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Abstract—This paper applies a meshless method based on radial basis
function (RBF) collocation to solve three-dimensional scalar Helmholtz
equation in rectangular coordinates and analyze the eigenvalues of
spherical resonant cavity. The boundary conditions of spherical cavity
are deduced. The RBF interpolation method and the collocation
procedure are applied to the Helmholtz and boundary condition
equations, and their discretization matrix formulations are obtained.
The eigenvalues of spherical resonant cavity with natural conformal
node distribution are computed by the proposed method. Their results
are agreement with the analytic solution.

1. INTRODUCTION

In recent years, meshless methods (MLM) based on a set of
independent points have been applied to the area of computational
electromagnetics [1–4]. MLM based on radial basis functions (RBFs)
is a space dimension independent method and a powerful interpolation
technique. It was first proposed by Kansa [5] in 1990 to solve
partial difference equations. There are some works based on radial
basis functions analyzing the waveguide or resonant problems. For
example, elliptical waveguides are computed by meshless collocation
method with Wendland RBFs [6]. Zhao et al. [7] proposed a novel
conformal meshless method based on RBF coupled with coordinate
transformation technique to analyze arbitrary waveguide problems.
Lai et al. [8] used meshless RBF method to solving Helmholtz equation
and computed various waveguide problems. Waveguide eigenvalue
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problem in cylindrical system is also solved by using RBFs [9]. In [8],
radial point interpolation method is applied to the Maxwell’s curl
equations to analyze the eigenvalues of resonant structures. However,
the spherical resonant cavity problems have never been computed using
RBFs.

The focus of this paper is on the eigenvalues analysis of spherical
resonant cavity using MLM based on RBF collocation. The boundary
conditions of transverse electric (TE) and transverse magnetic (TM)
modes in spherical cavity are deduced in Section 2. The RBF
interpolation method and the collocation procedure are also presented
in this section. In Section 3, the eigenvalues of spherical resonant cavity
with natural conformal node distribution are computed. Conclusion is
given in Section 4.

2. FORMULATION

For a spherical cavity enclosed by a perfect electrically conducting
surface at r = R0 (see Figure 1), in the spherical coordinates,
its Borgnis’ functions U(r) or V (r) do not satisfy scalar Helmholtz
equation [10]. But with the following transform,

U(r) = rF (r) or V (r) = rF (r) (1)
F (r) satisfies the scalar Helmholtz equation [10]

∇2F (r) + k2F (r) = 0 (2)
The boundary condition of TE modes in the spherical coordinates

is V |r=R0 = 0 [11]. From (1), we get
rF |r=R0

= 0, i.e., F |r=R0
= 0, (3)

Figure 1. Structure of the spherical cavity.
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For TM modes, the boundary condition is ∂U/∂r|r=R0 = 0. From (1),
we get

∂(rF )
∂r

∣∣∣∣
r=R0

=
[
F + r

∂F

∂r

]∣∣∣∣
r=R0

= 0. (4)

In rectangular coordinates the three-dimension scalar Helmholtz
Equation (2) can be expressed as

∂2F (r)
∂x2

+
∂2F (r)

∂y2
+

∂2F (r)
∂z2

+ k2F (r) = 0, r ∈ Ω (5)

The unknown function F (r) in the computation domain Ω can be
interpolated approximately by a series of RBF:

F (r) ≈ F h(r) =
N∑

I=1

φI(r)aI , r ∈ Ω (6)

where φI(r) = φ(‖r − rI‖), is the radial basis function centered at
a set of independent points r1, . . . , rI , . . . , rN ∈ Ω (also called center
nodes), aI are unknown coefficients to be computed and ‖r− rI‖ = dI

represents the Euclidean distance between test node r and collocation
node rI .

Substituting (6) into (5), we get
N∑

I=1

aI [∂xxφI(r) + ∂yyφI(r) + ∂zzφI(r)] = −k2
N∑

I=1

aIφI(r), r ∈ Ω (7)

where

∂ppφI(r) =
∂2φI(r)

∂d2
I

(
∂dI

∂p

)2

+
∂φI(r)
∂dI

∂d2
I

∂p2
(8)

in which p represents x, y or z in rectangular coordinates.
Substituting (6) into (3), we get the RBF interpolation

formulation of the boundary condition of TE modes
N∑

I=1

aIφI(r)|r=R0
= 0, (9)

For TM modes, substituting (6) into (4) and projecting the normal
derivative ∂F/∂r on the rectangular coordinates (see Figure 1), we
have

N∑

I=1

aI [φI(r) + R0 (∂xφI(r) cosα + ∂yφI(r) sin α) sin θ

+R0∂zφI(r) cos θ]r=R0
= 0, (10)
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where
∂pφI(r) =

∂φI(r)
∂dI

∂dI

∂p
(11)

Then, the Equations (7), (9), and (10) at a set of collocation
nodes r1, . . . , rJ , . . . , rM ∈ Ω (M ≥ N) are considered. We get the
discretization formulations of Helmholtz equation of spherical resonant
cavity by MLM based on RBF collocation. They could be written as
the matrix formulation:

Aa = −k2Ba (12)

where a = [a1, a2, . . . , aN ]T , for TE case, the individual elements of
matrix A can be written as

AIJ =
{

∂xxφI(rJ) + ∂yyφI(rJ) + ∂zzφI(rJ), rJ in Ω
φI(rJ), rJ on Γ , (13)

and for TM case, the individual elements of matrix A are

AIJ =

{
∂xxφI(rJ) + ∂yyφI(rJ) + ∂zzφI(rJ), rJ in Ω
φI(rJ) + R0∂zφI(rJ) cos θJ + R0 sin θJ

× [∂xφI(rJ) cosαJ + R0∂yφI(rJ) sinαJ ] , rJ on Γ
(14)

The elements of matrix B for both TM and TE cases are

BIJ =
{

φI(rJ), rJ in Ω
0, rJ on Γ (15)

Equation (12) is the generalized eigenvalue equation. In this study,
suppose collocation nodes located at the center nodes, i.e., M = N .
The eigenvalue kj and eigenvector aj could be computed from (12),
and then substituting aj into (6), the field distribution of the jth-
eigenmode can be obtained.

3. NUMERICAL RESULTS

In order to validate the present method, the eigenvalues of TM and
TE modes in a spherical resonant cavity are calculated by MLM based
on RBF collocation. The radius of spherical cavity is set R0 = 1m. A
conformal node distribution fitting naturally to the spherical surface of
cavity wall is adopted, as shown in Figure 2. Let the number of node
layer from the central point to the outer cavity wall be 9, and node
distance on each surface layer be equal to layer distance h.

There are many different types of RBFs. Here, the quintic RBF
is chosen:

φI(r) = r5 (16)
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Figure 2. Natural conformal node distribution of the spherical cavity.

Table 1. Resonant wavenumbers of degenerate modes in TM case.

np TMn0p degenerate modes

11 2.7276, 2.7276, 2.7276

21 3.8474, 3.8474, 3.8474, 3.8474, 3.8474

× 4.6603

31 4.9835, 4.9835, 4.9835, 4.9835, 4.9835, 4.9835, 4.9835

41 5.9902, 5.9902, 5.9902

12 6.1308, 6.1308, 6.1308, 6.1308, 6.1308, 6.1308, 6.1308, 6.1308, 6.1308

51
7.2815, 7.2815, 7.2816, 7.2816, 7.2816, 7.2816, 7.2816, 7.2816, 7.2816,

7.2816, 7.2817

22 7.3406, 7.3406, 7.3407, 7.3407, 7.3407

which is the globally supported RBF with no shape parameter to
influence the calculation accuracy. In order to analyze the accuracy
of the proposed method, the relative error is defined as follows:

Err =
|ki − ki0|

ki0
× 100% (17)

where ki is the numerical eigenvalue (i.e., resonant wavenumber) of the
i-th mode and ki0 is the analytic solution in the spherical cavity.

Because of the highly symmetrical configuration of the cavity, the
TEnmp and TMnmp modes in spherical cavity are independent of m
and highly degenerate including nth-order degenerate and polarization
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degenerate [11], where subscript “n, m, p” represent r, α, and θ
directions, respectively. Table 1 shows the resonant wavenumbers
of degenerate TMn0p modes computed by MLM based on RBF
collocation. From the table, we can see that there are many repeated
wavenumbers in most TM modes (their eigenvectors are not the same),
which means the computed modes are degenerate. However, a single
wavenumber 4.6603 appeared in results. This means that the solution
is not a degenerate mode, but a pseudo solution.

The resonant wavenumbers of the ten lowest-order TM modes
computed by MLM based on RBF collocation and their relative errors
with the exact analytic solutions are shown in Table 2. From the table,
we can see that there exist two pseudo solutions, and the maximum
relative error is less than 2.7%.

Table 3 shows the results of the ten lowest-order solutions of TE
modes computed by MLM based on RBF collocation. Like the TM
case, the degenerate modes of each TE mode are calculated and there
exist two pseudo solutions too. But the relative errors of TE case are
much less than those of TM case. The maximum relative error is less
than 1%.

Table 2. Resonant wavenumbers and relative errors in TM case.

TMnmp TM101 TM201 TM301 TM401 TM102 TM501

Exact [11] 2.7437 3.8702 4.9734 6.0619 6.1167 7.1398

RBF-MLM 2.7276 3.8474 4.6603 4.9835 5.9902 6.1308 7.2817

Rela. Err.% 0.59 0.59 0.20 1.18 0.23 1.99

TMnmp TM202 TM601 TM302 TM701

Exact [11] 7.4431 8.2108 8.7217 9.2754

RBF-MLM 7.3406 7.5159 8.4312 8.6958 9.0282

Rela. Err.% 1.38 2.68 0.30 2.67

Table 3. Resonant wavenumbers and relative errors in TE case.

TMnmp TM101 TM201 TM301 TM102 TM401 TM202

Exact [11] 4.4934 5.7635 6.9879 7.7253 8.1826 9.0950

RBF-MLM 4.4940 5.7573 6.2933 6.9727 7.7129 8.1590 9.0495

Rela. Err.% 0.013 0.11 0.22 0.16 0.29 0.50

TMnmp TM501 TM302 TM602 TM103

Exact [11] 9.3558 10.4171 10.5128 10.9041

RBF-MLM 9.3270 9.4102 10.3394 10.4831 10.7984

Rela. Err.% 0.31 0.75 0.28 0.97
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(a) (b)

Figure 3. Field distributions of (a) TM301 and (b) TE301 modes on
the equator section.

The field distributions of the TM301 and TE301 modes by MLM
based on RBF collocation are shown in Figure 3. The field distributions
perfectly represent the physical modes on the equator section.

4. CONCLUSION

In this letter, the scalar Helmholtz equation and boundary conditions
in spherical cavity are analyzed. MLM based on RBF collocation
is applied to solve the scalar Helmholtz equation in rectangular
coordinates and compute the resonant wavenumber of spherical cavity.
Under the natural conformal node distribution, the results of TE and
TM modes of spherical cavity are in agreement with the analytic
solutions. The abundant degenerate modes in spherical cavity are
also calculated by the proposed method. But there exist some pseudo
solutions in the results.
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