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Abstract—Electromagnetic radiation by dipole antenna loaded with
general bi-isotropic objects is investigated using time-domain integral
equations. By introducing pairs of equivalent electric and magnetic
sources, electromagnetic fields inside a homogeneous bi-isotropic region
can be represented by these sources over its boundary. A series
of coupled surface integral equations are obtained after imposing
boundary conditions. These equations are solved numerically by
the Galerkin’s method that involves separate spatial and temporal
testing procedures. The scaled Laguerre functions are used as the
temporal basis and testing functions. The use of the Laguerre functions
completely removes the time variable from computation, and the
results are stable even at late times. Numerical results are presented
and compared with analytical results, and similarities and differences
are observed.

1. INTRODUCTION

In the last two decades or so, Bi-isotropic (BI) medium has emerged
as one of the most challenging topics in electromagnetic research in
terms of theoretical problems and potential applications [1]. Among
all these new materials, Chiral and Tellegen materials represent two
subclasses of BI medium [2, 3]. Chiral medium is optically active, and it
means that the polarization plane of an electromagnetic (EM) wave is
rotated when propagating through it. Investigations show that Chiral
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medium possesses the property of reciprocity, while Tellegen medium is
nonreciprocal. Many efforts have been made in the fabrication of these
BI materials [4–6] because of their great potential in the millimeter-
wave and microwave applications such as antenna radomes [7],
chiro-microstrip antennas [8], modes convertors [9], and polarization
rotators [10]. Such material brings about new challenges to the
EM theory since its constitutive relationships enforce an additional
coupling between electric and magnetic fields. Hence, many works
have been contributed in an effort to develop an efficient numerical
technique to predict accurately the field’s interaction associated with
such materials [11–16].

This paper is focused on the electromagnetic radiation from a
dipole antenna interacting with a BI object. The exact formulation
has been proposed by Engheta and Kowarz [16] for radiation emitted
by EM sources placed both inside and outside Chiral sphere. The
eigenfunction expansion in spherical coordinates was used in this
solution, and the dyadic Green’s functions were expressed in terms of
spherical vector functions. However, this formula is restricted to Chiral
spheres, therefore it is of great interest to obtain a general solution
for BI objects with arbitrary shape. In addition, the results on the
radiation of the antenna located in the Chiral sphere were only given,
and the case of the antenna outside the BI objects, which is of our
interest, needs to be analyzed as well.

The time-domain integral equation (TDIE) solver is commonly
used for analyzing complex EM scattering and radiation phe-
nomenon [17–23]. Although the finite-different time-domain (FDTD)
method has been the dominant tool for time-domain simulations [17],
the TDIE approach is preferable in some applications especially for
analysis of transient scattering by large-size bodies. The reason is that
the TDIE method solves fewer unknowns using surfaces discretization
and requires no artificial absorbing boundary condition (ABC). The
most popular method to solve a TDIE is the marching-on in time
(MOT) scheme [18–20]. However, many researchers have pointed that
the MOT method may suffer from late-time instabilities in the form of
high frequency oscillation. Recently, the marching-on in degree (MOD)
method [21–23] using a set of scaled Laguerre polynomials as the tem-
poral expansion and testing functions is proposed for the TDIE, and
stable results can be obtained even for late time. Wu used this method
to deal with the scattering problems by BI media in [24], and this work
presents the extension of the MOD-based TDIE method for dipole an-
tenna near the three-dimensional homogeneous BI object with arbi-
trarily shape.

In the paper, pairs of new sources and two integro-differential
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operators are defined and introduced to formulate the far scattered
fields by homogeneous dielectric objects in time domain. Then the
method is extended for constructing scattered fields inside and outside
the BI medium, and far radiated fields by the dipole as well. The
electromagnetic fields inside a homogeneous bi-isotropic region can be
represented by the equivalent sources over its boundary after applying
fields splitting method [1]. After enforcing boundary conditions
both on the surface of the BI object and the dipole, a series of
coupled integral equations are established and solved numerically by
the method of moment (MoM) [25], involving spatial and temporal
testing procedures separately. The Rao-Wilton-Glisson (RWG) [26]
functions are used as the spatial expansion and testing functions, and
the weighted Laguerre functions are used as the temporal expansion
and testing functions. The spatial testing is performed at the first
step, and then the temporal testing is employed. The use of the
Laguerre functions completely removes the time variable from the
whole computation, and the matrix equation is solved recursively using
a MOD procedure. The transient currents, the current distribution
along the dipole and far radiation fields are presented and compared
to validate the proposed TDIE method.

2. THEORY AND EQUATIONS

2.1. Equivalent Sources for Homogeneous Dielectric Bodies

Consider a homogeneous dielectric body with a permittivity of ε2

and a permeability of µ2 in an infinite homogeneous medium with
a permittivity of ε1 and a permeability of µ1. Pairs of new sources
e (r, t) and h (r, t) [23] on the surface S of the dielectric body are
defined by

J(r, t) =
∂

∂t
e(r, t) (1)

M(r, t) =
∂

∂t
h(r, t) (2)

where J (r, t) and M (r, t) are the equivalent electric and magnetic
surface current.

The electric and magnetic fields Es and Hs produced by electric
and magnetic surface currents J and M, radiating into an unbounded
space characterized by ε1 and µ1 are given by

Es = −∂A(r, t)
∂t

−∇Φ(r, t)− 1
ε1
∇× F(r, t) (3)

Hs = −∂F(r, t)
∂t

−∇Ψ(r, t) +
1
µ1
∇×A(r, t) (4)
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where A and F are the magnetic and electric vector potentials,
respectively, and Φ and Ψ are the electric and magnetic scalar
potentials given by

A(r, t) =
µ1

4π

∫

s

J(r′, τ)
R

dS′ (5)

F(r, t) =
ε1

4π

∫

S

M(r′, τ)
R

dS′ (6)

Φ(r, t) =
1

4πε1

∫

S

qe(r′, τ)
R

dS′ (7)

Ψ(r, t) =
1

4πµ1

∫

S

qm(r′, τ)
R

dS′ (8)

where R = |r − r′| represents the distance between the observation
point r and the source point r′, τ = t − R/c1 is the retarded time,
c1 = 1/

√
ε1µ1 is the velocity of the propagation of EM wave in space.

The electric surface charge density qe and magnetic surface charge
density qm are related to the electric current density J and magnetic
current density M, respectively, by the equation of continuity

∇ · J(r, t) = − ∂

∂t
qe(r, t) (9)

∇ ·M(r, t) = − ∂

∂t
qm(r, t) (10)

A pair of new sources e (r, t) and h (r, t) are defined in (1) and (2), so
the charge density will be

qe(r, t) = −∇ · e(r, t) (11)
qm(r, t) = −∇ · h(r, t) (12)

Equations (5)–(8) will be changed as

A(r, t) =
µ1

4π

∫

S

1
R

∂

∂t
e(r′, τ)dS′ (13)

F(r, t) =
ε1

4π

∫

S

1
R

∂

∂t
h(r′, τ)dS′ (14)

Φ(r, t) = − 1
4πε1

∫

S

1
R
∇ · e(r′, τ)dS′ (15)

Ψ(r, t) = − 1
4πµ1

∫

S

1
R
∇ · h(r′, τ)dS′ (16)
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Substitute Equations (13)–(16) to (3) and (4), respectively,

Es = −µ1

∫

S

1
4πR

∂2e(r, τ)
∂t2

dS′ +
∇
ε1

∫

S

∇ · e(r, τ)
4πR

dS′

−0.5n̂× ∂h(r, t)
∂t

−
∫

S0

∇× 1
4πR

∂h(r, τ)
∂t

dS′ (17)

Hs = −ε1

∫

S

1
4πR

∂2h(r, τ)
∂t2

dS′ +
∇
µ1

∫

S

∇ · h(r, τ)
4πR

dS′

+0.5n̂× ∂e(r, t)
∂t

+
∫

S0

∇× 1
4πR

∂e(r, τ)
∂t

dS′ (18)

where S0 denotes the surface with the singularity at r = r′ removed
from the surface S. We define two integro-differential operators L and
K as follows,

L(X) = µ1

∫

S

∂2X (r′, τ)
∂t2

1
4πR

dS′ − ∇
ε1

∫

S

∇ ·X (r′, τ)
4πR

dS′ (19)

K(X) =
1
2
n̂× ∂

∂t
X(r, t) +

∫

S0

∇×
[
∂X(r′, τ)

∂t

1
4πR

]
dS′ (20)

Then, the total scattered electric and magnetic fields will be written
as

Es = −L(e)−K(h). (21)
Hs = K(e)− L(h)/η2

1. (22)

It is noted that here we introduce a pair of new sources e (r, t)
and h (r, t) instead of using conventional equivalent electrical current
J (r, t) and magnetic current M (r, t) to construct the far-scattered
fields. Such that, a time-integral term will disappear, and we can
easily handle the time derivative of the electric and magnetic vector
potentials.

2.2. Integral Equations for BI medium Loaded Dipole
Antenna

Consider a homogeneous BI body with a permittivity of ε2 and
a permeability of µ2 in an infinite homogeneous medium with a
permittivity of ε1 and a permeability of µ1. Here, a very narrow
perfectly electric conducting (PEC) strip is placed near the BI sphere
as the loaded dipole, as shown in Figure 1. The length of the dipole is
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L, the radius of the sphere is r, and the distance between the center
of the dipole and the sphere’s center is denoted as d. For the sake of
simplicity, the dipole is put along the z-axis and centered at the origin,
and the center of the BI sphere is located at the point (0, d, 0).

The constitutive relationships between the flux densities and the
field intensities can be expressed as

D = ε2E + (χr − jκr)
√

ε2µ2H (23)
B = (χr + jκr)

√
ε2µ2E + µ2H (24)

where χr and κr are Tellegen and Pasteur parameters [1], and ε2 and
µ2 are the permittivity and permeability of the BI Media, respectively.
For a lossy material, these parameters are complex. It is noticed that
the above relations reduce to a conventional isotropic medium when
both χr and κr are equal to zero. A bi-isotropic medium with χr = 0
and κr 6= 0 is named the Pasteur medium or Chiral medium, and it is
named Tellegen medium conversely.

These relations are frequency-domain expressions, which implic-
itly assume time-harmonic excitation in the ejωt convention. The
time-domain expressions of the constitutive relations are given as fol-
lows [27],

D = ε2E + γCTH− χCT
∂H
∂t

(25)

B = µ2H + γCTE + χCT
∂E
∂t

(26)

where

γCT = χr
√

ε2µ2 (27)
χCT = κr

√
ε2µ2/ω (28)

Figure 1. A strip dipole near a BI sphere.
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The equivalent electric and magnetic sources on the dipole and the
surface of the BI media are denoted as ec (r, t), eb (r, t) and hb (r, t),
respectively, and surface currents are denoted as Jc(r, t), Jb (r, t), and
Mb (r, t), respectively, as shown in Figure 2. The currents Jc (r, t),
Jb (r, t), and Mb (r, t) can be expressed with these sources ec (r, t),
eb(r, t) and hb (r, t) as

Jc(r, t) =
∂

∂t
ec(r, t) (29)

Jb(r, t) =
∂

∂t
eb(r, t) (30)

Mb(r, t) =
∂

∂t
hb(r, t) (31)

The far fields radiated from the dipole can be obtained using
integro-differential operators in (19) and (20) as,

Es
c(ec) = −L(ec) (32)

Hs
c(ec) = K(ec) (33)

where Es
c and Hs

c are the radiated electric and magnetic fields.
Similarly, the scattered fields Es

e and Hs
e outside the BI media

produced by the sources eb and hb is written as

Es
e(eb,hb) = −L(eb)−K(hb)/η2

1 (34)
Hs

e(eb,hb) = K(eb)− L(hb)/η2
1 (35)

To represent the fields in the BI region, a field splitting scheme [1]
is applied. Both the electric and magnetic fields Es

b and Hs
b in the

homogeneous BI medium are divided into the right- and left-circularly
polarized wavefields. The right-polarized fields are denoted by “+”

  
Jc

y

z

-Jb

-Mb

Jb

Mb

o BI sphere

Figure 2. Currents on the dipole and the surface of the BI sphere.
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subscript, while the left-polarized components are denoted by “-”
subscript. Therefore, we can write

Es
b = Es

b+ + Es
b− (36)

Hs
b = Hs

b+ + Hs
b− (37)

The wavefields Es
b+(Hs

b+) and Es
b−(Hs

b−) are independent and
uncoupled in the homogeneous BI medium. They are related to
respective medium characterized by ε+ (ε−, µ+ (µ−), and η+ (η−),
which are defined by

ε± = ε2(α± κr)v± (38)
µ± = µ2(α± κr)v∓ (39)

η± =
√

µ2/ε2v∓ = η2v∓ (40)

where v± = α ± jχr and α =
√

1− χ2
r. Since two wavefields

are independently governed by Maxwell’s equations, Es
b+(Hs

b+) and
Es

b−(Hs
b−) can be expressed by

Es
b± = −L± (eb±)−K±(hb±) (41)

Hs
b± = K± (eb±)− L± (hb±) /η2

± (42)

where the integro - differential operators L± andK± are defined as

L±(X) = µ±
∫

S

∂2X (r′, τ)
∂t2

1
4πR

dS′ − ∇
ε±

∫

S

∇ ·X (r′, τ)
4πR

dS′ (43)

K±(X) =
∫

S0

∇×
[
∂X(r′, τ)

∂t

1
4πR

]
dS′ − 1

2
n̂× ∂

∂t
X(r, t) (44)

As can be seen, the expressions of the scattered wavefields
Es

b+(Hs
b+) and Es

b−(Hs
b−) in the media induced by eb+(hb+) and

eb−(hb−) are similar to those of free space except that the material
parameters are different. Here the relations of (eb, hb) and
(eb+ (hb+), eb− (hb−)) can be obtained from Maxwell’s equations [24],

−eb± =
1
2α

(v±eb ∓ j

η2
hb). (45)

−hb± =
1
2α

(v∓hb ± jη2eb). (46)

To determine the unknown sources ec, eb and hb, the boundary
condition needs to be enforced on the surface of the strip dipole and the
BI scatterer. On the surface of the dipole, the tangential components
of the total electric fields must vanish, that is

−Es
c(ec)|tan − Es

e(eb,hb)|tan = Ein(r, t)
∣∣
tan

(47)
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where subscript “tan” defines tangential components, Ein is the excited
electric field. By enforcing boundary condition on the interface
between BI media and the outside space, we can obtain two coupled
integral equations as follows

−Es
c(ec)|tan −Es

e(eb,hb)|tan +
∑
±

Es
b± (eb±,hb±)

∣∣
tan

= 0 (48)

−Hs
c(ec)|tan −Hs

e(eb,hb)|tan +
∑
±

Hs
b± (eb±,hb±)

∣∣
tan

= 0 (49)

2.3. Basis Functions and Testing Scheme

MoM is adopted to solve the equation series (47)–(49). For
the numerical implementation, the equivalent electric and magnetic
currents ec (r, t), eb (r, t) and hb (r, t) are represented in terms of RWG
functions [26]

ec(r, t) =
Nc∑

n=1

∞∑

j=0

ecn,jϕj(st)fn(r) (50)

eb(r, t) =
Nb∑

n=1

∞∑

j=0

ebn,jϕj(st)fn(r) (51)

hb(r, t) =
Nb∑

n=1

∞∑

j=0

hbn,jϕj(st)fn(r) (52)

where Nc and Nb are the numbers of the inner edges on the dipole and
the BI scatterer, respectively, ecn, j , ebn, j and hbn, j are the unknown
coefficients, and φj(st) = e−st/2Lj(st) are the causal temporal basis
functions. Lj(st) is the Laguerre function [28] of order j with a scaling
factor s, and fn(r) represents the RWG function.

Substituting (50)–(52) to (19) and (20) respectively, we obtained

L(ec) = µ0s
2

Nc∑

n=1

∞∑

j=0

∫

S

1
4πR

(
0.25ecn,j+

j−1∑

k=0

(j−k)ecn,k

)
φj(sτ)fn(r)dS′

− 1
ε0

Nc∑

n=1

∞∑

j=0

ecn,j∇
∫

S

[∇ · fn(r)]
φj(sτ)
4πR

dS′ (53)
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K(ec) = 0.5n̂×s

Nc∑

n=1

∞∑

j=0

(
0.5ecn,j+

j−1∑

k=0

ecn,k

)
φj(sτ)fn(r)

+
s2

c0

Nc∑

n=1

∞∑

j=0

∫

S0

(
0.25ecn,j+

j−1∑

k=0

(j−k)ecn,k

)
φj(sτ)fn(r)×R̂/RdS′

+s

Nc∑

n=1

∞∑

j=0

∫

S0

(
0.5ecn,j+

j−1∑

k=0

ecn,k

)
φj(sτ)fn (r)×R̂/R2dS′ (54)

Since L (eb) and L (hb) are identical to L (ec) in Equation (53), and
K (eb) and K (hb) are identical to K (ec) in (54), the formulations are
omitted here.

In computing the spatial integrals in (53) and (54), the functions
dependent on the following variable do not change appreciably within
a given triangular patch so that

τv = t− R
cv

, τpq
mn,v = t− Rpq

mn
cv

, Rpq
mn = |rcp

m − rcq
n | (55)

where p, q, and v can be either + or −, and rcp
m and rcq

n are the position
vectors of the center points in triangle pair T±m .

Through the Galerkin’s method [25], we take a spatial and
a temporal testing with fm(r) (m= 1, 1, 2 . . .N c) and φi(st) (i =
0, 1, 2 . . . M) separately to the Equation (47), where M is the
maximum order of the Laguerre functions to be evaluated from the
time-bandwidth product of the waveform. The equation below is
obtained

〈φi(st), 〈fm(r), L(ec)〉〉+ 〈φi (st) , 〈fm(r), L(eb)〉〉
+ 〈φi (st) , 〈fm(r),K(hb)〉〉 =

〈
φi(st),

〈
fm(r),Ein

〉〉
(56)

First, we consider the testing of the integro-differential operator L with
the electric source ec. With reference to [21], the testing formulation
can be written as

〈φi(st),〈fm(r), L(ec(r, t))〉〉=µ0s
2

Nc∑

n=1

∑
p,q

i∑

j=0

(0.25ecn,j+
j−1∑

k=0

(j−k)ecn,k)

Iij(sτpq
mn)apq

mn,1 +
1
ε0

Nc∑

n=1

∑
p,q

i∑

j=0

ecn,jIij(sτpq
mn)bpq

mn,1 (57)

where inner integral 〈fm(r), 〉 denotes a spatial testing which is defined
by multiplying the function fm (r) and integrating in the triangle pairs
T±m on the PEC strip, and 〈φi(st), 〉 represents a temporal testing,
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which is done by multiplying the function φi (st) and integrating from
zero to infinity. The temporal testing can be simplified as

Iij(sτpq
mn) =

{
e−sτpq

mn/2
[
Li−j(sτpq

mn)− Li−j−1(sτpq
mn)

]
j ≤ i

0 j > i
(58)

and the expression of the spatial integrals apq
mn, 1 and bpq

mn, 1 between
triangles on the dipole are given by

apq
mn,1 =

∫

S

∫

S′
fp
m(r) · f q

n

(
r′

)
/(4πR)dS′dS (59)

bpq
mn,1 =

∫

S
∇ · fp

m(r)
∫

S′
∇ · f q

n

(
r′

)
/(4πR)dS′dS (60)

Then we consider the second testing term of the left-hand side in (56),
and it becomes

〈φi(st),〈fm(r),L(eb(r, t))〉〉=µ0s
2

Nc∑

n=1

∑
p,q

i∑

j=0

(0.25ebn,j+
j−1∑

k=0

(j−k)ebn,k)

Iij(sτpq
mn)apq

mn,2 +
1
ε0

Nc∑

n=1

∑
p,q

i∑

j=0

ebn,jIij(sτpq
mn)bpq

mn,2 (61)

where the expression of the spatial integrals apq
mn, 2 and bpq

mn, 2 between
triangles on the dipole and triangles on the surface of the BI sphere
are given by

apq
mn,2 =

∫

S

∫

S′
fp
m(r) · f q

n

(
r′

)
/ (4πR) dS′dS (62)

bpq
mn,2 =

∫

S
∇ · fp

m(r)
∫

S′
∇ · f q

n

(
r′

)
/ (4πR)dS′dS (63)

Next the third term of the left-hand side of the Equation (56) is
expressed as

〈φi(st), 〈fm(r),K(hb(r, t))〉〉=s

Nd∑

n=1

∑
p,q

i∑

j=0

(
0.5hbn,j+

j−1∑

k=0

hbn,k

)
Iij(sτpq

mn)

dpq
mn,12+s2/c0

Nd∑

n=1

∑
p,q

i∑

j=0

(
0.25hbn,j+

j−1∑

k=0

(j−k)hbn,k

)
Iij (sτpq

mn) dpq
mn,11(64)

where the expression of the spatial integrals dpq
mn, 11 and dpq

mn, 12 between
triangles on the dipole and triangles on the surface of the BI sphere
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are given by

dpq
mn,11 =

∫

S

∫

S′
fp
m (r) · f q

n

(
r′

)× R̂
/

(4πR)dS′dS (65)

dpq
mn,12 =

∫

S

∫

S′
fp
m(r) · f q

n

(
r′

)× R̂
/

(4πR2)dS′dS (66)

Similarly, we take a spatial and a temporal testing with fm(r) (m =
1, 2 . . . Nb) and φi (st) (i = 0, 1, 2 . . .M) to Equations (48) and (49),
and all the testing procedures can be done easily.

After applying both spatial and temporal testing procedures to
Equations (47)–(49), the (Nc + 2Nb) × (Nc + 2Nb) matrix below is
obtained after some mathematical manipulation,




[Zecec
mn ]Nc×Nc

[Zeceb
mn ]Nc×Nb

[
Zechb

mn

]
Nc×Nb

[Zebec
mn ]Nb×Nc

[Zebeb
mn ]Nb×Nb

[
Zebhb

mn

]
Nb×Nb[

Zhbec
mn

]
Nb×Nc

[
Zhbeb

mn

]
Nb×Nb

[
Zhbhb

mn

]
Nb×Nb







[ecn,i]Nc×1
[ebn,i]Nb×1
[hbn,i]Nb×1


 =




[γm,i]Nc×1[
γE

m,i

]
Nb×1[

γH
m,i

]
Nb×1


 (67)

To obtain the coefficients ecn, j , ebn, j and hbn, j , we need to solve
the matrix recursively on the order of the degree of Laguerre function
(i = 0, 1, 2 . . . M). Particularly at the first step when i = 0, only
system matrix elements Zmn are needed and the LU decomposition
can be stored for further use. At the ith step, we only have to compute
γm, i, γE

m, i and γH
m, i on the right side of the matrix, which are the sums

of the previous solved coefficients ecn, j , ebn, j , and hbn, j . The detailed
expressions of these elements are given in chapter 5 of reference [24].

3. NUMERICAL RESULTS

In this section, the numerical results for a BI object loaded strip dipole
in free space will be given. Triangular patches are used to mesh the
strip dipole as shown in Figure 3. The delta function generator at the
feeding edge is used. The inner product of the impressed field will
always be zero, except for the feeding element. Therefore,

〈
Fm (r) ,Ein

〉
= lmV (t) (68)

where lm is the length of the feeding m-th edge, which is the strip
width as shown in Figure 3. The transient Gaussian source voltage
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in (68) is given by

V (t) = V0
4√
πT

e−γ2
(69)

where γ = (4/T )(ct − ct0), T is the pulse width, and ct0 is the time
delay.

The choice of factor s and maximum temporal order M is very
crucial because these two parameters decide the amount of support
given by the Laguerre functions in the time-domain response. For
dielectric bodies problems, the initial value of these parameters are
set as M = 2BTf + 1, and s = 10fmax [22], where B and Tf are the
frequency bandwidth and time duration of the excitation signal, and
fmax is the maximum frequency.

As the first example, the single dipole without BI object will
be calculated to verify the code written in FORTRAN. As shown in
Figure 1, the strip dipole is assumed to be parallel to z-axis of the
coordinates. The strip dipole has a length of 1 m with 0.01 m width,
and it is divided into 80 triangular patches with 79 unknowns. The
Gaussian pulse of T = 4 lm and ct0 = 6 lm is used. The unit “lm”
denotes a light meter, and one light meter is the length of time taken by
the electromagnetic wave to travel 1 meter in free space. The excitation
is placed at the center of the strip. It is assumed that the feeding
voltage amplitude V0 is equal to 1. In the TDIE computation, we set
s = 1.0×109, and M = 100. Figure 4 displays the transient current at
the center of the strip. The current is stable, and it agrees well with
the results using TDIE computation based on the marching-on in time
method [20]. The normalized far fields are also displayed in Figure 5 at

Figure 3. Triangular patching of
a strip dipole.
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Figure 4. Transient current
at the center of the strip dipole
without sphere.
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the direction θ = 90◦, ϕ = 90◦, and it shows good agreement with [20].
As a special case, this exhibits somewhat the accuracy of the proposed
TDIE formula for BI media loaded dipole.

As the second example, the strip dipole is placed near the
bi-isotropic sphere and dielectric sphere, respectively, as shown in
Figure 1. The sphere has a radius of 0.5 m, a permittivity of ε2 = 4.0
with permeability of µ2 = 1.0, and it is meshed with 492 triangular
patches and 738 unknowns. For the BI sphere, the Pasteur parameter
and Tellegen parameter are κr = 0.8, and χr = 0.3, respectively. As
shown in Figure 1, the strip dipole is assumed to be parallel to z-axis
of the coordinates, and the distance between the strip and the sphere
center is 0.52 m. The strip dipole has a length of 1 m with 0.01 m
width, and it is divided into 80 triangular patches with 79 unknowns.
The Gaussian pulse remains unchanged, and the excitation is placed
at the strip center. In the TDIE computation, we set s = 5.0 × 109,
and M = 100, which is sufficient to get a good result.

The currents of the dipole loaded with a BI sphere along the z-axis
direction are shown in Figure 6. The results are compared with current
distribution of single dipole and dipole loaded with dielectric sphere.
It is observed that the current amplitude of BI loaded dipole is much
larger than that of single dipole and DR loaded dipole. Figures 7(a)
and (b) show the θ- and ϕ-component of the radiation far fields at the
direction θ=90◦ and ϕ = 90◦, and ϕ-component far fields is observed
only for BI loaded dipole. The radiation patterns at the frequency
150MHz in the XOY plane (θ = 90◦) and Y OZ plane (ϕ = 90◦) are
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Figure 5. Radiation far-field of
the single dipole in free space at
θ = 90◦, ϕ = 90◦ when the
excitation signal is a Gaussian
pulse.
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demonstrated in Figures 8(a) and (b) respectively. As expected, the
BI sphere strongly disturbs the symmetry of the radiation pattern.
This phenomenon shows that the BI sphere has great influence on the
current distribution of the dipole. The far radiation fields are displayed
at a frequency of 150MHz. The computed patterns of single dipole
and DR loaded dipole are compared with the data from commercial
software FEKO [29], and very good agreements are observed. The
computed patterns of BI loaded dipole have been compared with
frequency domain integral equation (FDIE) analysis based on the MoM
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in [30], and small difference is noticed at some angles. A perfect match
is not observed, and the reason is that the comparison is made between
two different numerical techniques.

4. CONCLUSION

The TDIE solver based on the MOD procedure is proposed to calculate
the radiation of general BI objects loaded dipole antenna. The
formulas of TDIE solver for the radiation problems that are associated
with the BI loaded dipole are derived. The computed results are
given along with the data from previous work based on TDIE solver
based on MOT method [20] and the FDIE computation based on the
MoM [30]. Although only dipole loaded with BI sphere is demonstrated
as example, the method is also suitable for antennas with general BI
objects.

Owing to the fact that the constitutive parameters are non-
dispersive, the equations abovementioned are set up for high idealized
model. It is not very difficult for us to extend the proposed method
for frequency dependent materials. The TDIE method based on
the MOD procedure is one of the recursive convolution techniques
that allow linear dispersion to be incorporated like FDTD [31, 32]
formulation. The extention of the MOD based TDIE method for
radiation problems of arbitrarily shaped wire antenna interacting with
dispersive BI objects will be considered as the future work.
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