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Abstract—This paper considers adaptive array beamforming using
signal cyclostationarity. Due to the effect of using finite data samples,
there exists an estimation error in computing the weight vector
required by performing cyclic beamforming. To deal with this problem,
we formulate a cost function consisting of a posteriori information of
the received signal and a priori information regarding the probabilistic
distribution of the error. By minimizing the cost function, we
obtain a weight vector with a diagonal loading data covariance matrix
under a white Gaussian estimation error. An analytical solution for
determining the loading factor is further derived. Simulation results
for showing the effectiveness of the proposed method are provided.

1. INTRODUCTION

For conventional array beamforming, the a priori information required
for adapting the weights is either the direction vector or the waveform
of the signal of interest (SOI) [1]. It will be too costly to provide
the information in many applications such as the mobile radio system
and the regenerative satellite communication system. A signal with
cyclostationarity has the statistical property of correlating with either
a frequency-shift or a complex-conjugate version of itself. By restoring
this property at a known value of frequency separation, it is possible
to extract the SOI and suppress the signals not of interest (SNOIs)
and noise [2]. Adaptive beamforming utilizing signal cyclostationarity
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has been widely considered in [3–5]. These beamforming techniques
do not require training signals and the knowledge of array manifold.
For example, in [3], a class of spectral self-coherent restoral (SCORE)
algorithms has been presented to deal with the problem of blind
adaptive signal extraction by using signal cyclostationarity. As the
number of data snapshots approaches infinity, it has been shown in [3]
that the performance of the SCORE algorithms approaches that of
the conventional beamforming methods developed by maximizing the
output signal-to-interference plus noise ratio (SINR). The least-square
SCORE (LS-SCORE) algorithm is the simplest among the SCORE
algorithms. However, the LS-SCORE algorithm converges slowly due
to finite sample effect. To overcome this drawback, the Cross-SCORE
algorithm is proposed by [3]. Although the Cross-SCORE algorithm
has the advantage of faster convergence rate over the LS-SCORE
algorithm, it needs considerable computational complexity to solve the
generalized eigenvalue problem required for finding the weights.

For many practical applications, such as satellite communica-
tions [6], an antenna array is required to possess the beamforming ca-
pability that receives more than one SOI with specified gain constraints
while suppressing all SNOIs. This goal can be achieved by using an
antenna array with a multiple-beam pattern [6, 7]. Recently, a novel
cyclostationary beamforming method based on the LS-SCORE algo-
rithm has been proposed by [8] for dealing with the situation of multiple
SOIs. This method is referred to as the multiple LS-SCORE (MLS-
SCORE) algorithm. It has been shown in [8] that the solution to the
MLS-SCORE algorithm converges to the solution of the conventional
linearly constrained minimum variance (LCMV) algorithm as the num-
ber of data snapshots approaches infinity. However, the MLS-SCORE
algorithm converges slowly when the number of data samples available
is finite. To overcome this drawback, an estimation error model was de-
veloped in [8] to represent the perturbation due to finite sample effect
on the cyclic correlation vector. Then, a subspace projection approach
was further presented to incorporate with the MLS-SCORE algorithm.
The resulting method is called as the MLS-SCORE-SP algorithm. It
has been shown that the MLS-SCORE-SP algorithm achieves better
performance than the MLS-SCORE algorithm because the perturba-
tion due to the estimation error is eliminated. Meanwhile, the MLS-
SCORE-SP algorithm outperforms the Cross-SCORE algorithm in the
case of multiple SOIs. This is because the required dominant eigen-
vector of the Cross-SCORE algorithm for computing the weight vector
may no longer be able to converge to the desired solution in the pres-
ence of multiple SOIs [8]. Nevertheless, the essential drawbacks of the
MLS-SCORE-SP algorithm are that it is efficient only if the number
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of signal sources is small and correctly known.
In this paper, we present an efficient method for dealing with the

estimation error. It has been shown in [9] that the estimation error
of a cyclic correlation function has a complex Gaussian distribution.
Using this result, we first formulate a problem of finding an optimal
cyclic correlation vector as an optimization problem. A cost function
consisting of the first term related to the inverse of the array output
power and a second term related to the likelihood function of the
estimation error. The second term is employed to prevent that the
obtained optimal solution becomes one of the interference direction
vectors. Solving the optimization problem yields a weight vector with
a generalized loading on the data covariance matrix. Under a white
Gaussian estimation error, we obtain a weight vector with a diagonal
loading data covariance matrix, where the loading factor is a key factor
which should be appropriately determined. More recently, some related
works on choosing the loading factor are presented by [10] and [11].
For instance, in [10], the optimal loading factor is found by the particle
filters. The particle who has the highest posterior probability is chosen
as the optimal loading factor. From [11], the loading factor is obtained
by controlling the peak location of the main beam. However, the
loading factors of those methods cannot be obtained directly and
have to be solved numerically. Here, for determining the required
loading factor, we derive an analytical solution based on the criterion
of minimizing noise output power. The resulting loading factor can be
computed easily from the received data vector based on the analytical
formula. Several simulation examples are provided to confirm the
validity of the proposed method and make comparison with the existing
methods.

2. PRELIMINARIES

2.1. The MLS-SCORE Algorithm

It has been shown in [2] that a signal s(t) is said to possess the signal
cyclostationarity with cycle frequency α if and only if the cyclic or the
cyclic conjugate autocorrelation function given by
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〈
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does not equal zero at cycle frequency α for some time delay τ , where
the superscript “∗” denotes the complex conjugate and 〈·〉∞ represents
the infinite-time average operation.
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Consider that there are total K far-field narrowband signals
including d SOIs and K-d SNOIs impinging on an M -element antenna
array. Assume that the background noise is spatially white. The
received data vector x(t) is given by [1]

x(t) =
K∑

i=1

aisi(t) + n(t) =
d∑

i=1

aisi(t) + v(t) (2)

where si(t) and ai represent the waveforms and direction vector of the
ith signal, respectively; v(t) includes the K-d SNOIs and noise.

Without loss of generality, we assume that the SOIs are
cyclostationary and have the cycle frequencies α, where α = {αi|i =
1, 2, . . . , d} denotes the set of cycle frequencies of the SOIs. v(t) is not
cyclostationary at αi, i = 1, 2, . . . , d, and is temporally uncorrelated
with the SOIs. Based on the MLS-SCORE algorithm [8], the optimal
weight vector is given by

ŵmls = arg min
w
〈|y(t)− z(α, t)|2〉T (3)

where y(t) = wHx(t) denotes the array output with the superscript
“H” the conjugate transpose and the reference signal z(α, t) is given
by z(α, t) = cHx∗(t−τ)

∑d
i=1 ej2παit with a fixed control vector c. The

solution of (3) is given by

ŵmls = R̂−1
xx r̂xz(α) (4)

where R̂xx = 〈x(t)xH(t)〉T and r̂xz(α) = 〈x(t)z∗(α, t)〉T denote the
sample covariance matrix and the sample cyclic correlation vector,
respectively.

2.2. The MLS-SCORE Algorithm with Subspace Projection

According to [8], an estimation error model has been presented to
represent the perturbation due to the finite sample effect on the ideal
cyclic correlation vector rxz(α). Let r̂xz(α) be expressed by

r̂xz(α) = rxz(α) + ∆ (5)
where ∆ represents the estimation error and vanishes asymptotically
as T approaches infinity. In practice, ∆ 6= 0 since the number of data
snapshots is finite. This leads to performance degradation of the MLS-
SCORE algorithm, especially when the number of data snapshots is
small. To alleviate the performance degradation due to ∆, a subspace
projection in conjunction with the MLS-SCORE algorithm (termed as
MLS-SCORE-SP algorithm) was proposed by [8]. The optimal weight
vector of the MLS-SCORE-SP algorithm is given by

ŵsp =
(
I−EnEH

n

)
ŵmls = ŵmls −we1 (6)
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where we1 = EnEH
n ŵmls is the projection of ŵmls onto the noise

subspace spanned by En. I is the identity matrix with an appropriate
size. The basis matrix En can be obtained as follows. Performing the
eigenvalue decomposition (EVD) on R̂xx yields

R̂xx =
M∑

m=1

λ̂memeH
m = EsΛ̂sEH

s + EnΛ̂nEH
n (7)

where λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂M are the eigenvalues, {em}M
m=1

are the corresponding eigenvectors, Λ̂s = diag{λ̂1, . . . , λ̂K+d},
Λ̂n = diag{λ̂K+d+1, . . . , λ̂M}, Es = [e1 e2 . . . eK+d]T and En =
[eK+d+1 eK+2 . . . eM ]T span the signal subspace and the noise
subspace, respectively. It has been shown in [8] that the MLS-SCORE-
SP algorithm achieves better performance than the MLS-SCORE
algorithm because the perturbation due to the estimation error is
alleviated. However, the drawbacks of this MLS-SCORE-SP algorithm
are that it is efficient only when the dimension of the signal subspace
is low and correctly known.

3. THE PROPOSED METHOD

It follows from [9] that the estimation error of a cyclic correlation
function is asymptotically a complex Gaussian distribution. Hence,
we let the estimation error ∆ of (5) be a complex Gaussian random
vector with zero mean and covariance matrix Σ. Its probability density
function (pdf) can be written as

f(∆) =
1

πM det(Σ)
exp{−∆HΣ−1∆}. (8)

The log-likelihood function regarding the estimation error can be
defined as
L(∆) = −∆HΣ−1∆ = −[r̂xz(α)− rxz(α)]HΣ−1[r̂xz(α)− rxz(α)]. (9)

A cost function related to ∆ is constructed as follows:
J(r) = rHR−1

xx r + λ[r− r̂xz(α)]HΣ−1[r− r̂xz(α)] (10)
where the vector r is designated as the estimate of the ideal cyclic
correlation vector rxz(α). The first term of (10) is related to the
inverse of the array output power, while the second term represents
a log-likelihood function related to the estimation error. λ is a relative
weight between the two terms. The optimal estimate of rxz(α) can be
obtained by minimizing J(r) as follows:

ro =
(
I +

1
λ

ΣR̂−1
xx

)−1

r̂xz(α). (11)
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Based on ro, the optimal weight vector is then obtained as

wgl =
(
R̂xx +

1
λ

Σ
)−1

r̂xz(α). (12)

Comparing (4) and (12), we note that the proposed method provides
an appropriate weight vector which is the solution of the MLS-SCORE
algorithm with a generalized loading on the data covariance matrix
R̂xx. From (12), there exists an issue that concerns the specification
of the error covariance matrix Σ. In practice, the true Σ seems to be
unavailable. For simplicity and without loss of generality, we assume
that the elements of ∆ are independent complex Gaussian with zero
mean and variance σ2. Hence, Σ is reduced to a scaled identity matrix,
i.e., Σ = σ2I. Then, the optimal weight vector obtained in (12)
becomes

wdl =
(
R̂xx +

σ2

λ
I
)−1

r̂xz(α) =
(
I +

σ2

λ
R̂−1

xx

)−1

ŵmls. (13)

The loading factor λ is a key factor which should be appropriately
determined. For a large λ, the second term of (10) becomes dominant.
The range for searching the minimum of rHR−1

xx r is constrained in
the vicinity of r̂xz(α). Consider the extreme situation of letting λ be
infinite, wdl is exactly the same as ŵmls of (4). In contrast, using a
smaller λ allows a wider range for searching the minimum of rHR−1

xx r.
However, wdl may approach a zero vector if λ approaches zero. Thus,
λ must be appropriately chosen to achieve the best performance for the
proposed method. More recently, some related works on choosing the
loading factor are presented by [10] and [11]. For instance, in [10], the
optimal loading factor is found by the particle filters. The particle who
has the highest posterior probability is chosen as the optimal loading
factor. From [11], the loading factor is obtained by controlling the
peak location of the main beam. However, the loading factors of those
methods cannot be obtained directly and have to be solved numerically.

Next, we present an analytical solution for determining the loading
factor optimal in some sense. First, we rewrite wdl of (13) as follows:

wdl =
(
I + κR−1

a

)−1 ŵmls (14)

where κ = 1/λ and Ra = σ−2R̂xx. Consider the term h(κ) =
(I+κR−1

a )−1 and a small κ. We can approximate h(κ) = (I+κR−1
a )−1

by taking the first two terms of its Taylor series expansion about κ = 0
as follows. The differentiation of h(κ) with respect to κ is given by

h′(κ) = − (
I + κR−1

a

)−1 R−1
a

(
I + κR−1

a

)−1
. (15)
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Clearly, we have

h(0) = I (16)
h′(0) = −R−1

a . (17)

Hence, we obtain the following approximation

h(κ) =
(
I + κR−1

a

)−1 ≈ I− κR−1
a . (18)

Substituting (18) into (14) yields

wdl ≈ ŵmls − κR−1
a ŵmls︸ ︷︷ ︸
we2

. (19)

Since the noise power at the beamformer’s output is proportional to the
squared norm of wdl, we then derive a solution for finding the optimal
κ so that the noise power at the beamformer’s output is minimized.
The squared norm of wdl of (19) is given by

‖wdl‖2 = γ1κ
2 − 2γ2κ + γ3 (20)

where γ1 = ŵH
mlsR

−2
a ŵmls, γ2 = <{ŵH

mlsR
−1
a ŵmls}, and γ3 =

‖ŵmls‖2. Since (20) is a quadratic function of κ, the optimal solution
of κ for minimizing (20) is clearly given by

κo =
γ2

γ1
. (21)

Substituting κo into (19) yields

wdl|κo ≈ ŵmls −
<{ŵH

mlsR̂
−1
xx ŵmls}

ŵH
mlsR̂

−2
xx ŵmls

R̂−1
xx ŵmls. (22)

Equation (22) reveals that optimal weight of the proposed method can
be computed easily from the received data vector x(t). It means that
the proposed method can avoid the computational burden for solving
and evaluating the eigenvalue problem. Accordingly, the proposed
method dose not have the drawbacks of the MLS-SCORE-SP algorithm
and has ability to cope with the difficulty due to the estimation error
as compared with the MLS-SCORE algorithm.

To analyze the performance of the proposed method, we note
from (6) and (19) that the difference between the weight vectors of the
MLS-SCORE-SP algorithm and the proposed method is the difference
between we1 and we2 . The squared norms of we1 and we2 are given
by

‖we1‖2 = ŵH
mlsEnEH

n ŵmls =
M∑

i=K+d+1

|βi|2
λ̂2

i

(23)
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and

‖we2‖2 =
γ2

2

γ1
=

(∑M
i=1 |βi|2/λ̂3

i

)2

∑M
i=1 |βi|2/λ̂4

i

(24)

respectively, where βi = eH
i r̂xz(α), γ1 = σ4

∑M
i=1 |βi|2/λ̂4

i , and γ2 =
σ2

∑M
i=1 |βi|2/λ̂3

i . Let the eigenvalues of the signal subspace (λ̂i for
i = 1, . . . , K + d) be significantly greater than those of the noise
subspace (λ̂i for i = K +d+1, . . . ,M), then (24) can be approximated
by

‖we2‖2 =
γ2
2

γ1
≈

(∑M
i=K+d+1 |βi|2/λ̂3

i

)2

∑M
i=K+d+1 |βi|2/λ̂4

i

(25)

Since the eigenvalues λ̂i, i = K + d + 1, . . . ,M , approach the noise
variance σ2

n as the number of data snapshots approaches infinity, it
follows that (25) can be further approximated by

‖we2‖2 =
γ2

2

γ1
≈

M∑

i=K+d+1

|βi|2
σ4

n

. (26)

We note from (23) that ‖we1‖2 =
∑M

i=K+d+1 |βi|2/σ4
n as the number

of data snapshots approaches infinity. Therefore, (26) reveals that
the performance of the proposed method approaches that of the MLS-
SCORE-SP algorithm as the number of data snapshots approaches
infinity.

4. SIMULATION EXAMPLES

In this section, we present several simulation examples by using the
beamforming methods including the conventional LCMV algorithm [1]
with both the true covariance matrix Rxx and the direction vectors
of the SOIs exactly known, the Cross-SCORE algorithm [3], the C-
CAB algorithm [4], the MLS-SCORE algorithm and MLS-SCORE-SP
algorithm [8], and the proposed method shown by (22) for comparison.
For all simulations, a uniform linear array (ULA) with M = 10 and a
half-wavelength for inter-element spacing is considered. Assume that
the SOIs and SNOIs are binary phase-shift-keying (BPSK) signals with
rectangular pulse shape. The SOIs have signal-to-noise ratio (SNR)
and baud rate equal to 5 dB and 5/11, respectively. Two SNOIs with
cycle frequencies equal to 4.6 and 7.8 impinge on the array from −20◦
and 40◦ off broadside, respectively. Moreover, the SNOIs have the
interference-to-noise ratio (INR) and baud rate equal to 5 dB and 5/11,
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Figure 1. The output SINR versus the loading factor κ for Example
1.

respectively. The control vector c and the time delay τ are set to
[1 0 . . . 0]T and 0, respectively.

Example 1 : Here, we consider the case of two SOIs (d = 2).
The SOIs have different cycle frequencies equal to 2.0 and 2.6 and
impinge on the array from 0◦ and 60◦ off broadside, respectively.
Figure 1 shows the output signal-to-interference plus noise ratio (SINR)
of the proposed method with various κ, where 1× 103 data snapshots
are used. We note from Figure 1 that the best choice of κ in this
case is approximately equal to 1.0 and the corresponding SINR is
approximately equal to 14.987 dB. Meanwhile, the κ calculated by the
analytical formula of (21) is equal to 1.03 and the corresponding SINR
is 14.984 dB. As expected, the analytical formula of (21) can find an
appropriate loading factor that almost maximizes the array output
SINR. Next, we present the output SINR versus the number of data
snapshots for comparison. From Figure 2, we can see that the proposed
method effectively alleviates the performance degradation due to the
estimation error and outperforms the MLS-SCORE algorithm. It is
slightly worse than the MLS-SCORE-SP algorithm in the circumstance
that the dimension of the signal subspace is low and correctly known.
However, the proposed method avoids the computational burden for
solving and evaluating the eigenvalue problem. Moreover, we observe
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Figure 2. The output SINR versus the number of data snapshots for
Example 1.

that the Cross-SCORE algorithm and the C-CAB algorithm have
similar performance but they can not perform as well as the proposed
method. The reason is that the required dominant eigenvectors or
singular vectors of these algorithms for computing the weight vectors
may no longer be able to converge to the desired solutions in the
situation with multiple SOIs (see [8] and [4] for more details). Hence,
these two algorithms inevitably suffer from performance degradation
in the presence of multiple SOIs.

Example 2 : We present the output SINR versus the num-
ber of SOIs for comparison. In the example, M is 15. The
cycle frequencies and direction angles of the SOIs are set to
α = {2.0, 2.6, 3.4, 5.0, 5.8, 6.6, 7.2, 8.4, 9.0, 9.6, 10.2, 10.8} and Θ =
{0◦, 60◦,−60◦, 20◦,−40◦, 80◦,−80◦,−10◦, 10◦, 30◦,−30◦, 50◦}, respec-
tively. Moreover, 1× 103 data snapshots are used. Figure 3 illustrates
the performances of the MLS-SCORE-SP algorithm with the dimen-
sion of the signal subspace correctly and incorrectly known. We observe
from Figure 3 that the proposed method can provide performance very
close to the MLS-SCORE-SP algorithm when the dimension of the sig-
nal subspace is correctly known and the number d of SOIs is less than
6. However, the proposed method achieves better performance than
the MLS-SCORE-SP algorithm when d is larger than 6. Furthermore,
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the MLS-SCORE-SP algorithm suffers from significant performance
degradation when the dimension of the signal subspace is incorrectly
known, where the incorrect dimension is assumed to be d + 3 (the
correct one should be d + 2) in this example.

5. CONCLUSION

An efficient method has been presented to overcome the performance
deterioration under only finite sample data available for cyclic
beamforming. When the estimation error vector associated with
the cyclic correlation vector is a white Gaussian random vector, the
proposed method provides a weight vector with a diagonal loading data
covariance matrix. An analytical formula for determining the loading
factor has also been derived. Several results have confirmed the validity
of the proposed method and shown the effectiveness of the proposed
method.
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