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Abstract—We present an ω-k approach based on the use of a 1D Non-
Uniform FFT (NUFFT) routine, of NER (Non-Equispaced Results)
type, programmed on a GPU in CUDA language, amenable to real-
time applications. A Matlab main program links, via mex files, a
compiled parallel (CUDA) routine implementing the NUFFT. The
approach is shown to be an extension of an already developed parallel
algorithm based on standard backprojection processing to account
also for near-field data. The implementation of the GPU-based,
parallel NUFFT routine is detailed and the computational advantages
of the developed approach are highlighted against other confronted
sequential or parallel (on multi-core CPU) procedures. Furthermore,
the benefits of the ω-k, NUFFT-based processing are pointed out by
both comparing its accuracy and computational convenience against
other interpolators, and by providing numerical results. By comparing
the computational performance of the algorithm against a multi-core,
Matlab implementation, the speedup has been about 20 for a medium
size image. The performance of the approach has been pointed out in
the applicative case of vegetation imaging against experimental data of
a boxtree (Buxus tree), also under a source of temporal decorrelation
(wind).

1. INTRODUCTION

ω-k processing, originated from seismics engineering and geophysics [1],
is commonly accepted to be an ideal solution to Synthetic Aperture
Radar (SAR) focuses on the case of spaceborne data [2], and, since
recently, is becoming also popular to process airborne SAR data
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following a motion compensation step [3], airborne bistatic SAR
data [4], ground-based SAR data [5, 6] and also Ground Penetrating
Radar (GPR) [7, 8].

Different from range-doppler [9] and chirp-scaling [10] processing
used in SAR, ω-k exploits an “exact” version of the kernel of the
operator linking the on-ground reflectivity distribution to the data
acquired by the sensor. In this way, the algorithm fully compensates
for the “range migration” and is applicable also to the near-field data
case [7, 8].

ω-k regards the data as the samples of the Fourier transform of
the reflectivity function. However, such samples are arranged on a
non-uniform (polar) grid, so that, prior to exploit 2D Fast Fourier
Transform (FFT) algorithms, a Stolt interpolation problem must be
solved [1, 10]. This step is time consuming since typically polynomial or
sinc interpolators are used and the selection of the interpolator is then
critical for obtaining a satisfactory trade-off between computational
performance and image quality [11, 12].

Taking into account the needs of processing speed and focusing
accuracy, the recent development of algorithms for rapidly and
accurately performing Discrete Fourier Transforms (DFTs) from/to
nonuniform grids (Non-Uniform DFTs-NUDFTs), also known as Non-
Uniform Fast Fourier Transform (NUFFT) algorithms [13, 14], is of
certain interest in radar processing [15–17]. Indeed, NUFFT schemes
nest interpolation and Fourier transformation in a single step, they
are accurate since they exploit the bandlimitedness information of the
signal to be transformed and their computational cost is of the same
order of standard FFTs, i.e., it grows asymptotically as O(N2 log N),
N ×N being the image size.

At the same time, the issue of accurately focusing SAR images in
real-time attracts more and more interest in a number of applications
including disaster observation and management, surveillance of
military sites, seismic studies and flood monitoring [18, 19]. This is of
course possible provided that performing algorithms and hardware are
available. Concerning the hardware, while commercial CPUs nowadays
employ 4/8 cores, modern Graphics Processing Units (GPUs), like
the NVIDIA C2050 employed in this paper, reach 448 cores. The
introduction of graphical APIs in high-level language codes is
furthermore being dramatically simplified by

• multicore functionalities in common high-level platforms for
technical computing, as the Matlab Parallel Computing Toolbox;

• the “multicore-aware” functions in Matlab [20];
• Matlab code GPU accelerators, as Accelereyes Jacket [21];
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• the development of programming languages, as CUDA (Computer
Unified Device Architecture [22–24]);

• the development of C++ libraries, as Accelereyes LibJacket [25].

All that is raising the interest of the radar community into parallel
programming [19, 26, 27].

Throughout the literature, processing algorithms based on parallel
NUFFT implementations, on CPU [28], GPU [29–33] or Field
Programmable Gate Arrays (FPGAs) [34], have been developed,
mainly for applications of Magnetic Resonance Imaging (MRI),
antenna fast analysis or Optical Coherence Tomography (OCT). In
these instances, transformation of 2D signals from non-uniform to
uniform grids or vice versa is necessary, thus requiring 2D Non-
Equispaced Data (NED) or Non-Equispaced Results (NER) NUFFT
routines, depending on the application of interest. More in detail, the
NED and NER acronyms refer to NUFFTs performed from a non-
uniform spatial grid to a uniform spectral one and from a uniform
spatial lattice to a non-uniform spectral one, respectively.

In this paper, we present the development of an ω-k approach
based on the use of a 1D NER NUFFT routine programmed on a
GPU in CUDA language. At the best of our knowledge, this is the
very first time that NUFFT-based parallel processing is applied to
the ω-k algorithm and that a 1D NER NUFFT routine is coded in
CUDA language. At variance with [29–33], the considered routine is
a 1D Non-Equispaced Result (NER) NUFFT, fastly implementing a
NUDFT, transforming a regularly sampled signal into a non-uniformly
sampled one. More in detail, while the use of a 2D NUFFT requires the
full data acquisition, the scheme presented in this paper is amenable
of a very fast processing meanwhile the data are acquired.

The approach is conveniently coded in Matlab language,
by linking, via mex files, a compiled parallel (CUDA) routine
implementing the NUFFT [35, 36] and is shown to be an extension of an
already developed parallel algorithm based on standard backprojection
processing [26, 27] to account also for near-field data.

The implementation of the GPU-based, parallel NUFFT routine is
detailed and the computational advantages of the developed approach
are highlighted against other confronted sequential or parallel (on
multi-core CPU) procedures. Furthermore, the benefits of the ω-k,
NUFFT-based processing are pointed out by providing an experimental
validation on data from a boxetree (Buxus tree) acquired in an indoor
environment, also under a source of temporal decorrelation (wind).

The paper is organized as follows. In Section 2, the ω-k algorithm
is briefly recalled and the data processing by a 1D NUFFT illustrated.
In Section 3, the parallel GPU implementation of the 1D NER NUFFT
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Figure 1. Geometry of the problem.

is described. Section 4 is devoted to present the computational software
and hardware platforms as well as the experimental setup herewith
employed to analyze the performance of the approach for vegetation
imaging. In Section 5, the computational performance of the algorithm
as well as its imaging capabilities are discussed. Finally, in Section 6,
the conclusions are drawn.

2. THE ω-k ALGORITHM

Let us consider the 2D geometry in Figure 1, where the domain to
be imaged is D = [−a, a] × [−b, b]. The sensor illuminates the scene
from the point (x, −r0), x belonging to (−xM , xM ), at different
angular frequencies ω = 2πf , f being the frequency, and at a generic
polarization (e.g., vertical or horizontal) and measures a (possibly
different) polar component of the scattered wave.

The acquired signal is modeled as [37]

ψ(x, ω) =
∫∫

D

γ
(
x′, r′

)
e−j2β

√
(x−x′)2+(r0+r′)2dx′dr′ (1)

where γ is the scene reflectivity distribution assumed to be frequency
independent, β = ω/c is the wavenumber, and c is the speed of light.
For simplicity and without any loss of generality, range spreading
attenuation and antenna directivity effects have been neglected. In the
SAR context, ψ represents the recorded raw data in frequency domain,
after range compression if the scene is illuminated by the usual chirp
pulse.

By resorting to the plane wave expansion of the kernel function
in Equation (1) [38], then the raw data can be rewritten, apart from
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unessential factors and neglecting the evanescent part of the plane wave
spectrum, as

ψ(x, ω) =
∫∫

D

γ
(
x′, r′

) ∫ 2β

0

e−jkr(r′+r0)ejkx(x−x′)

kr
dkxdr′dx′, (2)

where kr =
√

4β2 − k2
x (Stolt mapping). Equation (2) can be also

rewritten as

ψ(x, ω) =
∫ 2β

0

1
kr

e−jkrr0ejkxxΓ(kx, kr)dkx (3)

where Γ(kx, kr) is the Fourier transform of γ(x′, r′). Accordingly, on
defining the function Ψ(kx, ω) as

Ψ(kx, ω) =
∫ ∞

−∞
ψ(x, ω)e−jkxxdx, (4)

i.e., as the Fourier transform of ψ(x, ω) with respect to x, then Γ can
be expressed as

Γ(kx, kr) = krΨ(kx, ω)ejkrr0 . (5)

In other words, the spectral samples of the reflectivity function
Γ(kx, kr) are related to the Fourier transform of the raw data Ψ(kx, ω).
Since Ψ is available on a uniform grid of the (kx, ω) plane, and due to
the nonlinear mapping ω = (c/2)

√
k2

r + k2
x, then Γ is available on a

nonuniform grid of the (kx, kr) plane. As a consequence (again apart
from unessential factors),

γ(r′, x′) =
∫∫

(kx,kr)

kr

β
Ψ

(
kx,

c

2

√
k2

r + k2
x

)
ej[kr(r′+r0)+kxx′]dkrdkx (6)

and an interpolation stage would be needed to bring the spectral data
Ψ back to a cartesian grid in the (kx, kr) domain to then use a standard,
2D inverse FFT algorithm to determine γ(x′, r′).

As an alternative, by letting kr = 2(ω/c) cos φ and kx =
2(ω/c) sin φ, then Equation (6) can be rewritten as

γ
(
r′, x′

)
=

∫

φ

cosφ

∫

ω

ωΨ̃(ω, φ)ej2ω
c
[cos φ(r′+r0)+sin φx′]dωdφ, (7)

where Ψ̃(ω, φ) = Ψ(2(ω/c) cos φ, ω). Now, since Ψ̃ is uniformly
sampled in ω, then, for each value of φ, the internal integral in ω
can be evaluated by a 1D NER NUFFT [13].
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Indeed, on defining an (r′l, x
′
l) grid for D, an estimate of γ can be

expressed (removing unessential constants) as

γ(r′l, x
′
l) =

∑
p

cosφp

∑

k

kΨ̃ (k∆ω, p∆φ) ejk∆ωtpl

︸ ︷︷ ︸
. (8)

where tpl = [cosφp(r′l+r0)+sinφpx
′
l]/c, the uniform frequency sampling

grid is defined by k∆ω and the uniform sampling in the φ variable is
defined by p∆φ. On taking into account that a 1D NER NUDFT is
defined as

ẑl =
N/2∑

k=−N/2

zke
−2πjylk/N (9)

then, for each value of φp, the bracketed term in Equation (8) can be
evaluated by a 1D NER NUFFT of the vector zk = kΨ̃(k∆ω, p∆φ)
over the output grid yl = −N∆ωtpl /(2π).

We remark that the approach at hand can be regarded as
a generalization of the standard backprojection algorithm [26, 27].
Indeed, when the acquisition domain is in the far-field zone of
the investigated region, then the acquired field ψ(x, ω) becomes
proportional to the plane wave spectrum of the scattered field
cosφΨ(2(ω/c) cos φ), where φ is now arctan(x/r0). Consequently

ψ(x, ω) ∝ cosφΨ̃(ω, φ), (10)

so that Equation (7) can be approximately rewritten, apart from
constant proportionality factors, as

γ(r′, x′) =
∫∫

(φ,ω)

ωψ(r0 tanφ, ω)ej2ω
c
[cos φ(r′+r0)+sin φx′]dωdφ. (11)

Equation (11) now coincides with the reconstruction formula of the
standard backprojection [26, 27].

We further remark that, in [39, 40], the chirp-z transform has been
applied to SAR data focusing. However, as also stressed in [39], such
an algorithm is capable to computing a certain class of NUDFTs only,
so that the 1D NER NUFFT herewith employed has a wider range of
applicability.

3. THE PARALLEL NUFFT ALGORITHM

The NUFFT algorithm employed in this paper is that developed in [13],
which is based on the use of Kaiser-Bessel interpolation windows and
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offers better performance as compared to implementations exploiting
other, e.g., Gaussian, interpolation kernels [14].

The main idea of the NUFFT algorithm is to approximate
the “nonuniform” exponential exp(−j2πylk/N) by interpolating few,
“oversampled”, “uniform” exponentials according to [13]

e−j2πyl
k
N =

(2π)−1/2

Φ(2πk/(cN))

∑

m∈Z
Φ̂(cyl −m)e−j2πjm k

cN (12)

where c > 1 is an “oversampling factor”, Φ is the Kaiser-Bessel window,
and Φ̂ is its Fourier transform.

By exploiting (12), Equation (9) can be rewritten as

ẑl =
1√
2π

∑

m∈Z
Φ̂(cyl −m)

m=N/2∑

m=−N/2

e−j2πm k
cN

zl

Φ(2πk/(cN))
︸ ︷︷ ︸

Um

. (13)

Taking now into account that Φ̂ has finite support, then Equation (13)
takes the form

ẑl ' 1√
2π

K∑

p=−K

Φ̂(p)Up+µl
, (14)

where K is 3 or 6 for single or double precision arithmetics, respectively,
µl is the nearest integer to cxl and the subscript p + µl has to be
considered as cN -periodic.

Accordingly, the NUDFT can be effectively evaluated in three
steps

(i) Scaling and zero padding:

uk =

{ 0 k = −cN/2, . . . ,−N/2− 1
zk/φk k = −N/2, . . . , N/2− 1
0 k = N/2, . . . , cN/2− 1

; (15)

(ii) FFT of {uk}cN/2−1
k=−cN/2 on cN points to obtain {Um}cN/2−1

m=−cN/2;

(iii) Cyclic convolution to evaluate Equation (14).

The first step is inherently parallel.
The second step can be easily performed by a library parallel FFT

routine. In this paper, the cuFFT routine, provided by NVIDIA, is
adopted [41].

The convolution step is by far the most time consuming
step [30, 32] and deserves more attention. An effective implementation
has been obtained by committing the evaluation of each element of ẑl to
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a different thread. In other words, a grid of threads is created wherein
each thread is in charge of calculating the 2K + 1-term summation in
Equation (14) for a fixed l, according to the pseudocode 1. This favours
the efficiency of the global memory accesses since collecting the Φ̂(p)’s
can occur in a coalesced way [22], whereas collecting the Up+µl

’s can
either occur in a coalesced way, except for those threads for which the
index p + µl is close to cN . The partial results of the summation are
stored on the shared memory to improve the computational efficiency,
as it emerges from pseudocode 1. The proposed solution is more
efficient as compared to an alternative approach in which each datum
Um is “spread” on all the ẑl’s to which it contributes [30]. Indeed, by
doing so, due to the mapping m = p+µl, memory write access conflicts
should be dealt with by resorting to atomic operations which would
significantly slow down the execution [32].

4. SOFTWARE AND HARDWARE PERFORMANCE
TESTING PLATFORMS

4.1. Code Implementations and Computing Hardware

Four different versions of the code have been implemented: A strictly

Algorithm 1 Parallel cyclic convolution
global void Convolution(cufftComplex *Um,

cufftComplex *PhiHat, float *Mu,
cufftComplex *Result, int N, int M)

int i = threadIdx.x + blockDim.x * blockIdx.x;
int x = threadIdx.x; int m;

shared cufftComplex temp[BLOCK];
shared int PP[BLOCK];

temp[x] = make cuFloatComplex(0,0);

if i < M then
for 0 ≤ m < 2K + 1 do

PP[x] = mod((((int)mu[i]) + m - K + cN),(cN));
temp[x] = cuCaddf(temp[x],
cuCmulf(PhiHat[i+M*m],Um[PP[x]]));

end for
Result[i] = temp[x];

end if
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sequential one, one exploiting the multi-core parallelism of CPUs and
two exploiting the parallelism of GPUs.

The sequential version has been written in ANSI C, the multi-
core version in a Matlab 2010 script by exploiting multi-core aware
functions, while for the GPU parallel versions, the CUDA language
has been employed by exploiting both, single precision and double
precision arithmetics.

The CUDA functions have been compiled by nvcc and transformed
in C++ code by the command

system(sprintf(’nvcc -I”%s/extern/include” –cuda ”mex-
fun.cu” –output-file ”mexfun.cpp”’, matlabroot));

and then linked to Matlab by

mex -I/opt/cuda/include -L/opt/cuda/lib -lcudart mex-
fun.cpp

as suggested in [42].
The processing has been performed on a Genesis Tesla I-7950

workstation, with a 8-core Intel CPU i7-950, working at 3.06GHz and
with 6 Gb of RAM. The workstation is equipped with an NVIDIA
Tesla C2050, benefitting of the state-of-the-art Fermi GPU architecture
and consisting of 14 streaming multiprocessors (SMs), each containing
32 streaming processors (SPs), or processor cores, running at 1.15GHz.
The C2050 is further equipped with a 2.8 GB, off-chip, global memory
and supports double precision arithmetics.

4.2. Experimental Setup

The data used in the following Section for assessing the imaging
capabilities of the algorithm have been collected in the anechoic
chamber at the Laboratory of µwaves and Millimeter Waves at
the Università di Napoli Federico II, Dipartimento di Ingegneria
Biomedica, Elettronica e delle Telecomunicazioni (DIBET) [26, 27].
The chamber is equipped with a planar scanner, made up of two
orthogonal linear positioners, allowing a maximum scanning area
of 180 cm × 180 cm, and driven by an external controller, MI-4190.
Obviously, for the measurements and due to the considered geometry,
only the horizontal (x-axis) positioner has been exploited.

Copolarized (V V ) field data in the 8–12 GHz band have been
acquired by a single Tx/Rx horn, with the Tx and Rx channels
separated by a directional coupler and connected to a Vector Network
Analyzer Ansirsu 37397 working in the 40 MHz–65GHz frequency band
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and operating in the stepped-frequency mode. The total number of
collected frequency samples has been 801, and the parameters of the
measurement configuration have been a = b = 0.6m, r0 = 3.46 m and
xM = 0.9m.

As Tx/Rx antenna, a Narda 640 standard gain pyramidal horn
has been used. The angular behavior of its gain has been neglected,
while its frequency behavior compensated by a calibration procedure
(see also [27]).

5. DISCUSSING THE PERFORMANCE OF THE
APPROACH

5.1. Computational Performance Analysis

Let us begin by highlighting the advantages arising from the use of
programming the NUFFT routine on a massively parallel GPU as
compared to a single- or multi-core implementation on a CPU. More
in detail, Figure 2 shows the speedup of the CUDA single precision
NUFFT implementation (which will be used for the experimental
reconstructions in the next Section) over the single-core (ANSI C) and
multi-core (Matlab) versions. As it can be seen, the speedup is about 20

Figure 2. Speedup of the CUDA single precision implementation over
the ANSI C and Matlab ones.
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Figure 3. Speedup of the CUDA single precision implementation over
the double precision one.

Figure 4. Processing times for the Matlab and ANSI C
implementations.
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or 40 for the multi-core and single-core implementations, respectively,
for a medium size input vector to be transformed. Another point worth
analyzing regards comparing the achievable GPU performance under
single and double precision arithmetics. To this end, Figure 3 displays
the speedup of the CUDA single precision NUFFT implementation
over the double precision one. As it can be seen, although interpreted
programming languages (as Matlab) are generally speaking more
inefficient than compiled ones (as C) [43], the Matlab version is faster
thanks to the capability of exploiting the multi-core structure of the
CPU. It should be also noticed that, in applications of vegetation
imaging, single precision arithmetics could be deemed as sufficient
to achieve qualitative reconstructions, so to obtain a further speedup
against the use of double precision [44]. At the same time, it should
be also noticed that the use of double precision arithmetics anyway is
not critical in terms of problem conditioning since the ω-k approach is
an intrinsically regularized reconstruction scheme.

Let us now turn the attention to the possibility of performing real-
time reconstructions by the developed algorithms. Figure 4 shows the
processing time of each individual NUFFT call against the number of
elements of the vector to be transformed for the Matlab and ANSI
C versions. As it can be seen, in either cases, also when the number

Figure 5. Processing times for the single and double precision CUDA
implementations.
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of elements to be transformed is large, the processing time of each
NUFFT is of the order of fractions of seconds, thus being already
useful for real-time imaging. Figure 5 depicts also the processing time
concerning the CUDA single and double precision implementations.
As it can be seen, the processing time of each individual NUFFT is
of the order of milliseconds, thus being very well suited to real-time
processing.

Finally, we mention that a favorable comparison of the parallel,
NUFFT-based interpolation scheme herewith employed and others
(linear, cubic, sinc, etc.), typically adopted in SAR applications, has
been reported in [27].

5.2. Experimental Results

We now provide experimental results to point out the performance of
the developed ω-k algorithm and we pursue this task with reference
to vegetation imaging. This is of interest in a number of applications,
including ground-based imaging of natural targets [45].

A first experiment has been carried out over a metallic cylinder
with circular cross section, radius 0.2m and height 1.8 m and with axis
orthogonal to the (x, r) plane. Figure 6 illustrates the result achieved
by the developed algorithm. For the sake of comparison, Figure 7
shows the same reconstruction, but obtained with numerical data. As

Figure 6. Experimental reconstruction of metallic circular cylinder.
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Figure 7. Numerical reconstruction of metallic circular cylinder.

Figure 8. The Buxus tree within the anechoic chamber of DIBET.

it can be seen, similar performance are obtained by the algorithm on
both, experimental and numerical data.

A second experiment has been performed on a solitary tree, in
order to show the performance of the approach for vegetation imaging.
The tree is a boxtree (Buxus), see Figure 8, having leaves located on
opposite sides of the branchelets, rounded to lanceolate, and leathery,
about 1.52 cm long and 0.5 cm broad. The tree’s cross sectional radius
is about 0.4 m. Figure 9 shows the reconstruction of the tree’s cross
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Figure 9. Reconstruction of the boxtree.

Figure 10. Reconstruction of the boxtree with a source of temporal
decorrelation.
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section. As it can be seen, the tree’s cross section is satisfactorily
reconstructed.

Finally, in order to test the algorithm stability against sources of
temporal decorrelation, a different data set has been acquired with a
fan artificially producing wind with a windspeed of about 2 m/s [46].
As it can be seen from Figure 10, the performance of the algorithm are
robust, being the cross sectional shape of the tree still visible, although
some sidelobes appear to be “attenuated” as the scatterers move during
the data acquisition.

6. CONCLUSION

We have presented an ω-k approach based on the use of a 1D NER
NUFFT routine programmed on a GPU in CUDA language, amenable
to real-time applications.

Four different versions of the code have been implemented
and compared: A strictly sequential one written in ANSI C, one
exploiting the multi-core parallelism of CPUs written in Matlab 2010
script employing multi-core aware functions and two exploiting the
parallelism of GPUs written in CUDA language (single and double
precision).

The Matlab version has proven faster than the ANSI C version. In
both cases (Matlab and ANSI C), the processing time for each NUFFT
routine call has been of the order of fractions of seconds.

On the other side, the processing time of each individual CUDA
NUFFT has been of the order of milliseconds. The overall speedup has
been about 20 or 40 for the multi-core and single-core implementations,
respectively, for a medium size input vector to be transformed.

The performance of the approach has been pointed out in the
applicative case of vegetation imaging against experimental data of a
boxtree (Buxus tree). The robustness of the algorithm performance
under a source of temporal decorrelation (wind) has been also shown.
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