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Abstract—An ANN-based small-signal equivalent circuit model for
130 nm MOSFET device is proposed in this paper. The proposed
model combines the conventional small-signal equivalent circuit model
and artificial neural networks (ANNs) to achieve higher accuracy.
Good agreement is obtained between proposed model and measured
results confirming the validity and effectiveness of proposed model.

1. INTRODUCTION

In recent years, CMOS technology has been adopted in radio frequency
integrated circuit (RFIC) design, because of its low cost, low power
and high integration related to other technologies. In addition,
continuously scaling down of gate length and the consequently
increased of operation frequency have made MOSFET devices be the
attractive candidate in RFIC application (LNA, mixer, etc.) [1–4, 26],
and then much attention has been paid to radio frequency integrated
circuit based on CMOS processes. To predict the accurate performance
of the circuit at required frequency bands and also reduce the design
cycle, device models are very critical in circuit design session [5–
7, 27, 28].

Artificial Neural Networks (ANNs) are information processing
systems that have been widely applied in the RF and microwave
modeling tasks as an unconventional alternative. Through a process
called training, ANNs have the ability of fitting any nonlinear behavior
of passive and active component/circuit form experimental data and
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generating an ANN model function that can be used to describe
the port-characters of component/circuit [8–12]. Compared to other
conventional modeling techniques, such as numerical modeling method,
which could be computationally expensive, or analytical method, which
could be different to obtain for new devices, or empirical modeling
solution, whose range and accuracy could be limited [8], the ANNs
modeling technique is more efficient. In addition, under the condition
of the urgent need of developing models for new device [19], ANNs
modeling method could supply a way of fast model development.

In this paper, a new small-signal modeling approach that
combined the conventional equivalent circuit model and artificial
neural networks (ANNs) is proposed. Each intrinsic circuit element
in the conventional equivalent circuit model of MOSFET device is
regarded as a sub-artificial neural network (SANN). Good agreement
is obtained between trained model results and measured data under
different bias conditions.

The organization of the paper is as follows: the artificial neural
network modeling technique is introduced in Section 2; the proposed
ANN-based small-signal equivalent circuit model for MOSFET is
described in Section 3; the experimental results and discussion are
given in Section 4; finally, the conclusion is presented in Section 5.

2. ANN MODELING TECHNIQUE INTRODUCTION

An artificial neural network (ANN) is a distributed information pro-
cessing system whose network configuration is a critical characteristic.
It is widely used in the optimization of passive components and mi-
crowave nonlinear device modeling [13–18]. The multiplayer percep-
tron (MLP) is a popularly applied neural network structure [8]. The
basic processing unit/element called neuron is grouped into layer in
MLP structure. Three kinds of layers are defined in MLP structure,
the first and last layers are called input and output layer, respectively.
The layers that are between input and output layers are called hidden
layers [29]. The hidden layers are the core part of a neural network,
the complexity of hidden layers determine the complexity of the non-
linear behavior that the neural network can be trained to learn. In
general, the more complicated the nonlinear behavior is, the more hid-
den layers and neurons will be added. Typically, a kind of widely used
MLP structure consists of one input layer, one output layer and one
hidden layer, referred to as a three-layer MLP (or 3LP). The structure
is shown in Fig. 1.

The interconnections between the neurons shown in Fig. 1 are
called links or synapses. The arrow indicates the propagation direction
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Figure 1. The three-layer MLP (3LP) neural network structure.

of signals between the neurons. A weight parameter w is allocated to
each link. Accordingly, wl

ij represents the weight parameter of link
between the jth neuron of the (l− 1)th layer and ith neuron of the lth
layer. w3

k and w2
i0 are the biases of each neuron of hidden and output

layers.
For a given vector ~x = (x1, x2, . . . , xm)T , the output vector

~y = (y0, y1, . . . , yN )T of a three-layer MLP neural network can be
computed by:

yk = w3
k +

∑n

i=1
w3

kiσ


w2

i0 +
m∑

j

w2
ijxj


 , k = 0, 1, 2 . . . N (1)

where σ(.) represents the activation function, which is set for each
neuron. The typical activation function is the sigmoid function given
by

σ (x) =
1

(1 + e−x)
(2)

In modeling task, the artificial neural network is then trained to learn
electrical behavior that is described by input-output sample pairs, also
called training data. Specifically training is to determine the neural
model parameters, i.e., neural network weights wl

ij , such that the ANN
model predicted output best matches that of the training data. The
testing data (new input-output samples) is used to test the accuracy
of the ANN model.
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Figure 2. The small-signal equivalent circuit model for MOSFET
device.

3. PROPOSED MODEL AND MODELING METHOD

3.1. Equivalent Circuit Model

The small-signal equivalent circuit model considering the substrate
parasitic effects and pad parasitic effects for silicon-based MOSFET
device is shown in Fig. 2 [3, 12, 20]. The electrical elements in
equivalent circuit can be divided into two parts: the intrinsic parts
(in dotted box) and extrinsic parts, respectively.

The intrinsic parts are bias-dependent, the Cgs represents
the capacitance of gate-channel, and the gate-source overlap; Cgd

represents the gate-drain overlap capacitance; Cds is the drain-source
capacitance. The extrinsic parts are often bias-independent, the
capacitances Cpg and Cpd in series with Rpg and Rpd are used to
model the pad coupling effects and substrate losses. Cpgd models
the coupling effects between two signal pads. Rg is used to model
the distributed effect at gate channel. The Rd and Rs represent the
drain and source resistances, respectively, which are mainly caused by
the lightly doped extensions of the drain and source diffusions. gm

is the transconductance, Rds is the drain resistance. To consider the
substrate parasitic effects, a substrate network consisting of a series
connection of Cjd and Rsub is adopted.

The parasitic elements of pad and interconnection line can be
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determined by using formulas as follow:

Cpg =
Im

(
Y open-pad

11 + Y open-pad
12

)

2πf
(3)

Cpd =
Im

(
Y open-pad

22 + Y open-pad
21

)

2πf
(4)

Rpg = Re

(
1

Y open-pad
11 + Y open-pad

12

)
(5)

Rpd = Re

(
1

Y open-pad
22 + Y open-pad

21

)
(6)

Cpgd =
−Im

(
Y open-pad

12

)

2πf
(7)

Rin = Re
(
Zshort-pad

11 − Zshort-pad
12

)
(8)

Lin =
Im

(
Zshort-pad

11 − Zshort-pad
21

)

2πf
(9)

Rout = Re
(
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22 − Zshort-pad
21

)
(10)
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Im

(
Zshort-pad

22 − Zshort-pad
12

)

2πf
(11)

Rp = Re
(
Zshort-pad

12

)
(12)

Lp =
Im

(
Zshort-pad

21

)

2πf
(13)

where the open-pad indicates the measurement data of opened pad
dummy device, and short-pad indicates the measurement data of
shorted pad dummy device after de-embedding the pad parasitic.

The another extrinsic resistances Rg, Rd, Rs and substrate
network Rsub and Cjd can be analytically determined [21, 22].

3.2. Proposed Modeling Method

3.2.1. ANN-based Small-signal Modeling Technique

Compared with extrinsic elements in equivalent circuit model shown
in Fig. 2, which is bias-independent, the intrinsic elements are mainly
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affected by Vgs and Vds. Conventionally, the empirical function
in which Vgs and Vds are two independent variables is applied to
characterize the nonlinear relationship between element values and bias
conditions, such as Angelov model [23]. Analytically directly extract
the intrinsic elements is based on multi-bias S parameters measured
by vector network analyzer. Although the values of intrinsic elements
can be determined directly at different bias condition by a series of
analytical closed function [5, 16], the extracted values of these intrinsic
elements remain some variations with frequency [16]. To store all the
values at each frequency points will pay the price of using much storage
memory and making the models run slowly. Optimization methods are
often applied to find an optimum value among the extracted values, the
accuracy of the optimization methods can vary depending upon initial
value and optimization methods, therefore, may result in non-physical
and non-unique solutions.

In [24, 25], Sirakawa et al. have proposed a multiplayer perceptron
structure for large signal model of HEMT. For the proposed ANN-
based small-signal modeling approach in this paper, a sub-ANN
(SANN) for each intrinsic element is adopted, the modeling idea
is illustrated in Fig. 3. The frequency variable is adopted in
characterizing the variations with frequency; the SANNs for each
intrinsic element can be formulated by function of bias conditions and
frequency, shown in formulas (14)–(18):

Cgs = f
Cgs

ANN (Vgs, Vds,Freq) (14)

Cds = fCds
ANN (Vgs, Vds,Freq) (15)

Cgd = f
Cgd

ANN (Vgs, Vds,Freq) (16)
rds = f rds

ANN (Vgs, Vds,Freq) (17)
gm = fgm

ANN (Vgs, Vds,Freq) (18)

ANN

Freq

Vgs

Vds

Equivalent

circuit

model

Of
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Figure 3. The ANN-based small-signal modeling configuration for
MOSFET device.
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Figure 4. The ANN-based small-signal modeling approach for
MOSFET device.

The S-parameter of equivalent circuit model shown in Fig. 2 is divided
into two parts, real part and imaginary part, respectively. Fig. 3
shows the configuration that is used to model the real and imaginary
parts of S-parameter of the equivalent circuit model together. The
ANN part shown in Fig. 3 is the core part in the proposed modeling
approach. The concrete ANN-based modeling technique for intrinsic
part of equivalent circuit model is illustrated in Fig. 4. As for ANN
in Fig. 3, a SANN, which is a three layer perceptron structure, where
only one hidden layer is used, is applied for each intrinsic element.

3.2.2. The Training Strategy

The training process is an optimization procedure, the weight values
and bias values in neural network are adjusted in order to make the
outputs of neural network fit to the particular nonlinear behavior.
Unlike the conventional training process [8, 11, 12], the output data
of the adopted neural networks is not available, in the proposed
modeling procedure, the outputs of the neural networks will be sent
to the intrinsic part of equivalent circuit and conduct the S-parameter
simulation with the whole equivalent circuit. As for the whole ANN-
based equivalent circuit MOSFET model, the inputs are bias conditions
and frequencies, the outputs are the S-parameter of equivalent circuit.

In the proposed modeling approach, the training process is
illustrated by a flow chart in Fig. 5.

The whole training process consists of ANNs’ training and
S-parameter simulation of equivalent circuit. The Qusi-Newton
algorithm is used for ANNs’ training. The whole error of real and
imaginary parts of S-parameter will be evaluated by using formulas
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Figure 5. The flow chart demonstrating the training process in
proposed modeling approach.

(19) and (20) in proposed training process, respectively.

ETraining (w) =
1
n

n∑

k=1

(
Re

(
Smodel

ij,k

)
− Re

(
Smeasured

ij,k

))2
(19)

ETraining (w) =
1
n

n∑

k=1

(
Im

(
Smodel

ij,k

)
− Im

(
Smeasured

ij,k

))2
(20)

where the model represents the S-parameter simulation outputs of
trained ANN-based model, the measured represents the measured S-
parameter data.

4. EXPERIMENT RESULTS AND DISCUSSION

130 nm channel length, 5µm channel width per figure and 8 figures
SMIC 130 nm-process manufactured MOSFET device is applied as
object to be modeled. The S-parameter is measured from 100 MHz
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to 40 GHz by VNA under the bias conditions Vgs and Vds voltages
from 0.2 v to 1.2 v in the step value of 0.2 v.

The extracted extrinsic element values of the equivalent circuit
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(c)

Figure 6. Comparison of S-parameters betweenmeasured data (—)
and proposed model results (o). (a) Vgs = 0.8 v, Vds = 0.6 v, (b)
Vgs = 1v, Vds = 0.8 v, (c) Vgs = 1.2 v, Vds = 1.2 v.

are listed in Table 1. The value of transconductance delay time is
considered as constant value, τ = 0.27 ns. The number of hidden
neuron of applied three-Layer Perceptron neural networks in proposed
model is shown in Table 2. The training data set is chosen from
measured S-parameter of the MOSFET device biased at saturation
region. The remained measured S-parameter of bias conditions Vgs =
0.8 v and Vds = 0.6 v, Vgs = 1 v and Vds = 0.8 v and Vgs = 1.2 v and
Vds = 1.2 v will be used to test the interpolation and extrapolation of
trained proposed model.

The trained proposed model results have been compared
with measured data in Fig. 6. Good agreement is obtained
between measured data and proposed model results under different
bias conditions over the frequency range of 100MHz–40 GHz.
The demonstrated comparisons indicate the interpolation and
extrapolation ability of proposed model. The errors between model
results and measured data are evaluated by error function:

Eij =
1

N − 1

N∑

n=1

∣∣∣∣∣
Smeasured

ij − Smodel-results
ij

Smeasured
ij

∣∣∣∣∣, (i, j = 1, 2) (21)
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where the N is the number of sampling points. Table 3 gives the
errors of S-parameter between proposed model results and measured
data under the three different bias conditions.

Table 1. The extracted extrinsic elements.

Parameter Value

Pad parasitic parameters

Rpg 28Ω
Rpd 28Ω
Cpg 20.45 fF
Cpd 20.80 fF
Cpgd 1.15 fF

Feedline parasitic parameters

Rin 0.56Ω
Rout 0.43Ω
Rp 0.046Ω
Lin 64. 46 pH
Lout 58. 27 pH
Lp 31.49 pH

Extrinsic resistances
Rg 6.6Ω
Rd 5.91Ω
Rs 4.14Ω

Substrate parasitic parameters
Rsub 507.62Ω
Cjd 26.58 fF

Table 2. The number of hidden neuron in the three-Layer Perceptron
neural networks.

Cgs Cgd Cds rds gm

25 25 25 28 25

Table 3. The average relative errors of S-parameter under different
bias condition (%).

Bias conditions S11 S12 S21 S22

Vgs= 0.8 v, Vds= 0.6 v 1.2 2.8 5.8 1.2
Vgs= 1.0 v, Vds= 0.8 v 1.3 2.5 5.8 1.8
Vgs= 1.2 v, Vds=1.2 v 0.9 3.7 6.1 1.4
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5. CONCLUSION

ANN-based small-signal equivalent circuit model and relative modeling
approach is proposed for 130 nm MOSFET device in this paper. The
proposed model and modeling approach provide a way of fast and
accurate modeling development. Through proposed training strategy,
the trained model results show a good agreement between measured
data confirming the validity and effectiveness of proposed model and
modeling approach, also a high accuracy of proposed model is achieved.
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