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Abstract—It is well-known that, at low frequency, far-field RCS can
be measured using a suitable implementation such as outdoor range
or large anechoic chamber. The aim of this paper is to propose a
new algorithm to predict RCS from near-field measurements. The
comparison between RCS values obtained from the proposed method
and those obtained from direct far-field values shows a good agreement
between the two results.

1. INTRODUCTION

Controlling RCS is a real challenge for aeronautics and defence industry
to gain important information about a system before it is built, thus
saving time and resources. For these reasons, it is imperative to develop
efficient techniques for RCS prediction. RCS measurement must meet
with the approximate plane-wave irradiation condition. So, the target
must be located at a minimal distance, the so-called far-field distance,
from the illuminating and receiving antennas in order to approach
such radiation condition, which needs a vast measuring area or an
expansive compact range system. At high frequency, where anechoic
chambers are used to simulate free-space conditions [1], probe can be
placed in the far-field region of the target under test. So, the RCS
is calculated directly using far-field measurements. In contrast, in
the low frequency domain, it is more difficult to realize the far-field
condition [2], since the dimension of anechoic chambers is generally
less than the near-field/far-field boundary. In order to overcome this
problem, several methods based on the concept of near-field/far-field
transformation [3–7] have been proposed. The key idea behind these
methods is to consider the target as an antenna under test (AUT) [8].
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Thus, the induced current on the target’s surface plays the same role
as the current source of an AUT. Proceeding from this, the Fourier
transformation of the measured near-field gives the far-field scattering
pattern. To convert the bistatic scattering pattern into bistatic RCS a
calibration procedure is required [8].

Using the angular spectrum method, we establish a relationship
between the bistatic radar cross section and the two-dimensional
Fourier transformation of the scattered near-field. Which allows the
evaluation of the bistatic RCS from planar near-field measurements.

2. ANGULAR SPECTRUM METHOD

2.1. Basic Formalism

The angular spectrum method consists in expanding an arbitrary
electromagnetic field into a series of plane waves with variable
amplitudes and propagation directions. Let us consider an electric
field ~E(~r) assumed to be known in any point ~r = (x, y, z) in space, we
note by r the norm of ~r. By choosing an arbitrary axis z, we can define
the two-dimensional Fourier transformation of ~E(~r) as

~A(kx, ky, z) =
1
2π

∫

R2

~E(x, y, z)e−j(kxx+kyy)dxdy (1)

where ~r|| = (x, y) are the Cartesian transverse coordinates and ~k|| =
(kx, ky) the corresponding spatial frequencies or reciprocal coordinates.
Similarly, the inverse Fourier transform reads as

~E(x, y, z) =
1
2π

∫

R2

~A(kx, ky, z)ej(kxx+kyy)dkxdky (2)

In the case of a homogeneous, isotropic, linear and source-free medium,
the electric field satisfies the following Helmholtz equation.

O2 ~E(~r) + k0
2 ~E(~r) = 0 (3)

Inserting the Equation (2) into the Equation (3) and defining

kz =
√

k0
2 − (k2

x + k2
y) (4)

We find that the Fourier spectrum ~A evolves along the z-axis as
~A(kx, ky, z) = ~A(kx, ky, 0)e±jkzz (5)

The wave number kz is then either real or imaginary and turns the
factor e±jkzz into an oscillatory or exponentially decaying function{

k2
x + k2

y ≤ k0
2 plane waves

k2
x + k2

y > k0
2 evanecent waves

(6)
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Figure 1. Angular spectrum representation.

So, ~E(~r) can be expressed as follows

~E(x, y, z) =
1
2π

∫

R2

~A(kx, ky)ej ~K.~rdkxdky (7)

where, we have set
~K = ~k|| + kzsign(z)~uz (8)

We find that the angular spectrum is indeed a superposition of traveling
and evanescent waves as shown in Figure 1.

2.2. Angular Spectrum Representation of Green’s Tensor

The Green’s tensor is defined as follows
↔
G(~r) =

(
Ī +

1
k0

2 55
)

G(~r) (9)

where, G(~r) is the scalar Green’s function

G(~r) =
ejk0r

4πr
(10)

And Ī is the unit dyad.
The scalar Green’s function can be represented as two-dimensional

Fourier integral

G(~r) =
j

2π

∫

R2

ej(~k||·~r||+β|z|)

4πβ
d2k|| (11)
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which is commonly referred to as Weyl representation [9].
~k|| is a vector in the xy-plane and the parameter β is defined as

β =





√
k0

2 − k2
|| if k|| < k0

j
√

k2
|| − k0

2 if k|| > k0

(12)

which shows that G(~r) is written as a superposition of plane waves.
When k|| < k0 the corresponding plane wave travels in the

direction of the wave vector (~k||, β) for z > 0 and (~k||,−β) for z < 0
without change of amplitude.

When k|| > k0 the wave travels in the xy-plane in the direction of
~k||, and decays exponentially in the z direction.

The Green’s tensor
↔
G(~r) can be represented in a similar way.

↔
G(~r) =

1
2π

∫

R2

j

4πβ

(
Ī +

1
k0

2 55
)

e(j~k||.~r||+jβ|z|)d2k|| (13)

Working out the derivatives explicitly then gives the well-known
result [9]

↔
G(~r) =

1
2π

∫

R2

j

4πβ

(
Ī +

1
k0

2
~K ~K

)
ej ~K.~rd2k|| (14)

where we have set
~K = ~k|| + β sign(z)~uz (15)

The Equation (14) has a very transparent interpretation. Each partial
wave has a wave vector ~K, ant it follows from Equations (12) and
(15) that ~K · ~K = k0

2. Therefore each partial wave has the same
wave number k0, the corresponding plane wave is either traveling or
evanescent, depending on the value of k|| compared with k0 [9].

2.3. Angular Spectrum Representation of Scattered Field

Let consider Ω an open subset of R3 as shown in Figure 2, occupied
by a homogeneous dielectric medium, and let Γ the boundary of Ω.
ε and σ denote respectively the relative electric permittivity and the
conductivity of the medium.

The dielectric is illuminated by a plane linearly polarized
electromagnetic wave

(
~Ei, ~Hi

)

~Ei = E0e
j ~K0.~r~pi (16)
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Figure 2. Scattering geometry.

∥∥∥ ~Ei
∥∥∥

∥∥∥ ~H i
∥∥∥

= Z0 (17)

where ~K0, ~E, ~H and ~pi specifying the directions of incidence,
the electric field, the magnetic field and the polarization vector,
respectively.

The propagation constant, permittivity and intrinsic impedance
of the surrounding medium are k0, ε0 and Z0 respectively, and a time
factor e−jωt has been assumed and suppressed.

The scattered electric field is given by [10]

~Es(~r) = k0
2

∫

Ω
∆εr(~r ′)

↔
G(~r, ~r ′) ~E(~r ′)dr′ (18)

where ~E is the total field inside the dielectric
~E = ~Ei + ~Es (19)

And ∆εr(~r ′) is the difference in relative dielectric constant between
the scatterer and the ambient medium.

The angular spectrum representation of
↔
G(~r, ~r ′) can be deduced

from (14) as follows
↔
G(~r, ~r ′) =

1
2π

∫

R2

j

4πβ

(
Ī +

1
k0

2
~K ~K

)
ej ~K.(~r−~r ′)d2k|| (20)

where,
~K = ~k|| + βsign(z − z′)~uz (21)
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By inserting the Equation (20) into (18), we get

~Es(~r) =
1

2π

∫

Ω

∆εr(~r
′)

[∫

R2

jk0
2

4πβ

(
Ī+

1

k0
2

~K ~K

)
ej ~K.(~r−~r ′)d2k||

]
~E(~r ′)dr′ (22)

It is obvious that for z ∈] − ∞, min
r′∈Ω

(z′)[∪]max
r′∈Ω

(z′), +∞[, ~K is

independent of z′.

~K = ~k||+βsign(z−z′)~uz =





~k||−β~uz, for z ∈ ]−∞, min
r′∈Ω

(z′)[
~k||+β~uz, for z ∈ ]max

r′∈Ω
(z′), +∞[

(23)

So, by switching the integral signs
∫
R2 and

∫
Ω of (22), we get

~Es(~r) =
1

2π

∫

R2

jk0
2

4πβ

(
Ī+

1

k0
2

~K ~K

)[∫

Ω

∆εr(~r
′) ~E(~r ′)e−j ~K.~r ′dr′

]
ej ~K·~rd2k|| (24)

Finally, we deduce the angular spectrum representation of ~Es(~r)

~As(kx, ky) =
jk0

2

4πβ

(
Ī +

1
k0

2
~K ~K

) ∫

Ω
∆εr(~r ′) ~E(~r ′)e−j ~K.~r ′dr′ (25)

∫
Ω ∆εr(~r ′) ~E(~r ′)e−j ~K.~r ′dr′ represents the 3D Fourier transformation of

the product ∆εr(~r ′)× ~E(~r ′). So,

~As(kx, ky) =
jk0

2

4πβ

(
Ī +

1
k0

2
~K ~K

)
{ ~A ∗H}(kx, ky, β) (26)

where, { ~A ∗H} is the convolution product of

~A( ~K) =
∫

R3

~E(~r ′)e−j ~K.~r ′dr′ (27)

and
H( ~K) =

∫

Ω
∆εr(~r ′)e−j ~K.~r ′dr′ (28)

3. THE BISTATIC SCATTERING PATTERN

Assume now that distance between the target and the receiver goes to
infinity. The Green’s tensor is written as

↔
G(~r, ~r ′) =




k0
2G + ∂2G

∂x1
2

∂2G
∂x1∂x2

∂2G
∂x1∂x3

∂2G
∂x2∂x3

k0
2G + ∂2G

∂x2
2

∂2G
∂x2∂x3

∂2G
∂x3∂x1

∂2G
∂x3∂x2

k0
2G + ∂2G

∂x3
2


 (29)
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where,

G(~r, ~r ′) =
ejk0|~r−~r ′|

4π |~r − ~r ′| (30)

Each element of
↔
G(~r, ~r ′) is written as

↔
Gim = δimk0

2G + ∂2G
∂xi∂xm

,
(i,m) ∈ {1, 2, 3} × {1, 2, 3}

δim =
{

1 i = m
0 i 6= m

(31)

We define R as,

R =
∣∣~r − ~r ′

∣∣ =

∣∣∣∣∣
3∑

l=1

(xl − x′l)
2

∣∣∣∣∣

1
2

(32)

By applying the chain rule, we get

∂2G

∂xi∂xm
=

∂2G

∂R2

∂R

∂xi

∂R

∂xm
+

∂G

∂R

∂2R

∂xi∂xm
(33)

It is easy to see that

∂G

∂R
=

jk0R− 1
R

ejk0R

4πR
(34)

∂2G

∂R2 = (2− 2jk0R− k0
2R2)

ejk0R

4πR3
(35)

∂R

∂xi
=

xi − x′i
R

(36)

∂2R

∂xi∂xm
=

δim

R
− (xi − x′i)(xm − x′m)

R3
(37)

So,
↔
Gim = (k0

2R2 + jk0R− 1)
G

R2
δim +

G

R2

(xi − x′i)(xm − x′m)
R2

(3− 3jk0R− k0
2R2) (38)

By using the far-field approximation k0R À 1, the Equation (38) can
be simplified as follows

↔
Gim = k0

2G(R)
(

δim − xi − x′i
R

xm − x′m
R

)
(39)

The Green’s tensor is witted as
↔
G = k0

2G(R) (I − ~v~v) (40)
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Figure 3. Far-filed configuration.

where

~v =
~r − ~r ′

|~r − ~r ′| (41)

and

I =

(1 0 0
0 1 0
0 0 1

)
(42)

The measurement point is far from the target. So,
R ≈ r − ~r ′ · ~u (43)

~u =
~r

r
(44)

~R is almost parallel to ~r and the only difference between them is
due to the projection of ~r ′ on ~u as shown in Figure 3. In this case

~v ≈ ~u (45)
and

G(R) =
ejk0R

4πR
≈ ejk0r

4πr
e−jk0~u·~r ′ (46)

Finally, we deduce
↔
G(~r, ~r ′) = k0

2 ejk0r

4πr

(
I − 1

k0
2

~K ~K

)
e−j ~K·~r ′ (47)

where
~K = k0~u (48)

By using the Equations (18) and (47), we deduce the scattered far-field

~Es
ff (~r) = k0

2 ejk0r

4πr

(
I − 1

k0
2

~K ~K

) ∫

Ω
∆εr(~r ′) ~E(~r ′)e−j ~K.~r ′dr′ (49)
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So,

~Es
ff (~r) = k0

2 ejk0r

4πr

(
I − 1

k0
2

~K ~K

)
{ ~A ∗H}( ~K) (50)

4. METHODOLOGY

The RCS is defined as the surface area that intercepts the incident
wave and isotropically scatters the energy. Within the far-field limit
as r get large the RCS is given by the following expression

RCS = lim
r→∞4πr2

∥∥∥ ~Es
ff

∥∥∥
2

∥∥∥ ~Ei
∥∥∥

2 (51)

The following definitions are introduced to emphasize the polarizations
of the scattered field.

σ1
⊥ = lim

r→∞4πr2

∣∣∣
〈

~Es
ff , ~u1

⊥
〉∣∣∣

2

∥∥∥ ~Ei
∥∥∥

2 (52)

σ2
⊥ = lim

r→∞4πr2

∣∣∣
〈

~Es
ff , ~u2

⊥
〉∣∣∣

2

∥∥∥ ~Ei
∥∥∥

2 (53)

〈., .〉 represents the dot product sign and (~u, ~u1
⊥, ~u2

⊥) is an orthonormal
spherical basis.

Using the Equation (50),
〈

~Es
ff , ~u1

⊥
〉

= k0
2 ejk0r

4πr

〈(
I − 1

k0
2

~K ~K

)
{ ~A ∗H}( ~K), ~u1

⊥

〉
(54)

It’s obvious that the matrix
(
I − 1

k0
2

~K ~K
)

is real and symmetric.
Hence,

〈
~Es

ff , ~u1
⊥
〉

= k0
2 ejk0r

4πr

〈
{ ~A ∗H}( ~K),

(
I − 1

k0
2

~K ~K

)
~u1
⊥

〉
(55)

We have (
I − 1

k0
2

~K ~K

)
~u1
⊥ = ~u1

⊥ (56)

So, 〈
~Es

ff , ~u1
⊥
〉

= k0
2 ejk0r

4πr

〈
{ ~A ∗H}( ~K), ~u1

⊥
〉

(57)
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Figure 4. Near-field measurements.

We have from the Equation (26)
〈
{ ~A ∗H}( ~K), ~u1

⊥
〉

= −j4πβ

k0
2

〈
~As, ~u1

⊥
〉

(58)

So, 〈
~Es

ff , ~u1
⊥
〉

= −jβ
ejk0r

r

〈
~As, ~u1

⊥
〉

(59)

Finally, we deduce

σ1
⊥ =

4πβ2

E0
2

∣∣∣
〈

~As, ~u1
⊥
〉∣∣∣

2
(60)

Similarly,

σ2
⊥ =

4πβ2

E0
2

∣∣∣
〈

~As, ~u2
⊥
〉∣∣∣

2
(61)

The relationship between the Radar cross section components and
the 2D-fourier transformation of the scattered field (Equations (60)
and (61)) is valid only for the traveling modes, where β is real.
The choice of the reference xy-plane must satisfy the condition (23).
The decomposition of the spherical-wave into its propagating and
evanescent parts should be understood simply as a mathematical tool,
that becomes meaningful only when applied to a real physical situation
in which the geometry of the problem fixes the orientation of the
reference plane [11–13].
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Let us consider the following geometry configuration as shown in
Figure 4. d is fixed such as d ≤ λ

2π , λ
2π represents the near-field/far-field

boundary [14].
As mentioned above, the first step is determining the traveling

modes of the scattered field. These modes can be deduced by filtering
the planar near-field measurements by a 2D low-pass filter as shown in
the Figure 5. It is well-known that, the Fourier transformation of the
sampled data leads to a spectral aliasing phenomena

~As
sampled(kx, ky) =

+∞∑
n=−∞

+∞∑
m=−∞

~As(kx − n

∆x
, ky − m

∆y
) (62)

To recover ~As from ~As
sampled it is necessary to select the inner part of

the rectangle

− π

∆x
< kx <

π

∆x
− π

∆y
< ky <

π

∆y
(63)

All traveling modes must satisfy the condition (63). So, the sampling
steps ∆x and ∆y should verify

∆x <
λ

2
∆y <

λ

2
(64)

5. NUMERICAL EXAMPLE

In order to show the feasibility of this method, we present two
numerical examples. The aim of the first one is to show the ability
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of the proposed method to predict accurately the bistatic radar cross
section from planar near-field measurements. The second example
shows the monostatic RCS as a function of wavelength and proves
the applicability of the method for a wide range of frequencies.

Figure 6. Missile-like object.
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The Near-Field data are obtained over a planar grid using
FEKO electromagnetic simulation software. In the near-field receiving
configuration, the distance z between the receiving plane and the target
is taken as z = λ

4π and the sampling space is about ∆x = ∆y = λ
10 .

5.1. Bistatic Radar Cross Section of a Missile-like Object

We consider a missile-like object as shown in Figure 6 with length
L = 2 m, relative permittivity εr = 2 and conductivity σ = 0.

The target is illuminated by an incident plane wave at 100 MHz,
the bistatic RCS has been studied for the incidence directions (θ =
π
2 , ϕ = 0), (θ = π

4 , ϕ = 0) and for the scattering plane ϕ = 0. Figures 7
and 8 show a comparison between the bistatic RCS values obtained
from the proposed method, and those obtained from direct far-field
values using FEKO software. We observe the good agreement between
both results.

5.2. Monostatic Radar Cross Section of a Dielectric Sphere

We consider a dielectric sphere with radius r = 0.5 m, relative
permittivity εr = 2 and conductivity σ = 0.

The illumination frequency starts from 1 MHz to 100MHz, the
mentioned interval will be divided into 100 points.

Figure 9 shows a comparison between the monostatic RCS values
obtained from the proposed method, and those obtained using FEKO
software.
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Figure 9. Monostatic radar cross section of a dielectric sphere
frequency ∈ [1MHz, 100MHz].
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The established relationship between the radar cross section and
the 2D-Fourier transformation of the scattered near-field is developed
without any constraint related to the wavelength. So, the proposed
method shows a great potential to be applied for a wide range of
frequencies.

6. CONCLUSION

We have studied the relationship between the bistatic radar cross
section and the two-dimensional Fourier transformation of the
scattered near-field. Using the angular spectrum method, we showed
that the scattered field can be considered as a combination of
propagating and evanescent plane waves. By selecting only the
propagating modes and excluding the evanescent ones in the spectrum
of the measured field, we showed how to obtain bistatic RCS values
from planar near-field measurements.

It should be noted that in our study, we have assumed that the
target is illuminated by a plane wave. However, when it is exposed to
a spherical wave, the relationship between the bistatic RCS and the
2D-Fourier transformation of the scattered near-field will need some
further investigation.
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