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Abstract—The diffraction problem of three-dimensional Gaussian
beam on the aperture array of rectangular holes is solved. A new
algorithm for calculating scattered fields of the beam is proposed. The
conditions under which the distortion of the reflected field pattern and
the narrowing of the transmitted field pattern appear are studied.

1. INTRODUCTION

The electromagnetic features of a wide class of one- and two-
dimensional periodical structures in the case of the plane electromag-
netic waves excitation are now quite well studied. However, in real de-
vices the electromagnetic field usually has the form of the wave beams.
The transmitted and reflected fields have also a form of the beams. To
date, there are a large number of publications in which the peculiari-
ties of scattering of two-and three-dimensional beams on different types
of structures [1–12] are studied. In them the homogeneous dielectric
slabs, one-dimensional periodic structures, two-dimensional periodic
arrays of magnetodielectric layers are considered. A result of these
studies is the knowledge that the pattern configuration, amplitude and
phase distributions of the transmitted and reflected fields of beam can
be different from that ones of plane wave and some distinctive effects
like lateral shift, focal shift, angular shift, beam splitting appear in
the scattered field of the beam [13–18]. Therefore, it is necessary to
take into consideration this circumstance in the designing quasi-optical
devices and particularly in the phased antenna system in the form of
two-dimensional apertures array [19]. Additionally, it is important for
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applications to know the conditions under what the basic characteris-
tics of the fields scattered by two-dimensional periodic array are the
same in the cases of diffraction of the beam and the plane wave.

The results of investigations of scattered characteristics of
aperture array systems under their excitation with the plane linearly
polarized electromagnetic waves are given in [20–22]. The solution
of the diffraction problem of the three-dimensional linearly polarized
Gaussian beam on the reflector array of shorted rectangular waveguides
is obtained in [23]. The discretization of Gaussian beams to solve the
problem of short pulses scattering on the one-dimensional aperture is
considered in [24, 25]. The two-dimensional problem of the Gaussian
beams scattering on dielectric and layered structures, photonic crystals
is considered in [26, 27]. The analysis of a two-dimensional problem of
the beam scattering on complex conducting surfaces and layered media
is made in [28, 29].

The goal of the present paper is to investigate the scattering of
the three-dimensional Gaussian beam on the two-dimensional periodic
aperture array, and especially to show the conditions under which
the distortion of the reflected field pattern and the narrowing of the
transmitted field pattern appear.

2. PROBLEM FORMULATION AND SOLUTION

The structure under study is a plane, perfectly conducting screen
of finite thickness h, in which the rectangular holes (apertures) are
periodically perforated in two not orthogonal directions (Fig. 1).
Rectangular apertures are considered as segments of the rectangular
waveguides. The apertures array is located in the plane xOy. The
centers of the elementary cells are located at the nodes of the oblique

Figure 1. The screen of apertures array.
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coordinate system which is placed in the plane of the aperture screen.
The node positions are determined with the angle χ. The waveguide
cross-section (a × b) is chosen in such a way that in the studied
frequency band only the dominant TE10 mode can propagate in the
guide. The array’s periods d1 and d2 are restricted by the condition
λ > d1, d2, where λ is the wavelength in free space.

The linearly polarized Gaussian beam obliquely incidents on
the screen from the half space z > 0. It is required to find the
electromagnetic field scattered by an array in space. The coordinate
system xyz associated with the array and the coordinate system xpypzp

associated with the beam are shown in Fig. 2. Here θ0, ϕ0 are the
angles of incidence in the xyz coordinate system; x0, y0, z0 are the
coordinates of the origin of the xpypzp coordinate system.

The transverse electric field component distribution of the incident
beam in the plane zp = 0 is given in the following form.

~Ei
t (xp, yp, 0)=

4π√
S2

exp

{
−

(
xp

w1

)2

−
(

yp

w2

)2
}
·(~exp cosα0−~eyp sinαo),

where S2 = d1d2 is the area of the screen’s unit cell; w1, w2 are
parameters which define the effective size of the beam in the plane
zp = 0; ~exp, ~eyp are unit vectors of the coordinate system xpypzp.
The polarization angle α0 is defined in the coordinate system xpypzp

which is associated with the beam (Fig. 2). Using the formulas of
the coordinate transformation, an expression related to the transverse
electric field component of the beam in the coordinate system x, y, z
in the plane z = z0 is obtained:

~Ei
t (x, y, z0) = F (x, y)

(
P 0

x~ex + P 0
y ~ey

)
, (1)

Figure 2. Coordinate systems associated with array (xyz) and beam
(xpypzp).



326 Gribovsky and Yeliseyev

where
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1
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,

P 0
x = sinα0 cosϑ0 cosϕ0 + cosα0 sinϕ0,

P 0
y = sinα0 cosϑ0 sinϕ0 − cosα0 cosϕ0.

The transverse component of the electric field of the incident
beam is represented as the sum of the two beams with different
polarizations (TE and TM polarized beams). Each of these beams
can be represented as an expansion in the form of Fourier integral
related to the plane TE and TM polarized waves, respectively:

~Ei
t(x, y, z) =

1√
S2

∞∫

−∞

∞∫

−∞
G1(ξ, ζ)

ξ~ex − ζ~ey√
ξ2 + ζ2

eik(xζ+yξ−γz)dξdζ

+
1√
S2

∞∫

−∞

∞∫

−∞
G2(ξ, ζ)

ζ~ex + ξ~ey√
ξ2 + ζ2

eik(xζ+yξ−γz)dξdζ (2)

where G1,2 (ξ, ζ) are the incident beam spectral functions; k = 2π/λ,
γ =

√
1− ξ2 − ζ2. The integration variables ξ, ζ have the following

meanings: ξ = sinϑ cosϕ, ζ = sinϑ sinϕ, where ϑ, ϕ are the angles
of incidence of a separate spatial TE or TM polarized harmonics with
the amplitude G1 (ξ, ζ) and G2 (ξ, ζ), respectively. The angles ϑ, ϕ
are determined similarly as the angles ϑ0, ϕ0 in the range of their real
values (Fig. 2).

Taking into consideration Eq. (1), the spectral functions of the
incident beam G1,2 (ξ, ζ) are found using the inverse Fourier transform:

G1(ξ, ζ) = G0 exp(ik[γz0 − ζx0 − ξy0])G(1),

G2(ξ, ζ) = G0 exp(ik[γz0 − ζx0 − ξy0])G(2),

where G0 = w1w2/(λ2 cosϑ0), G(1) = A(ξ,ζ)√
ξ2+ζ2

(ξP 0
x − ζP 0

y ), G(2) =
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(3)

Using the expressions (2) and (3), as well as changing the variables
in double integrals, an expression on the incident beam intensity in the
z = 0 plane is obtained as:

W0 =
λ2

S2

∫ π/2

0

∫ 2π

0
sinϑ

[
|G1 (ϑ, ϕ)|2 cos2 ϑ + |G2 (ϑ, ϕ)|2

]
dϑdϕ. (4)

In the numerical integration of (4) the limits of integration
over the angle ϑ can be substantially reduced using the results of
studies of the integrand. From the analysis of the dependencies
of the spectral functions G1,2 (ξ, ζ) versus the beam parameters, it
follows that the integrand in (4) decreases rapidly as the angle ϑ
increases due to the exponential dependence of the arguments, and the
decay rate depends strongly on the parameters of the incident beam.
Therefore, by means to provide the prior analysis of the dependence of
spectral functions of the incident beam parameters and the integration
variables, it is possible to significantly reduce the calculation time of
the characteristics of the scattered beam.

In the case of an arbitrary incidence of a plane linearly polarized
TE and TM waves on a two-dimensional periodic screen, the transverse
component of the reflected or transmitted electric fields can be
represented in the next form [20]:

(
TE

~Er
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~Er

t (x, y, z)

)
=

∞∑
q=−∞
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qs eiΓqsz

+
∞∑
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(
TEr

(2)
qs
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(2)
qs

)
~Ψ(2)

qs eiΓqsz, z>0, (5)

where Γqs is the propagation constant of a single spatial harmonic,
~Ψ(1,2)

qs is the orthonormal system of the vector spatial harmonics, r
(1,2)
qs
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are certain elements of the generalized scattering matrix of the array
of rectangular cross-section waveguides. The latter ones are found
via solution of the key diffraction problem related on the spectra of
the TE and TM linearly polarized plane electromagnetic waves. The
upper indexes 1, 2 correspond to the TE and TM waves, respectively.

For the TE polarized wave beam (the first term in Eq. (2)), the
transverse component of the reflected electric field is expanded as the
sum of two wave beams in the form of the Fourier integrals related to
the plane waves:

~Er
t (x, y, z) =
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ζ
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where the first term represents the transverse field component of the
reflected TE polarized beam, while the second one is the transverse
field component of the reflected TM polarized beam. In a similar way
the transverse component of the reflected field can be written in the
case of the TM polarized wave beam incidence (the second term in
Eq. (2)):
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where κζ = ζ − q
κ1

; κξ = ξ − s
κ2

+ qctg(χ)
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ζ

}

Transverse electric field components of the reflected beam (6)
and (7) satisfy the Helmholtz equation. From the analysis of
the expressions (6) and (7), as well as taking into consideration
the principle of superposition of the electromagnetic field, the next
conclusion holds that the transverse component of the electric field of
the beam reflected from the two-dimensional periodic array can be also
represented as the sum of the transverse field components of two TE
and TM polarized wave beams. Each of them is expanded in the form
of Fourier integrals related to the TE and TM polarized plane waves:

~Et(x, y, z) =
1√
S2

∞∫

−∞

∞∫

−∞
R1(ξ, ζ)eik(xζ+yξ+γz) ξ~ex − ζ~ey√

ξ2 + ζ2
dζdξ

+
1√
S2

∞∫

−∞
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−∞
R2(ξ, ζ)eik(xζ+yξ+γz) ζ~ex + ξ~ey√

ξ2 + ζ2
dζdξ, (8)

where R1 (ξ, ζ) and R2 (ξ, ζ) are unknown spectral functions, and
indexes 1, 2 correspond to the TE and TM wave beams, respectively.

Comparing the expressions (6), (7) and (8) and using the
orthogonally property of vector spatial harmonics, the relations
between the unknown spectral functions R1 (ξ, ζ), R2 (ξ, ζ) and the
known elements of the generalized scattering matrix of the two-
dimensional periodic array are obtained:

R1(ξ, ζ)=
∞∑

q=−∞

∞∑
s=−∞

{
G1(ξ̂, ζ̂)TEr(1)

qs (ξ̂, ζ̂)+G2(ξ̂, ζ̂)TMr(1)
qs (ξ̂, ζ̂)

}

R2(ξ, ζ)=
∞∑

q=−∞

∞∑
s=−∞

{
G1(ξ̂, ζ̂)TEr(2)

qs (ξ̂, ζ̂)+G2(ξ̂, ζ̂)TMr(2)
qs (ξ̂, ζ̂)

} (9)

where ξ̂ = ξ + s/κ2 − qctg(χ)/κ1, ζ̂ = ζ + q/κ1.
Using Eq. (9) the elements of the reflection (transmission)

matrix operator are calculated. This operator establishes a relation
between the Fourier magnitudes of the incident wave beam and the
Fourier magnitudes of the reflected (transmitted) beam field. After
determination of the operators R1 (ξ, ζ) and R2 (ξ, ζ), it is possible to
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study the scattering of the three-dimensional beam with arbitrary field
distribution on the two-dimensional periodic structure. This structure
can generate two-dimensional spatial spectrum of harmonics in case
of arbitrary incident of linear polarized plane wave to its aperture.
The geometric parameters of the structure and length wave are also
arbitrary.

To investigate the features of the beam scattered on the plane
screen with finite thickness and rectangular apertures let us first to
find the scattered electromagnetic field in the far-field region. To this
end, we make the change of variables in double integrals in (8) and
write the expressions for all components of the electromagnetic field in
the spherical coordinate system. Then, using the method of stationary
phase for the approximate calculation of double integrals, we obtain
expressions for the radiation patterns across the field and the intensity
of the reflected beam in the far-field region:

Dnϕ = |R1(ϑ, ϕ)| cosϑ, Dnϑ = |R2(ϑ, ϕ)|, D=(Dnϕ)2+(Dnϑ)2. (10)

The intensity of the reflected beam is calculated as the next:

W =
λ2

S2

2π∫

0

π/2∫

0

sinϑ
{

cos2 ϑ |R1(ϑ, ϕ)|2 + |R2(ϑ, ϕ)|2
}

dϑdϕ (11)

For our numerical calculations, the beam and array parameters
are chosen from the condition that in the operators (9) it is enough to
consider only one member of the series. This approximation is justified
by the fact that the absolute value of functions G1 (ξ̂, ζ̂) and G2 (ξ̂, ζ̂)
for the Gaussian beam is different from zero only in a small interval
of angles at q = s = 0. When q 6= 0, s 6= 0 the absolute values of the
spectral functions tend to zero |G1 (ξ̂, ζ̂)| → 0, |G2 (ξ̂, ζ̂)| → 0 over the
entire range of their arguments.

3. NUMERICAL RESULTS AND DISCUSSION

On the basis of the obtained algorithm, the frequency dependencies
of the reflected intensity of the beam with a circular cross-section are
calculated using formulas (4) and (11). They are also compared with
the frequency dependencies of the reflected intensity of a plane wave
|R|2, which normally impinges on the array surface. Fig. 3 shows
the results of calculations with the following parameters: a = 5 mm,
b = 1mm, h = 9 mm, d1 = d2 = 6 mm, w1 = 30mm, w2 = 30mm,
ϕ0 = ϑ0 = α0 = 00. Under the chosen polarization of the incident
beam (α0 = 0◦), the electric field vector is orthogonal to the wide wall
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Figure 3. The comparison of the frequency dependencies of the
reflection coefficient intensity for the plane wave and Gaussian beam.

of the waveguide channels. In this case, the most efficient excitation
of the fundamental mode in the waveguide channels appears.

One can see that the dependencies of the reflected intensity of the
beam and plane wave are almost identical over the entire frequency
range. The difference appears only within the single frequency band,
where the complete transmission of the beam is absent. At this
frequency (f = 48.0769 GHz), the wavelength of the fundamental mode
in the rectangular waveguide is approximately equal to the thickness
of the screen.

The field pattern of the incident, transmitted and reflected beams
were calculated under normal incidence. They are calculated at the
frequencies which lie nearly the frequency f = 48.0769GHz. This
frequency corresponds to the third extremum of the functions given
in Fig. 3. It should be noted that for the chosen beam and screen
parameters the most drastic changes in the form of the patterns are
observed in the plane ϕ = ±90◦.

In Figs. 4–6 the field patterns Dnϑ calculated at the fixed
frequency using Eq. (10) are shown in the case when a circular cross-
section beam normally impinges on the array with a rectangular mesh
(χ = 90◦). The screen and beam parameters are the same as for
previous calculation.

The figures show that the pattern of the reflected and transmitted
beams changes, as compared with the pattern of the incident beam.
At some frequencies the patterns become narrower and the focusing
of the transmitted field appears whereas the pattern of the reflected
field undergoes some distortion. The effect of the transmitted pattern
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Figure 4. The incident field pattern at the frequency f = 48.387GHz.

(a) (b)

Figure 5. The (a) reflected and (b) transmitted field pattern at the
frequency f = 48.387GHz.

narrowing can be explained from the following consideration. As
noted above, at the frequency f = 48.0769GHz, the wavelength of
the fundamental mode in the waveguide channels is approximately
equals to the thickness of the screen. In this case, a sharp increasing
of the field magnitude of the fundamental mode in the waveguide
channels appears. It results in the rising of efficiency of the wave
interaction between adjacent waveguide channels in the entire array.
Thus the area of beam interaction with the array surface broadens,
i.e., the greater number of waveguide channels interacts with the beam
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(a) (b)

Figure 6. The (a) reflected and (b) transmitted field pattern at the
frequency f = 47.619GHz.

field. In addition, the resonance frequency f = 48.0769 lies nearly
the “mixing point” when the magnitude of the surface harmonics
increases rapidly and the higher spatial harmonics begin to propagate.
The degree of the interaction between the waveguide channels and
the effective radiating surface of the screen also increases, compared
with the transverse dimensions of the incident beam. This leads to a
narrowing of the pattern of the scattered field, compared to the pattern
of the incident beam. The effect of the narrowing the pattern is most
pronounced in the planes ϕ = ±90◦, since the electric field vector of
the fundamental mode lies in the plane parallel to the plane ϕ = ±90◦,
and the interaction of the waveguide channels, which operates in the
single-mode regime on the fundamental mode, is provided strongly in
this plane.

When the array parameters are fixed, the effect of the beam
narrowing depends on the frequency and the lateral dimensions of
the incident beam. The smaller are the lateral dimensions of the
incident beam in comparison with the wavelength, the narrower is the
transmitted beam pattern. The appearing of the double peaks in the
reflected and transmitted patterns can be explained with well known
effect of the “blinding” of phased arrays [30]. They also can appear as a
result of the wave interference of the beam reflected from the boundary
z = 0 and the beam reradiated from the waveguide channels.

The dependencies of pattern form of the transmitted and reflected
fields versus the size of the cross-section of the incident beam are
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investigated. It is established that the focusing effect of the transmitted
field occurs at the high frequencies, when the screen thickness is
approximately equals to the one wavelength of the fundamental mode
in the waveguide. Moreover, the reflected and transmitted field
patterns distortion most underlined in case narrow cross-section wave
beams versus wavelength.

The incident reflected and transmitted field patterns at different
frequencies for normal incidence of the beam on the array with the
parameters of w1 = w2 = 50 mm are calculated. It is found that
as the value of cross-section of the incident wave beam increase the
width of undistorted transmitted electromagnetic field pattern slightly
changes. This changing in the form of the transmitted and reflected
radiation patterns are associated with changing in the magnitude and
phase distributions of electromagnetic fields on the both sides of the
screen.

The dependence of the form changing of the scattered beam versus
the screen thickness is investigated. For selected beam parameters and
frequency band, the changes in the shape of patterns are observed
only when the thickness of the screen is about one wavelength of the
fundamental mode in the waveguide.

4. CONCLUSION

In this paper the scattering of the linearly polarized three-dimension
Gaussian beam on the thick screen perforated by the rectangular
apertures is studied. The spectral functions of the incident beam
are evaluated and their properties versus the beam parameters are
studied. A comparison between the frequency dependencies of the
reflection intensity of the plane wave and Gaussian beam is provided.
The reflected and transmitted field patterns of the beam are calculated
under normal incidence of a circular beam on the array. The
narrowing effect of the transmitted field pattern is established and
its correlation with the structure and incident beam parameters is
found. The obtained algorithm has general form and allows studying
characteristics of the three-dimension Gaussian beam scattering on the
other kind of planar two-dimension periodic structures.
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