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Abstract—Millimeter-wave (MMW) imaging techniques have been
used for the detection of concealed weapons and contraband carried
on personnel at airports and other secure locations. The combination
of frequency-modulated continuous-wave (FMCW) technology and
MMW imaging techniques should lead to compact, light-weight,
and low-cost systems which are especially suitable for security and
detection application. However, the long signal duration time
leads to the failure of the conventional stop-and-go approximation
of the pulsed system. Therefore, the motion within the signal
duration time needs to be taken into account. Analytical three-
dimensional (3-D) backscattered signal model, without using the
stop-and-go approximation, is developed in this paper. Then,
a wavenumber domain algorithm, with motion compensation, is
presented. In addition, conventional wavenumber domain methods
use Stolt interpolation to obtain uniform wavenumber samples and
compute the fast Fourier transform (FFT). This paper uses the 3-
D nonuniform fast Fourier transform (NUFFT) instead of the Stolt
interpolation and FFT. The NUFFT-based method is much faster than
the Stolt interpolation-based method. Finally, point target simulations
are performed to verify the algorithm.

1. INTRODUCTION

The increasing threat of terrorism has made personnel surveillance
increasingly important. Conventional security systems have been
effective for detecting metal targets. However, some modern threats,
such as plastic or ceramic handguns and knives, as well as extremely
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dangerous liquid explosives, etc., cannot be detected with conventional
security technology, such as metal detectors. X-ray systems can present
an effective solution to the problem. However, potential health risks
due to exposure to ionizing radiation make it less acceptable to public
safety.

Thus, airports, the traveling public, and other secure locations
have a need for a new personnel surveillance system that is capable
of detecting concealed body-worn threats that are undetectable with
conventional security technology. One of the choices is to use millimeter
waves which are capable of penetrating common clothing barriers to
form an image of a person as well as any concealed items with different
reflectivity or emissivity [1–3]. Millimeter waves are nonionizing and,
therefore, pose no known health hazard at moderate power levels.

The combination of frequency-modulated continuous-wave (FMC-
W) and MMW imaging techniques leads to compact, light-weight, cost-
effective, low-power operation, and high-resolution imaging systems,
which are especially suitable for security and detection application.
FMCW signal has been widely used in imaging radar [4–7]. Typically,
FMCW systems use long pulses. Therefore, conventional SAR imaging
algorithms that use the stop-and-go approximation need to be modified
for FMCW image processing. Several conventional algorithms, such
as range-Doppler algorithm, frequency-scaling algorithm, and chirp-
scaling algorithm, etc., have been modified to focus the FMCW SAR
data [8–10]. Especially, an accurate received two-dimensional (2-D)
signal model was proposed in [6], in which the effect of the variation of
the instantaneous slant range on the transmitted and received signal
was accurately represented, and a range-azimuth coupling term was
formulated for the first time in the FMCW SAR community.

The 3-D MMW imaging techniques for concealed weapon
detection were discussed in [1, 11–14], etc., whereas the effects of the
continuous motion of the array on the transmitted and echoed signal
were not addressed. In this paper, we begin with an analysis of the 3-
D signal model which accurately includes the effects of the continuous
motion of the array on the transmitted and received signal during the
pulse time. The main effects of the motion on the image result turn
out to be a range walk and out of focus. These effects can be corrected
by a matched filter multiplication in the 3-D frequency domain.

After the corrections, the Stolt mapping can be implemented to
compensate for the range curvature of all scatterers by an appropriate
warping of the wavenumber domain backscattered data. For the 3-
D imaging, the Stolt mapping is implemented by a 1-D interpolation
process in the range-frequency domain, which is repeated for every
azimuth-frequency and elevation-frequency point. The complex image
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can then be reconstructed by the 3-D inverse FFT (IFFT). However,
the repeated interpolation process reduces the computational efficiency
of the algorithm. In [15, 16], the Stolt interpolation and IFFT were
substituted by a nonuniform fast Fourier transform (NUFFT). The
NUFFT approaches have been developed to overcome the limitation
of equally spaced sampling needed by FFT [17–23]. NUFFTs have wide
applications in magnetic resonance image reconstruction [24], ground
penetrating radar with the range migration algorithm [16], synthetic
aperture imaging radiometers [25], and near-field imaging [26]. In this
paper, the 3-D NUFFT is used to replace the Stolt interpolation and
the followed 3-D IFFT to improve the computational efficiency.

This paper is organized as follows. In Section 2, an accurate
backscattered signal model is derived with the corresponding spectrum
analysis. The 3-D imaging procedure is given in Section 3. Section 4
shows the simulation results to verify the effectiveness of the motion
compensation. The comparison of the computational time between the
interpolation-FFT and NUFFT are also shown. Section 5 summarizes
the conclusions.

2. FMCW THREE-DIMENSIONAL SIGNAL MODEL
AND SPECTRUM ANALYSIS

This section derives an analytical model of the FMCW backscattered
signal in the 3-D spatial-frequency domain. We consider the 3-D
imaging geometry, as shown in Figure 1. The 1-D antenna array
aligns with the x direction, and the array is scanned along the minus
y direction.

For an FMCW transceiver, the transmitted signal can be
expressed as [27]:

sT (t) = exp
[
j2π

(
f0t +

1
2
Kt2

)]
, (1)

where f0 is the center frequency, t is the time variable varying within
one cycle of signal transmitting, and K is the frequency sweep rate of
the transmitted signal.

The signal is transmitted at an arbitrary time τ . And the
corresponding instantaneous range between the antenna element and
the target is R (τ). Let the time τd be the round-trip delay time.
Then the backscattered signal is received at time τ + τd with the
corresponding instantaneous range R (τ + τd). Thus, the round-trip
delay time can be given by

τd =
R (τ) + R (τ + τd)

c
(2)
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Figure 1. Near-field 3-D imaging configuration.

where

R(τ) =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2

=
√

(x′ − x)2 + (y′0 − vτ − y)2 + (z′ − z)2,

R(τ + τd) =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2

=
√

(x′ − x)2 + [y′0 − v (τ + τd)− y]2 + (z′ − z)2,

and c is the speed of light. (x, y, z) is the location of a point target,
and (x′, y′, z′) is the position of the antenna element, both within
the same coordinates, as shown in Figure 1. And y′ = y′0 − vτ ,
where y′0 is the initial position of the array, v is the scanning velocity,
and τ = nTx + mTy + t is the continuous time; Tx is the period of
signal transmitting along the array elements, assuming equal to the
signal duration time of one cycle, thus t ∈ [0, Tx), and Ty is the
period of sampling time along y direction; n = 0, 1, . . . , N − 1, and
m = 0, 1, . . . , M − 1, where N is the number of the array elements
(corresponding to the number of samples along x direction), and M is
the number of samples along y direction.

Due to the fact that the antenna array is near the target for the
personnel surveillance system, (2) can be accurately approximated as

τd ≈ 2R (τ)
c

(3)

Omitting the time scaling influences on the envelope, the
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backscattered signal from a point target is given by
sR

(
x′, y′; t

)
= σ (x, y, z) sT (t− τd) (4)

where σ (x, y, z) is the backscattering coefficient of the point target.
The dechirp-on-receive technology is generally used in the FMCW

systems [27]. The received signal and a delayed version of the
transmitted signal are mixed in order to reduce the required sampling
rate. The intermediate frequency signal after mixing can be written as
sIF

(
x′, y′; t

)
= σ(x, y, z)exp[−j2πf0(τd−τc)]exp[−j2πK(τd−τc)(t−τc)]

exp
[
−jπK (τd − τc)

2
]

(5)

where τc is the delayed time of the transmitted signal. The last
exponential term of (5) is known as the residual video phase (RVP),
which is caused by the difference between any two displaced linear
FM waveforms [27]. The compensation for RVP is conducted in the
frequency domain, which is not the emphasis of this paper. Assuming
the RVP has been removed in the following, i.e.,

sIF

(
x′, y′; t

)
= σ (x, y, z) exp [−j2πf0 (τd − τc)]

exp [−j2πK (τd − τc) (t− τc)] (6)
Using the substitution f = K(t− τc), (6) can be rewritten as

sIF

(
x′, y′; f

)
= σ (x, y, z) exp [−j2π (f + f0) (τd − τc)] (7)

Substituting τ = mTy + nTx + t = τm + τn + t into (7) yields

sIF

(
x′, y′, ⇀

r ; τm, τn; f
)

= σ
(⇀
r
)
exp

[
−j4π (f + f0)

(
R (τ)

c
− Rc

c

)]

= σ
(⇀
r
)
exp

[
−j4π(f + f0)

(
R(τm + τn + t)

c
− Rc

c

)]
(8)

where ⇀
r = (x, y, z) and Rc = cτc/2.

Then the 2-D Fourier transform of (8) with respect to the spatial
variables x′ and y′m (y′m = vτm = vmTy) is given by

SIF

(
kx′ , ky′ , f ; τn

)

=
1
v

∫
sIF

(
x′, y′, ⇀

r ; τm, τn; f
)
exp

(−jkx′x
′) exp

(−jky′y
′
m

)
dx′dy′m

=
1
v
σ

(⇀
r
) ∫

exp
[−jΦ

(
kx′ , ky′ , f ; x′, y′m, τn

)]
dx′dy′m (9)

where

Φ
(
kx′ ,ky′ ,f ;x′,y′m,τn

)
=

4π (f+f0)
c

[R (τm+τn+t)−Rc]+kx′x
′+ky′y

′
m

=2kr [R (τm + τn + t)−Rc] + kx′x
′ + ky′y

′
m
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and kr = 2π(f + f0)/c.
The integral in (9) can be solved by means of the principle of the

stationary phase method [27, 28]. At the point of stationary phase, the
first partial derivatives of the phase Φ (kx′ , ky′ , f ; x′, y′m, τn) are equal
to zeros, such as

∂Φ
(
kx′ , ky′ , f ;x′, y′m, τn

)

∂y′m

∣∣∣∣∣
y′m=y′m0

= 0, (10)

and
∂Φ

(
kx′ , ky′ , f ;x′, y′m, τn

)

∂x′

∣∣∣∣∣
x′=x′0

= 0. (11)

Solving (10) and (11) for the stationary phase points, i.e., y′m0 and x′0,
respectively, yields

y′m0
= −y + y′0 − vτn − ky′ (z − z′)√

4k2
r − k2

x′ − k2
y′

− vt

= −y − ky′ (z − z′)√
4k2

r − k2
x′ − k2

y′

+ y′0 − vτn − vt, (12)

and

x′0 = x− kx′ (z − z′)√
4k2

r − k2
x′ − k2

y′

. (13)

Then the 3-D spectrum of the backscattered signal can be
expressed as

SIF

(
kx′ , ky′ , kr; τn

)
=

1
v
σ

(⇀
r
)
exp

[−jΦ
(
kx′ , ky′ , kr; x′0, y

′
m0

, τn

)]
(14)

where

Φ
(
kx′ , ky′ , kr;x′0, y

′
m0

, τn

)
= kx′x− ky′y +

√
4k2

r − k2
x′ − k2

y′z − 2krRc

+ky′
(
y′0−vτn−vt

)−
√

4k2
r−k2

x′−k2
y′z

′.

Based on the relation between frequency and time of FMCW signal,
we have t = f/K + 2Rc/c. Consequently, the phase of (14) can also
be expressed as

Φ
(
kx′ , ky′ , kr; x′0, y

′
m0

, τn

)
= kx′x− ky′y +

√
4k2

r − k2
x′ − k2

y′z

+ky′y
′
0
−ky′vτn−ky′v

f

K
−ky′v

2Rc

c
−2krRc+

√
4k2

r−k2
x′−k2

y′R0 (15)
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where R0 = −z′.
Note that the first three terms of (15), i.e., kx′x, ky′y and√

4k2
r − k2

x′ − k2
y′z are linearly dependent on the target position x, y

and z, respectively. Thus the image can be reconstructed by using
inverse Fourier transform. The fourth term ky′y

′
0

is introduced by the
initial position of the array. The term ky′vτn represents the phase
variation corresponding to the elevation-range walk caused by the
motion of the nth antenna element. ky′vf/K is a space-invariant term
also caused by the motion of the array within the signal duration time.
The terms ky′v(2Rc/c) and 2krRc refer to the constant azimuth and
range shifts, respectively, and are introduced by the dechirp-on-receive
approach. The last term

√
4k2

r − k2
x′ − k2

y′R0 represents the constant
range shift.

3. THREE-DIMENSIONAL IMAGING PROCEDURE

Based on the spectrum analysis of the 3-D FMCW backscattered signal
in Section 2, we present a wavenumber domain algorithm for the image
reconstruction. The wavenumber domain algorithm (or called range
migration algorithm) [27–29] is an accurate algorithm to process the
near-field data.

The processing steps of the algorithm are shown in Figure 2.
Removing RVP is not the emphasis of this paper. So it is not addressed.
As can be seen from Figure 2, the phase corrections are the key parts
for the image reconstruction. To remove the unwanted phase in (15),
a 3-D matched filter is given by

GF

(
kx′ , ky′ , kr; τn, Rref

)
=GF1

(
ky′ , kr; τn

)·GF2

(
kx′ , ky′ , kr; Rref

)
, (16)

where

GF1

(
ky′ , kr; τn

)
= exp

[
j

(
ky′y

′
0
− ky′v

f

K
− ky′vτn

)]

exp
[
j

(
−2krRc − ky′v

2Rc

c

)]
,

and

GF2

(
kx′ , ky′ , kr; Rref

)
= exp

[
j
(√

4k2
r − k2

x′ − k2
y′Rref

)]
,

where Rref is the reference range for focus processing, which is generally
defined as the range from the scene center to the aperture center.

Note that the term GF1 must be first multiplied exactly after the
elevation Fourier transform and before the azimuth Fourier transform,
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as shown in Figure 2, due to the fact that the term ky′vτn exists in
the elevation-frequency domain and the azimuth-time domain. Then
the term GF2 is multiplied to correct the range curvature of all
scatterers having minimum range Rref . Residual range curvature is
still present on those scatterers with a minimum range that is different
with Rref [27]. The residual range curvature can be removed by Stolt
mapping, which will be shown in the next.

After matched filtering, the remaining signal becomes

SF

(
kx′ , ky′ , kr; Rref

)
= SIF

(
kx′ , ky′ , kr; τn

)
GF

(
kx′ , ky′ , kr; τn, Rref

)

=
1
v
σ

(⇀
r
)
exp

[−jΦF

(
kx′ , ky′ , kr; Rref

)]
(17)

where

ΦF

(
kx′ , ky′ , kr; Rref

)
= kx′x− ky′y +

√
4k2

r − k2
x′ − k2

y′z

+
√

4k2
r − k2

x′ − k2
y′ (R0 −Rref) . (18)
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Figure 2. Flow diagram of the proposed image reconstruction
method.
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The minus in “−ky′y” is introduced by the scanning direction of the
array. The distinction between the primed and unprimed coordinate
systems can now be dropped since the coordinate systems coincide.

As can be seen from the phase ΦF , (17) suffices for the image
reconstruction if the data are defined continuously in kx, ky, and
kr. However, for practical imaging configurations, the data are
discretely sampled at uniform intervals of position and frequency.
After 2-D Fourier transform with respect to x and y, and matched
filtering, a sampled version of SF (kx, ky, kr; Rref) is obtained, which
are uniformly spaced in kx, ky and kr. However, the samples are

nonuniformly spaced in
√

4k2
r − k2

x − k2
y. In order to reconstruct the

image via 3-D IFFT in (17), the data SF will need to be resampled to
uniformly spaced positions in

√
4k2

r − k2
x − k2

y. This is accomplished by
Stolt interpolation, which converts SF into a 3-D linear phase grating
for targets at all ranges [27]. The appropriate change of variables is√

4k2
r − k2

x − k2
y → kz (19)

where kzs are uniformly spaced.
After Stolt interpolation, (18) becomes
ΦF (kx, ky, kz; Rref) = kxx− kyy + kzz + kz (R0 −Rref) (20)

The aforementioned description is focused on a point target. For
a volume target, we have

SF (kx, ky, kz; Rref) =
∫

(1/v) f (x, y, z) exp [−jkz (R0 −Rref)]

exp [−j (kxx− kyy + kzz)] dxdydz (21)
where f (x, y, z) is the backscattering coefficient of a volume target.

Clearly, a 3-D IFFT can compress the signal in range, azimuth-
range and elevation-range, i.e.,

f(x, y, z) = v

∫
SF (kx, ky, kz; Rref) exp [jkz (R0 −Rref)]

exp [j (kxx− kyy + kzz)] dkxdkydkz (22)
The constant factor relative to 2π is ignored in (22).

However, the change of variables and the interpolation procedures
will introduce approximation errors [16] and are time-consuming. In
this paper, we substitute the Stolt interpolation and IFFT with the 3-
D inverse NUFFT to reconstruct the image. The NUFFT idea was first
presented by Dutt and Rokhlin [17]; later a new approach was proposed
by Liu and Nguyen, using the regular Fourier matrices [18, 19]. A min-
max method for fast and accurate approximation of the NUFFT was
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developed by Fessler and Sutton [21], which is optimal in the min-max
sense of minimizing the worst-case approximation error over all signals
of unit norm.

Here, the NUFFT algorithm developed by Fessler and Sutton is
implemented. For the sake of simplicity, we consider only the 1-D case:

xn =
M−1∑

m=0

ym exp (jωmn), n = 0, 1, . . . N − 1, (23)

where ym represents the nonuniform frequency domain sample, ωm

is the nonuniform digital frequency in radian, and xn is the uniform
output signal in time domain.

The computation of (23) can be summarized as follows:

1) The “gridding” step: Xk =
M−1∑
m=0

vmkym, where vmks denote

interpolation coefficients. This step requires O (JM) operations, where
J is the number of the nearest neighbors to ωm.

2) K-point inverse discrete Fourier transform (DFT) of Xk scaled

by K: x̃n =
K−1∑
k=0

Xk exp(j2πkn/K), 0 ≤ n ≤ N − 1. The output

signal x̃ns are the first N signal values. This step requires O(K log2 N)
operations by using the reduced FFT.

3) Scaling each x̃n by s∗n to get xn, where the sns are the scaling
factors, and “*” denotes conjugate. The overall operation count per
NUFFT is O(JM) + O(K log2 N). Typically, we choose K = 2N and
J ≤ 10.

Therefore, the overall computational requirements are similar to
an FFT but with a larger constant. For more details, the readers are

Table 1. Simulation parameters.

Parameter Value
Carrier frequency 35GHz

Bandwidth 5 GHz
Sampling interval: ∆x′ 0.007m

Number of array elements 64
Sampling interval: ∆y′ 0.007m

Number of samples along y direction 64
Scanning velocity 1m/s

Referenced range R0 1m
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referred to [21]. The computational complexity of the 3-D NUFFT is
known as O (N3 log2 N).

The flow diagram of the image reconstruction process is
demonstrated in Figure 2 in which the 3-D inverse NUFFT can also
be replaced by 1-D inverse NUFFT and 2-D IFFT due to the fact that
kxs and kys are uniformly spaced.
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Figure 3. Phase of the signal for a target in the scene center after
matched filtering with a reference function that makes the stop-and-
go approximation. (a) Phase in the elevation-frequency and range-
frequency domain. (b) Phase in the elevation-frequency and azimuth-
frequency domain.
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4. SIMULATION RESULTS

In this section, simulations are performed to validate the performance
of the proposed method. The simulation parameters are listed in
Table 1.

For a first validation of the derivation, the frequency domain data
in (14) is multiplied by the conventional and the proposed matched
filters, respectively, for a target in the scene center.

Under the stop-and-go approximation, the conventional matched
filter [27] is given by

GF (kx, ky, kr;Rref)=exp
[
j
(√

4k2
r−k2

x−k2
yRref +kyy

′
0
−2krRc

)]
(24)
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matched filtering function. (a) Image in the x-y section plane.
(b) Image in the y-z section plane. (c) Image in the x-z section plane.
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Figure 7. The cubic target model consisting of 8 scatterers.
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Figure 3 shows the phase of the signal after matched filtering with
a reference function that makes the stop-and-go approximation, i.e.,
the phase of the remaining signal after (14) is multiplied by (24).
The phase of the remaining signal in the elevation-frequency and
range-frequency domain, i.e., in the ky − kr domain, is shown in
Figure 3(a), and the phase in the elevation-frequency and azimuth-
frequency domain, i.e., in the ky − kx domain, is illustrated in
Figure 3(b). The phase in the azimuth-frequency and range-frequency
domain is not demonstrated due to the fact that it is not affected by
the motion of the array, as shown in Figure 1.

Figure 4 illustrates the phase results produced by filtering the
signal (14) with the proposed function in (16), i.e., the phase of (17).
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Figure 8. Projections of the 3-D image of the cubic target model onto
the x-y, y-z and x-z planes, respectively, with the matched filtering
function that makes the stop-and-go approximation. (a) Projections
onto the x-y plane. (b) Projections onto the y-z plane. (c) Projections
onto the x-z plane.
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If the signal (14) is completely compensated for by the matched
filter, the phase of the remaining signal, i.e., the phase of (17), should
be constant and does not vary with kx, ky and kr in the case that the
simulated point target is in the scene center, i.e., (x, y, z) = (0, 0, 0)
and R0 = Rref . Clearly, only in Figure 4 does the phase in the support
band is practically constant, indicating that the matched filter does
match the received signal.

Figures 5(a) to (c) show the slices of the reconstructed 3-D image
of a point target located in the scene center. These slices correspond
to the x-y (with z = 0), y-z (with x = 0), and x-z (with y = 0)
section planes, respectively, with the matched filtering function that
makes the stop-and-go approximation. Clearly, the motion of the array
has a significant effect on the azimuth-elevation (the x-y plane) image,
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Figure 9. Projections of the 3-D image of the cubic target model onto
the x-y, y-z and x-z planes, respectively, with the proposed matched
filtering function. (a) Projections onto the x-y plane. (b) Projections
onto the y-z plane. (c) Projections onto the x-z plane.
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as shown in Figure 5(a). It can be seen that the nulls of the image
are raised which make the slice image, i.e., the 2-D impulse response
(or called point spread function) departure from the ideal 2-D sinc
function. In addition, a range walk exists in the elevation direction
which is caused by the motion, as shown in Figures 5(a) and (b). The
image in the x-z plane is not affected by the motion, as shown in
Figure 5(c).

Figures 6(a) to (c) demonstrate the corresponding image results
produced by the proposed matched filtering function. From the
comparison of Figures 5 and 6, the improvements due to the proposed
correction are visible. The dynamic range of the images is 30 dB.

The next simulation is intended to consider a cubic target
consisting of 8 scatterers distributed at the vertices of the cube as
shown in Figure 7. All scatterers have the same radar cross section
(RCS): 1 m2. Figure 8 shows the projection of the images onto the three
main planes, with the matched filtering function that makes the stop-
and-go approximation. The image results produced by the proposed
matched filtering function are shown in Figure 9. The intersections
of the dashed lines represent the real positions of the scatterers. The
defocusing and range walk are clearly seen in Figure 8, which are the
same as shown in Figure 5.

Figure 10 shows the comparison of the computational time (CPU
time) between the Stolt interpolation-based method and the NUFFT-
based method. It is evident that the NUFFT-based method is much
faster than the Stolt interpolation-based method, especially with the
increase of the sample points at the 2-D aperture.
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Figure 10. Comparison of the computational time (CPU time)
between the Stolt interpolation-based method and the NUFFT-based
method, where the horizontal abscissas are corresponding to the
number of sample points at the 2-D aperture.
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5. CONCLUSIONS

A wavenumber domain algorithm with motion compensation to process
the near-field 3-D imaging has been developed. In this algorithm,
the effects of the array motion within the signal duration time have
been described and processing solutions were given. The unwanted
terms caused by the motion have been removed and the focusing
performance is improved. To reduce the computational time of the
image reconstruction process, we substitute the Stolt interpolation and
FFT with a 3-D NUFFT.

The proposed algorithm has been validated with simulations.
The algorithm can also be extended to process the 3-D imaging for
cylindrical scanning geometry.
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