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Abstract—In this paper, a differential wavelet-based operator defined
on an interval is presented and used in evaluating the electromagnetic
field described by Maxwell’s curl equations, in time domain. The
wavelet operator has been generated by using Daubechies wavelets with
boundary functions. A spatial differential scheme has been performed
and it has been applied in studying electromagnetic phenomena in a
lossless medium. The proposed approach has been successfully tested
on a bounded axial-symmetric cylindrical domain.

1. INTRODUCTION

Wavelets analysis has been applied in a very large field of science.
A large employment of wavelets has been achieved due to their
filtering capability; furthermore, differential operators have been
modeled from the compactly supported wavelets. From the first
Beylkin representation of operators based on compactly supported
wavelets [1], various approaches have been created. Beylkin introduced
the differential and the integral operators [2], by adopting real line
wavelets. In the same year the corrective coefficients have been
introduced [3, 4] in order to apply the multiresolution (MRA) analysis
to the framework of functions defined on an interval. Subsequently,
differential and integral operators for the wavelets on an interval
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have been derived [5–7, 10, 11]. In order to solve the Maxwell’s curl
equations in time domain, various numerical techniques arisen in
technical literature, and continually novel ones are presented. An
interesting approach is addressed by means of wavelets analysis.
Rubinacci et al. [12] proposed wavelets as interpolating functions, and
Pinho et al. [13] used interpolating wavelets in generating adaptive
finite difference scheme. In this paper, a wavelet differential operator
has been applied to the Maxwell’s curl equations, in order to simulate
electromagnetic transient phenomena. In Section 2, a brief outline of
wavelet analysis is presented and details on differential operator based
on Daubechies wavelets are addressed. In Section 3 the time-dependent
PDEs describing electromagnetic phenomena are approached and a
bounded axial-symmetric cylindrical domain is simulated in order to
assess the proposed model.

2. WAVELETS DIFFERENTIATION MATRIX

Wavelets are localized functions in time or space, suitable to analyse
transient signals. In the following the Daubechies compactly supported
wavelets, defined on [0, 2M−1], with M number of vanishing moments
are taken into account [11]. By considering L = 2M , the following
two functions are usually referred as scaling and wavelet functions,
respectively:

φ(x) =
√

2
L−1∑

k=0

hkφ(2x− k) (1)

ψ(x) =
√

2
L−1∑

k=0

gkφ(2x− k) (2)

They are obtained by dilating and translating the same function φ(x).
The coefficients H = {hk}L−1

k=0 and G = {gk}L−1
k=0 are related by means

of:
gk = (−1)khL−k (3)

The scaling and wavelet functions satisfy the following conditions:
∫ +∞

−∞
φ(x)dx = 1,

∫ +∞

−∞
|φ(x)|2dx = 1,

∫ +∞

−∞
|ψ(x)|2dx = 1 (4)

The scaling functions φ(x) gives rise to a MRA of L2(R) defined as
a sequence of subspaces {Vj}J∈Z of L2(R) satisfying the following
properties:

a) . . . V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . .
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b) ∪j∈ZVj = L2(R)

c)
⋂

j∈Z Vj = {0}
d) f(x) ∈ V0 ⇐⇒ f(2−j) ∈ Vj

f) f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0

g) ∃φ(x) ∈ V0 : {φ(x− k)}k∈Z is an orthogonal basis of V0

By defining Wj as an orthogonal complement of Vj in Vj−1 and
Vj−1 = Vj ⊕ Wj , L2(R) = ⊕j∈ZWj . The dilation and translation
of the functions φ(x) and ψ(x) at a resolution level j are expressed by
means of:

φj
k(x) = 2−

j
2 φ

(
2−jx− k

)
(5)

ψj
k(x) = 2−

j
2 ψ

(
2−jx− k

)
(6)

The coefficients {hk}L−1
k=0 are chosen so that {ψk

j (x)} is an orthonormal
basis and the function ψ(x) has M vanishing moments. Once chosen
the level j, a matrix operator which projects the original function into a
discrete sequence of values can be generated. Namely, given a function
sampled into {f0

k}N=2n

k=1 , it is transformed as follows:

f̂ =
(
q1
1, q

1
2, . . . , q

1
N/2, f

1
1 , f1

2 , . . . , f1
N/2, q

2
1, q

2
2, . . . , q

2
N/4, f

2
1 , f2

2 ,

. . . , f2
N/4, . . . , q

N
1 , fN

1

)
(7)

This operation can be performed by using N orthogonal mapping PJ

converting the coefficients f j−1
k into the coefficients {qj

k, f
j
k} [2]. In [3, 4]

corrective coefficients have been obtained allowing the representation
of functions on an interval. Wavelets on the interval in [0,1] are
considered and also used to represent differential operators [3, 4, 6, 7].
Grid point values of the first derivative of a known tabulated function
are generated by introducing a suitable differentiation matrix D. In [1],
the set of non-zero coefficients, which allows to determine the spatial
differential operator d

dx as the solution of a system of linear algebraic
equations, is obtained. By defining the autocorrelation coefficient of
H as:

an = 2
L−1−n∑

i=0

hihi+n (8)

where n = 1, . . . , L− 1, with L = 2M, the non-zero coefficients of the
spatial differential operator D can be carried out [1]:

rl = 2


r2l +

1
2

L
2∑

k=1

a2k−1 (r2l−2k+1 + r2l+2k−1)


 (9)
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and ∑

l

lrl = −1 (10)

When M ≥ 2 the Equations (9) and (10) have an unique solution with
a finite number of non-zero rl for −L + 2 ≤ l ≤ L− 2 and [1]

rl = −r−l (11)

In Table 1, the coefficients of the Daubechies wavelets differentiation
matrix D on the real line referred to various vanishing moments, are
reported [1].

By choosing M = 2, the matrix D employs only two non-zero
coefficients, r1 and r2 respectively,as reported in (12). In order to
generate the differentiation matrix on an interval DI , the coefficients
rl have to be opportunely computed near the boundaries.

D =




0 2
3 − 1

12 0
−2

3 0 2
3 − 1

12
1
12 −2

3 0 2
3

0 1
12 −2

3 0


 (12)

The differentiation matrix on the interval DI , for each level j, is
obtained by using block matrices ∆j

p,q p, q = 1, . . . , 3, namely:

DI =




∆j
1,1 ∆j

1,2 ∆j
1,3

∆j
2,1 ∆j

2,2 ∆j
2,3

∆j
3,1 ∆j

3,2 ∆j
3,3


 (13)

The central block ∆j
2,2 is the matrix D reported in Equation (12),

and the blocks ∆j
1,3, ∆j

3,1 are blocks with all entries equal to zero. For
each resolution level j the blocks ∆j

1,1, ∆j
3,3 are always the same, and

Table 1. Coefficients for numerical differentiation.

M = 2 M = 3 M = 4

r0 0 0 0

r1 − 2
3

− 272
365

− 39296
49553

r2
1
12

53
365

76113
396424

r3 0 − 16
1095

− 1664
49553

r4 0 − 1
2920

2645
1189272

r5 0 0 128
743295

r6 0 0 − 1
1189272
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also the non-zero values of the entries of DI are always the same, by
varying the resolution level j. Indeed, the other blocks ∆j

1,2 = −∆j
2,1

and ∆j
2,3 = −∆j

3,2 depend on j: namely, a number of zero elements is
added so that the size of DI is 2j for a fixed resolution level j [7]. The
blocks are generated by following the approach used in [1], by means
of the boundary functions. For M = 2 the differentiation matrix on
the interval at the resolution level j = −3, is:

DI =



−1.9038 0.9444 −0.2565 0 0 0 0 0
−1.5163 −0.0430 0.6752 −0.0832 0 0 0 0
0.2565 −0.6752 0 2

3 − 1
12 0 0 0

0 0.0832 −2
3 0 2

3 − 1
12 0 0

0 0 1
12 −2

3 0 2
3 −0.0765 0

0 0 0 1
12 −2

3 0 0.5825 −0.0397
0 0 0 0 0.0765 −0.5825 0.0899 0.3150
0 0 0 0 0 0.0397 −0.7936 0.6369




(14)

The size of the matrix is equal to 2j .

3. APPLICATION TO MAXWELL’S CURL EQUATIONS
IN TIME DOMAIN

Let us consider the time-dependent Maxwell’s curl equations in a
lossless medium for a transverse electric (TE) field. By using
a rectangular coordinates system, the following coupled partial
differential equations hold:

∂Ez

∂t
=

1
εrε0

(
∂Hy

∂x
− ∂Hx

∂y

)
,

∂Hy

∂t
=

1
µ0

(
∂Ez

∂x

)
,

∂Hx

∂t
= − 1

µ0

(
∂Ez

∂y

)
(15)

By performing the double wavelet transform, in both the variables
x and y, the field functions Ez(x, y, t), Hx(x, y, t), Hy(x, y, t) are
transformed into matrices Ew

z , Hw
x , Hw

y at time t: the rows report
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the x-direction expansion whilst the columns report the y-direction
expansion [10]. Equations (15) are so re-written:

dEw
z

dt
=

1
εrε0

(
DIxHw

y −DIyH
w
x

)
,

dHw
y

dt
=

1
µ0

(DIxEw
z ) ,

dHw
x

dt
= − 1

µ0
(DIyE

w
z )

(16)

in which the spatial derivatives are approximated by using
differentiation matrices of type (14). Finally, the time derivatives are
approximated by using an explicit finite difference scheme [14]. In order
to assess the validity of the proposed approach, an axial symmetrical
cylindrical domain is considered with the following boundary and
initial conditions:

Ez(x, y, 0) = 1− R2

R2
0

, Ez(x0, y0, t) = 0,
∂Ez(x, y, t)

∂t
|t=0= 0 (17)

R0 =
√

x2
0 + y2

0 = 0.1m, R =
√

x2 + y2, 0 ≤ R ≤ R0. (18)

The following analytical solution holds:

Ez(R, t) = 8
+∞∑

n=1

J0

(
βnR
R0

)

β3
nJ1(βn)

cos
(

βnt

R0
√

εrε0µ0

)
(19)

where J0 and J1 are the Bessel functions of first kind of zero and
first order respectively, βn are the positive zeros of J0(β), εrε0 and µ0

are the constitutive parameter of the medium (εr = 10). In Fig. 1,
the analytical and computed space profiles of the electric field Ez

are compared for a radial direction at times 0.33µs and 0.44µs, with
M = 2, j = −3. A good agreement has been reached.

The obtained relative error is:∥∥∥Ez − Ẽz

∥∥∥
2

‖Ez‖2

=
{

2.06 · 10−2, t = 0.33µs
2.87 · 10−2, t = 0.44µs

}
(20)

where Ez and Ẽz are the analytical and approximated field
components, respectively. By decreasing the resolution level j,
improvement on the relative error is obtained. In fact for M = 2, j =
−4 the following result holds:∥∥∥Ez − Ẽz

∥∥∥
2

‖Ez‖2

=
{

8.13 · 10−3, t = 0.33µs
9.27 · 10−3, t = 0.44µs

}
(21)
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Figure 1. Analytical and computed space profiles of the electric field
for t = 0.33µs and t=0.44µs, with M = 2, j = −3.

4. CONCLUSION

In this paper, a differential wavelet-based operator used to solve
Maxwell’s equations has been presented. A comparison between the
proposed wavelet-based method and the analytical solution of a two-
dimensional wave propagation problem in lossless medium has been
traced out to validate the proposed approach. The comparison among
computed and analytical results shows good agreement.
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