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Abstract—We investigate the propagation characteristics of super-
Gaussian beam in highly nonlocal nonlinear media. The optical
beam propagation has been modeled by well known nonlocal nonlinear
Schrödinger equation. The variational method is employed to find
the initial beam propagation parameters and then split step Fourier
method is used for numerical simulations. A generalized exact
analytical solution of the model is obtained and critical power of soliton
is determined. The evolution of super-Gaussian beam has shown
oscillatory propagation.

1. INTRODUCTION

Accessible solitons were first proposed by Snyder and Mitchell [3].
They are basically the optical spatial solitons in nonlocal nonlinear
media and are widely researched theoretically and experimentally [4–
27, 32, 42–45]. The modulation instability of accessible solitons along
with stabilization [5, 19, 23–25, 32] has been studied theoretically.
Nonlocality of optical material can be categorized as local, weakly
nonlocal, generally nonlocal, and strongly nonlocal. These nonlocality
nomenclature of optical materials are based on the relative length
of optical beam width and length of response function [5–8, 12–
15, 18–21, 23–26, 32]. The nonlocality is called weak nonlocal, if
characteristic length of response function is much narrower than the
width of the optical beam and when the characteristic length of the
nonlinear response is much broader than the width of the optical
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beam, the nonlocality is called strong nonlocal, whereas the general
nonlocality is the case between the weak nonlocality and the strong
nonlocality [5–8, 12–15, 18–21, 23–26, 32]. The theoretical research
has taken two different type of response function profiles, one is a
Gaussian-type response function [5] and the other is an exponential-
decay response function [41]. Investigations on weakly nonlocal
spatial solitons [6, 7], generally nonlocal spatial solitons [26], and
strongly nonlocal spatial solitons [8, 12–15, 18, 20, 21] were performed.
Extensive investigations on strongly nonlocal media have given many
new phenomena such as large phase shift [14], attraction between out-
of-phase solitons [3, 9, 30, 41], attraction between dark solitons [29], and
long-range interaction between solitons [22], etc., which are different
from local solitons. In strongly nonlocal media, the beam always
evolves periodically during propagation [38].

The experimental confirmation of single nonlocal spatial soli-
ton [4, 17], interaction of such a soliton pair [9, 22], and modulation
instability [10] have been demonstrated. Nematic liquid crystals (NLC)
were found to be an excellent nonlocal media which supports accessible
solitons [11, 16]. These solitons are named as Nematicons. Two-color
anisotropic nonlocal vector solitons were observed in unbiased nematic
liquid crystals [27].

Snyder and Mitchell [3] simplified the nonlocal nonlinear
Schrödinger equation NNLSE to a linear model named the Snyder-
Mitchell model in the strongly nonlocal case, and they found an
exact Gaussian-shaped stationary solution (called accessible soliton).
In highly nonlocal media various type of beam shapes have been
investigated, namely Hermite-Gaussian (HG) form [33], cosh-Gaussian
form [40], Gaussian forms [3, 14], Laguerre-Gaussian and Hermite-
Gaussian forms [32, 33], Ince-Gaussian form [34, 35], complex-variable-
function Gaussian form [37]. To the best of our knowledge, no one has
studied super-Gaussian (SG) shape yet. Our motivation for using SG
beam is mainly due to two reasons. First, SG beams are narrow on
tail which makes it easy to accommodate more numbers of pulses in
less space and it has flat top which make them easy to be identified by
detector. Second, the SG beams contain less energy as compare with
Gaussian beam of same beam width [2].

This article is organized as follows. Mathematical formulation of
NNLSE and implementation of variational method are presented in
Section 2. The results of numerical investigation have been presented
in Section 3. Finally, our conclusions are given in Section 4.
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2. MATHEMATICAL MODEL

The propagation of a optical beam through nonlocal nonlinear medium
is modeled by NNLSE of the form

i
∂ψ

∂z
+ µ

∂2ψ

∂x2
+ ρψ

∫ ∞

−∞
R(x− x′)I(x′, z)dx′ = 0 (1)

where ψ(x, z) is a slowly varying envelop, µ = 1/2k, ρ = kη,
k is the wave number, η is the material constant, z is the
longitudinal propagation distance, R(x) is the nonlocal response
function, and I(x′, z) is the intensity of the paraxial beam. In present
investigation, we consider a quasi-monochromatic partially incoherent
beam propagating in isotropic nonlocal kerr media possessing a
Gaussian nonlocal response kernel R(x) such that

∫
R(x)dx = 1 , i.e.,

R(x) =
1√
πσ

exp
(
−x2

σ2

)
, (2)

where σ is the extent of the nonlocality or the length of response
function. In strongly nonlocal media, the width of R(x) is much larger
than the beam width, hence expansion of response function to the
second order by Taylor series gives a linear model of optical beam
propagation into highly nonlocal medium, which is suggested by Snyder
and Mitchell [3, 14, 28],

i
∂ψ

∂z
+ µ

∂2ψ

∂x2
+ ρψ

P0√
πσ

(
1− x2

σ2

)
= 0. (3)

The NNLSE (3) is a nonlinear differential equation which do not
have any direct solution, hence we proceed to solve it by an
approximation technique, called variational analysis [1], which has
been used successfully by various authors [14, 31, 36, 39, 46] for solving
nonlinear equations. The required Lagrangian density for Eq. (3) is
given as

L =
i

2

(
ψ∗

∂ψ

∂z
− ψ

∂ψ∗

∂z

)
− µ

∣∣∣∣
∂ψ

∂x

∣∣∣∣
2

+ η |ψ|2
(

1− x2

σ2

)
(4)

where η = ρP0/2
√

πσ.
The success of variational method lies in proper choice of trial

function. In this article we have chosen a SG ansatz,

ψ (x, z) = A(z) exp

(
−1

2

(
x

w(z)

)2n

+ ic(z)x2 + iθ(z)

)
(5)

where A(z) is amplitude, w(z) is width, c(z) is phase front curvature,
and θ(z) is phase of the beam. Here the parameter n controls the
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Figure 1. Profile of the super-Gaussian beam for various values of
parameter n.

degree of edge sharpness. We plot in Eq. (5) the intensity profile of
beam for n = 1, 2 and 3 in Fig. 1. For n = 1 this function reduced
to Gaussian function and for n > 1 it is called SG function. It can
be clearly seen that as value of n increases the beam’s edge becomes
steeper and its top becomes flatter. This type of beam output can be
obtained from directly modulated lasers [2].

We proceed further by inserting ansatz function Eq. (5) into
Eq. (4) to obtain average Lagrangian 〈L〉 as,

〈L〉 =
∫ ∞

−∞
Ldx

= A2

(
w

n

(
c

z
w2Γ

(
3
2n

)
+

θ

z
Γ

(
1
2n

))

− µ

wn

(
n2Γ

(
4n− 1

2n

)
+ 4w4c2Γ

(
3
2n

))

− ηw

σ2n

(
−σ2Γ

(
1
2n

)
+ w2Γ

(
3
2n

)))
. (6)

The average Lagrangian results in a set of dynamical equations
corresponding to different free pulse parameters after applying the
Euler-Lagrange equation

∂〈L〉
∂rj

− d

dz

(
∂〈L〉
∂ṙj

)
, (7)

where rj = A(z), c(z), w(z), and θ(z). Now we have substituted
Eq. (6) into Eq. (7) to solve it for pulse parameters, which results in
several first order ordinary differential equations showing the variation
of free pulse parameter along the propagation distance. These
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equations are shown as,
∂c

∂z
= −1

4
µ (2n− 1) Γ

(− 1
2n

)

w4Γ
(

3
2n

) − 4c2µ− η

σ2
, (8)

∂θ

∂z
=

1
2

µ (2n− 1) Γ
(− 1

2n

)

w2Γ
(

1
2n

) + η, (9)

∂w

∂z
= 4µcw, (10)

where Γ is gamma function. The amplitude A(z) and width w(z) of the
beam are related to Γ( 1

2n)wA2

n = P0, where P0 is initial beam power.
We differentiate Eq. (10) with respect to z with normalization

y(z) = w/w0, where w0 = w(0), to yield

1
µ

∂2y

∂z2
=

(1− 2n) Γ
(− 1

2n

)
µ

w0
3y3Γ

(
3
2n

) − 2w0ρP0y√
πσ3

≡ F (y). (11)

The physical interpretation of Eq. (11) was discussed in Ref. [14] in
details, which is analogous to the Newton’s second law of motion
in classical mechanics under the force F (y). This force is a balance
between diffractive and refractive forces represented by the first and
the second terms of the equation, respectively. If both forces are equal
and y = 1, we can obtain the critical power for soliton propagation as

Pc =
(1− 2n)

√
πΓ

(− 1
2n

)
µσ3

2Γ
(

3
2n

)
w4

0ρ
. (12)

As the F (y) is a conservative force, i.e., F (y) = −dV (y)/dy, the
equivalent potential can be written as,

V (y) =
2k

(
y2 − 1

) (
y2 − α

)

µw0
2y2

, (13)

where k = µw3
0ρP0/2

√
πσ3 and α = Pc/P0. Integration of Eq. (11)

with assumption dw(z)/dz|z=0 = 0 gives the first order differential
equation in the form of

1
2

(
∂y

∂z

)2

=
2k

(
y2 − 1

) (
y2 − α

)

w0
2y2

, (14)

resulting in the solution for the width as
w2 = w2

0

(
cos2(βz) + α sin2(βz)

)
, (15)

where β = 2
√

k/w0. Substitution of Eq. (15) into Eq. (10) and Eq. (9)
gives respectively,

c =
(α− 1)β cos (βz) sin (βz)

4µ
(
cos (βz)2 + α sin (βz)2

) . (16)
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and

θ =
(2n− 1) Γ (−1/2n) µ arctan (

√
α tan (βz))

2w2
0Γ (1/2n) β

√
α

+ ηz. (17)

The exact solution of Eq. (3) can be written by combining Eqs. (15)–
(17) with Eq. (5) as,

ψ (x, z)=

√
nP0

w
Γ
(

1
2n

)
exp

[
−1

2

(
x

w(z)

)2n

+ic(z)x2+iθ(z)

]
, (18)

where the values of w(z), c(z) and θ(z) are given by Eqs. (15), (16)
and (17), respectively. For n = 1, Eq. (18) will become,

ψ (x, z) =

√
P0√
πw

exp

[
−1

2

(
x

w(z)

)2

+ ic(z)x2 + iθ(z)

]
(19)

which is same as Eq. (13) of Ref. [14].

3. RESULT AND DISCUSSION

The shapes of potential (13) in nonlocal nonlinear media for various
initial beam powers are shown in Fig. 2. It is notable from Fig. 2 that
the shape of potential corresponding to parameter n = 1 is parabolic,
which is similar to the case of Snyder and Mitchell’s model [3], but for
the cases of n = 2 and 3 the parabola becomes to be more contracted
and the balance point becomes to be more narrower. When incident
beam power P0 equal to critical power Pc of soliton, the particle located
at the balance point wb of potential V and F = 0, i.e., both the
diffractive and the refractive forces are in balance to each other, in
this case, a soliton propagation is stable. On the other hand, when
P0 < Pc, the diffraction force is greater then the refraction force, hence
the beam width w first start increasing until it reaches to maximum
wmax, after which it decreases to wmin so that the soliton propagation
is unstable since the beam width oscillate periodically. Finally, when
P0 > Pc, the diffraction force is less than refractive force, which makes
beam width w decrease initially but increase subsequently so that the
soliton propagation is unstable with periodic beam width oscillation.

We simulated Eq. (3) to investigate the behavior of the Gaussian
and the SG beam in highly nonlocal media for which the typical
parameters are fixed as σ = 10, w0 = 1, µ = 1/2, and ρ = 1/6. The
evolution of optical beam peak amplitude of Gaussian and SG beam
in highly nonlocal media has been shown in Fig. 3 for various input
beam powers. The first column is for P0 < Pc, the second column
is for P0 = Pc and the third column is for P0 > Pc. The first row
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Figure 2. Profile of potential V (w) in nonlocal nonlinear medium for
different values of Super-Gaussian beam parameter n. (a) P0 < Pc,
(b) P0 = Pc, and (c) P0 > Pc. Solid line is for n = 1, dashed line is for
n = 2, and dotted line is for n = 3. The other parameters are σ = 10,
µ = 1/2, ρ = 1/6, and w0 = 1.

is for n = 1, the second row is for n = 2 and the third row is for
n = 3. The beam peak amplitude variation of Gaussian beam has
clearly shown when initial beam power is equal to critical power of
soliton, i.e., P0 = Pc optical beam propagate without changing it’s
shape (Fig. 3(b)) but when initial beam power is less than to critical
power, i.e., P0 < Pc, the beam amplitude decreases initially and then
increases (Fig. 3(a)) as in this case diffractive force is greater then the
refractive force. Whereas in the case when initial beam power is greater
than to critical power, i.e., P0 > Pc, the beam amplitude increases
initially and then decreases (Fig. 3(c)). Dynamics of beam peak
amplitude for SG beam has been depicted in Figs. 3(d) to 3(i), which
has shown non stationary propagation of SG beam for all the cases. In
our opinion Gaussian shape behaves like a attractor for other shape,
hence when the SG beam is allowed to propagate in media it tries to
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Figure 3. Variation of beam peak vs propagation distance z. The
first column is for P0 < Pc, the second column is for P0 = Pc and the
third column is for P0 > Pc. The first row is for n = 1, the second row
is for n = 2 and the third row is for n = 3. The other parameters are
σ = 10, µ = 1/2, ρ = 1/6, and w0 = 1.

reshape into the Gaussian shape and oscillates between the Gaussian
and the SG shapes. Consequently, even when P0 = Pc, no stable
propagation is noticed for the SG shape. Three dimensional mesh plots
corresponding to Figs. 3(b) and 3(e) have been shown in Figs. 4(a)
and 4(b) respectively. It is clear from Fig. 4 that when the Gaussian
beam is allowed to propagate through nonlocal nonlinear medium, it
propagate without changing the shape while the SG beam has shown
oscillatory propagation behavior in highly nonlocal nonlinear media.
The SG beam has undergone a periodic variation in shape from SG
to Gaussian and again back to SG shape in a periodic manner but
non-sinusoidal.

Soliton Interaction: The interaction properties of accessible
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Figure 4. Evolution of the Gaussian and the SG beams for Pc = P0.
The parameters are σ = 10, µ = 1/2, ρ = 1/6, and w0 = 1.
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Figure 5. Collision of the two SG beams (n = 2). (a) r = 1, θ = 0◦,
(b) r = 1, θ = 90◦, (c) r = 1, θ = 180◦, and (d) r = 1.5, θ = 0◦.

solitons are well known [3, 9, 30, 41]. We further investigated the
interaction of SG beams in highly nonlocal nonlinear media by taking
co-propagating two beams with initial peak separation of 2d, which
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Figure 6. Collision of the two beams. (a) Gaussian beam, (b) super-
Gaussian beam (n = 2), and (c) super-Gaussian beam (n = 3).

can be modeled by equation,

ψ (x, z) =

√
nP0

w0
Γ

(
1
2n

) [
exp

(
−1

2

(
x− d

w0

)2n
)

+r exp(iθ) exp
(
−1

2

(
x + d

w0

))2n
]

(20)

where r is relative amplitude and θ is relative phase difference of both
beams. The interaction dynamics of the Gaussian and the SG beams
in the nonlocal media are demonstrated in Fig. 6. It is clear from Fig. 6
that SG beams collides earlier than Gaussian beam, which may be due
to oscillatory propagation of SG beams. We have also investigated
the effect of relative amplitude and phase on interaction of SG beams
(n = 2), the result is shown in Fig. 5. The figure correlate the results
of Ref. [41] that these solitons are always in attractive nature and their
relative phase difference have no effect on collision dynamics.

4. CONCLUSION

In this article, we have investigated the propagation of SG beam
into a highly nonlocal nonlinear media. The propagation of optical
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beam is modeled by nonlocal nonlinear Schrödinger equation (NNLSE).
The variational method is used to obtain generalized exact analytical
solution of the model, which is valid from Gaussian beam (n = 1) to flat
top beam (higher order SG beam). This result will be much useful for
future researchers as the dynamical equations are in generalized form.
Further discussion on dynamic of SG beam and its possible applications
can be found in Ref. [47]. The numerical simulation has shown stable
propagation for Gaussian beam where as propagation of SG beam
has been found oscillatory. We conclude, while designing laser for
highly nonlocal media, care must be taken, as deviation from Gaussian
shape will cause unstable behavior in beam propagation. These results
can be applied into fields of Photorefractive Crystals, Nematic liquid
crystal and Bose-Einstein condensates and found potential applications
in optical switching and all optical devices.
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