and q have a common sign. Self-focused pulses were observed at the
frequencies between the circles and squares.

4. CONCLUSION

We measured a test 2D Schottky CRLH line to investigate the
development of self-focused pulses and clarify how the pulse properties
depend on the carrier frequency, bias voltage, and the input amplitude.
Moreover, the dispersion and nonlinearity coefficients of the nonlinear
Schrödinger equation derived by the reductive perturbation accurately
give the conditions for the development of self-focused pulses.
Although we cannot observe a stable propagation of localized pulses
due to large parasitic resistance of the inductors, it should be possible
when employing low-loss platforms, such as printed circuit boards and
integrated circuits.
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