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Abstract—Multi-pole permanent magnetic encoders are used for
wheel speed sensing in automotive systems. This paper discusses
rings and discs magnetized along axial direction. The vector field is
calculated analytically in 3D as sums over all poles. For the case of
discs with vanishing inner and infinite outer diameter the summation
is done in closed form with a new summation formula. The results are
discussed and several plots of field patterns are given in normalized
form: At very small air-gap the field shows an overshoot. At moderate
and large air-gaps it is a sine-function with exponentially decaying
amplitude. The amplitude versus air gap, reading radius, thickness
of the magnetic layer, and number of poles is studied and excellent
agreement with measurements is found. The effect of a steel-back on
the field is explained. It is also shown how to maximize the torque
transmitted in axially magnetized couplings.

1. INTRODUCTION

Active target wheels are used in automotive systems for position and
speed sensing [1–5]. These are rings fixed to a shaft, whose angular
position or velocity should be converted into an electronic signal [6, 7].
Also small drives use these miniature encoders to control the rotation
of the shaft [8]. To this end a large number of small permanent
magnets resides along their circumference. They produce a magnetic
field which is periodic with respect to the angle of rotation. When
the shaft rotates the periodic magnetic field of the code wheel passes a
magnetic field sensor, which is attached to the stator frame. The sensor
converts these apparent oscillations of the magnetic field into digital
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pulses of an electronic output signal. During operation several effects
like tolerances, deformation under load, wear and the slackness of the
bearing cause changes in distance between the code wheel and the
sensor. Therefore it is necessary to investigate the field distribution
around the nominal position of the sensor in order to adjust its
threshold levels with reasonable room for tolerances.

Several authors have calculated the magnetic field pattern
of multi-pole magnetic encoder wheels [9–11], radially polarized
cylinders [12], axially polarized multi-pole discs [13, 14], and tile
magnets with tangential polarization [15, 16]. They have derived
equations for the field resulting from one pole and then summed up the
contributions of all poles numerically. This procedure is apt to analyze
a particular setup. Yet it is less suited to understand the intricate
dependencies of all involved parameters, because it does not provide a
closed form equation of the field pattern.

Periodic permanent magnets or current grids are also used
for surface containment of plasmas (e.g., Tokamaks for nuclear
fusion research). The magnetic fields of these structures were
expressed as rapidly converging Fourier series [17, 18], series
with Bessel functions [19] and in closed form [20, 21]. Two-
dimensional confinement systems for ion sources were calculated
in [22]. For boundary layer control in magnetohydrodynamics
similar arrangements of magnets were investigated with conformal
mapping [23, 24]. The 2D case of an azimuthally magnetized multi-pole
drum for magnetic separators was treated in closed form [25]. Axial
flux permanent-magnet generators and motors and magnetic torque
transducers use similar configurations [26–28].

This work derives analytical field calculations in 3D for discs
with axially magnetized segments. First the field of a single pole is
calculated and then the contributions of all poles are summed up. It is
possible to compute the sum over all poles in closed form. This gives
a highly nonlinear equation that provides insight into the structure of
the magnetic field of such multipoles. The limit of vanishing curvature
where the disc becomes a linear strip is also investigated.

2. DEFINITIONS

For the mathematical treatment of the magnetic field of code wheels
according to Fig. 1 a cylindrical coordinate system (r, ψ, z) with unit
vectors (~nr, ~nψ, ~nz) is used. The z-axis is identical with the axis of
rotation of the shaft onto which the code wheel is mounted. The
permanent magnetic part of the code wheel consists of a ring with inner
diameter 2r1 and outer diameter 2r2, having a width w = r2− r1. The
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Figure 1. A multi-pole magnetic encoder ring for wheel speed sensing:
The ring is composed of 2p segments (drawn for p = 6) of thickness t in
z-direction arranged on the circumference of a ring with inner diameter
2r1 and outer diameter 2r2. Each of the segments is magnetized in
z-direction, however with alternating sign for neighboring segments.
Between two magnetized regions there is a slim wedge, where the
material is not magnetized. An idealized model assumes that the ring
degenerates to a disc (i.e., the inner diameter vanishes and the outer
diameter extends to infinity).

ring is made up of 2p segments, each covering an azimuthal angle

ψk,1 ≤ ψ ≤ ψk,3, 0 ≤ k ≤ 2p− 1, (1)

ψk,1 = −π/(2p) + δ/2 + πk/p = π (−1 + lf + 2k) / (2p) , (2a)

ψk,3 = π/(2p)− δ/2 + πk/p = π (1− lf + 2k) / (2p) . (2b)

Since the p pole pairs are symmetrically arranged the field pattern
exhibits an azimuthal period of 2π/p. Therefore it is sufficient to plot
the field in the interval −π/p ≤ ψ ≤ π/p. Instead of the azimuthal
angel ψ it is common practice to use the distance on the perimeter rψ
as linear coordinate of the field pattern. Here r is the reading radius:
it denotes the distance of the magnetic field sensor from the rotation
axis. The spatial period is equal to the size of one north-pole plus
one south-pole plus two non-magnetic wedges λ = 2π r/p. An angel
δ separates two adjacent regions of magnetization, where the material
is not polarized. This diluting effect is described by the loss factor
lf = p δ/π; e.g., lf = 0.07 means that 7% of the circumference of the
code wheel is not magnetized. In axial direction the code wheel has
a thickness t and extends from −t/2 ≤ z ≤ t/2. The magnetic field
sensor is placed at a distance g = z−t/2 above the wheel: this is called
the air-gap. In this work we focus on code wheels with magnetization
in axial direction ~Mk = (−1)kM~nz.
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3. THE EQUIVALENT CURRENT SHEET APPROACH

First the field generated by the k-th segment ~Bring
k is computed and

then the field ~Bring of the complete encoder is derived by superposition
of all 2p segments:

~Bring =
2p−1∑

k=0

~Bring
k . (3)

Plain superposition is allowed as long as the code wheel is permanent
magnetic with large coercivity. The magnetization ~Mk is replaced by
an equivalent current density ~Sk, according to the rule ~Sk = ~∇× ~Mk [29]
and the small permeability† of the permanent magnetic material is
neglected. The field calculation is simplified by the fact that the
magnetization throughout the segment is homogeneous, so that there
is no equivalent current density within the segment (because the curl
of the magnetization vanishes there). One only has to account for a
current layer of constant current density on these parts of the surface,
which are parallel to the direction of the magnetization. Applying
~Sk = ~∇× ~Mk to the surface of the permanent magnetic segment gives
~αk = −~nk × ~Mk, where ~αk is the equivalent current layer density, and
~nk is the unit vector perpendicular to the surface and pointing outside
of the magnetized volume. Hence, the relevant surface of the k-th
segment can be decomposed into four parts Ak,1 to Ak,4, which are
Ak,1 :

(
ψ′=ψk,1, r1≤ r′≤ r2,−t/2≤z′≤ t/2

)
, (4a)

~nk = −~nψ′ , ~αk,1 = (−1)k M~nrk,1
, ~nrk,1

= cosψk,1~nx + sinψk,1~ny (4b)

Ak,2 :
(
ψk,1 ≤ ψ′ ≤ ψk,3, r

′ = r2,−t/2 ≤ z′ ≤ t/2
)
, (4c)

~nk = ~nr′ , ~αk,2 = (−1)k M~nψ (4d)
Ak,3 :

(
ψ′ = ψk,3, r1 ≤ r′ ≤ r2,−t/2 ≤ z′ ≤ t/2

)
, (4e)

~nk = ~nψ′ , ~αk,3 = − (−1)k M~nrk,3
, ~nrk,3

= cosψk,3~nx + sin ψk,3~ny (4f)

Ak,4 :
(
ψk,1 ≤ ψ′ ≤ ψk,3, r

′ = r1,−t/2 ≤ z′ ≤ t/2
)
, (4g)

~nk = −~nr′ , ~αk,4 = − (−1)k M~nψ′ (4h)
where primed coordinates (r′, ψ′, z′) are used to distinguish the source
points ~r′ from the test points ~r = (r, ψ, z). The total field generated
by the k-th segment is the sum of the fields of the four sheet current
densities ~αk,1 to ~αk,4:

~Bring
k = ~Bring

k,1 + ~Bring
k,2 + ~Bring

k,3 + ~Bring
k,4 . (5)

† For NdFeB magnets with a remanence of 1.2T and a coercivity HcB = 900 kA/m the
relative permeability is 1.2/(4∗π∗10∧−7∗9∗10∧5) = 1.06.
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4. THE FIELD OF A SINGLE POLE OF AN AXIALLY
MAGNETIZED MULTI-POLAR RING

The induction field of the equivalent currents of the k-th pole is
computed by the law of Biot-Savart. For ~αk,1 this gives

~Bring
k,1 (~r) = (−1)k Brem

4π

r2∫

r′=r1

t/2∫

z′=−t/2

~nrk,1
× (~r − ~r′)∣∣~r − ~r ′

∣∣3 dz′dr′ (6)

with the remanence Brem = µ0M . The result is

~Bring
k,1 (~r) = ~V (ψ − ψk,1, z + t/2, r2)− ~V (ψ − ψk,1, z − t/2, r2)

−~V (ψ − ψk,1, z + t/2, r1) + ~V (ψ − ψk,1, z − t/2, r1) (7a)

~nr · ~V (ϕ, ζ, ρ) = tanϕ ~nψ · ~V (ϕ, ζ, ρ) (7b)

~nψ ·~V (ϕ, ζ, ρ)

= (−1)kcosϕ
Brem

8π
ln

√
ζ2+ρ2+r2−2rρcosϕ+(ρ−r cosϕ)√
ζ2+ρ2+r2−2rρcosϕ−(ρ−r cosϕ)

(7c)

~nz · ~V (ϕ, ζ, ρ)=(−1)k Brem

4π
arctan

ζ (ρ−r cosϕ)

r sinϕ
√

ζ2+ρ2+r2−2rρcosϕ
(7d)

The field contribution of ~αk,3 is computed by replacing Brem with
−Brem and ψk,1 with ψk,3. Integration over the current layers ~αk,2 and
~αk,4 in azimuthal direction leads to incomplete elliptic integrals. It will
be shown that in many cases of practical interest these contributions
can be neglected.

5. THE FIELD OF ONE POLE OF AN AXIALLY
MAGNETIZED MULTI-POLAR DISC

If the inner diameter vanishes and the outer diameter moves to infinity
the contribution of the azimuthal sheet currents ~αk,2 and ~αk,4 to the
resulting field becomes zero.

~Bdisc
k = lim

r1→0, r2→∞
~Bring

k = ~Bdisc
k, 1 + ~Bdisc

k, 3

with lim
r1→0, r2→∞

~Bring
k,1 = ~Bdisc

k, 1 , lim
r1→0, r2→∞

~Bring
k, 3 = ~Bdisc

k, 3 . (8)

The radial and azimuthal components of ~V (ϕ, z + t/2, r2) −
~V (ϕ, z − t/2, r2) converge to a finite value in the limit r2 → ∞ al-
though both single terms ~V (ϕ, z + t/2, r2), ~V (ϕ, z − t/2, r2) diverge.
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Hence, the field of one pole of a disc is given by

~nr · ~Bdisc
k,1 = tan (ψ − ψk,1) ~nψ · ~Bdisc

k,1 (9a)

~nψ · ~Bdisc
k,1 = cos (ψ − ψk,1) (−1)k Brem

4π

ln

√
(|z|−t/2)2+r2−r cos(ψ−ψk,1)√
(|z|+t/2)2+r2 − r cos(ψ−ψk,1)

(9b)

~nz · ~Bdisc
k,1 =(−1)k Brem

4π
{f1(ζ, ψ−ψk,1)+f2(ζ, ψ−ψk,1)}|(|z|+t/2)/r

ζ=(|z|−t/2)/r(9c)

f1 (ζ, ϕ) = arctan (ζ/ sinϕ) , (9d)

f2 (ζ, ϕ) = arctan
(
ζ cotϕ/

√
1 + ζ2

)
(9e)

with the abbreviation f (b)− f (a) = f (x)|bx=a.

6. CLOSED FORMS FOR THE SUMS OVER ALL POLES

6.1. The Axial Field Component of Multi-polar Discs

With (1)–(3), (8), and (9c)–(9e) a closed form expression for the axial
field of code discs with 2p poles is obtained

Bdisc
z =

2p−1∑

k=0

~nz ·
(

~Bdisc
k,1 + ~Bdisc

k,3

)
. (10)

By use of the equation (cf. Appendix A)
2p−1∑

k=0

(−1)k (f1 (ζ, ϕ− πk/p) + f2 (ζ, ϕ− πk/p)) = 2 arctan

(
Sh(ζ; p)

sin (pϕ)

)
(11)

with Sh (ζ; p) as defined in Appendix B, one gets

Bdisc
z =

Brem

2π

∑

ψ̄

arctan
(

Sh (ζ; p)
cos ψ̄

)∣∣∣∣
(z+t/2)/r

ζ=(z−t/2)/r

(12a)

where the sum is taken over the two values ψ̄ = pψ + πlf /2 and
ψ̄ = pψ − πlf /2. In other words

Bdisc
z =

Brem

2π

∑

ψ̄

arctan

[
cos ψ̄[Sh ((z+t/2)/r; p)−Sh ((z−t/2)/r; p)](
cosψ̄

)2
+Sh ((z+t/2)/r; p) Sh ((z − t/2)/r; p)

]
(12b)

Equations (12a) and (12b) show the periodicity of the field pattern
2π/p. For δ = 0 or ψ = 0 (12b) collapses to a single term. Fig. 2
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Figure 2. Axial field for various cases. Thickness and radius are equal
for all cases: 1 mm and 25 mm, respectively. Number of poles, air-gap
and loss factor vary according to the table.

Case # 1 # 2 # 3 # 4 # 5
p 33 34 32 2 1

g [mm] 0.3 0.3 1.0 1.0 2.0
lf 0 0.6 0 0 0.6

shows the field profile for various cases: # 3 is harmonic for moderate
and large z. In contrast to this, # 1 shows the profile for small z and
δ = 0. # 2 is for small z and lf = 0.6. # 4 shows the field of a
disc with only two pole pairs and zero loss factor: it has significant
overshoot. # 5 shows the pattern for a disc with only 1 north- and
1 south-pole with lf = 0.6. The curves with overshoot have smaller
amplitudes than curves without overshoot.

The limit of vanishing air-gap |z| → t/2 is readily calculated
by (12a). This shows that the field on the surface of the disc increases
with increasing number of poles, even though each pole becomes
smaller. Fig. 3 shows that for large pole count the field amplitude
at ψ = 0 for vanishing air-gap saturates at half of the remanent field,
whereby this trend is accelerated in the dilute limit δ → π/p , i.e.,
lf → 1, when the various magnetic poles do not interact notably any
more. This is analogous to the field on top of an axially magnetized
cylindrical magnet, which increases with decreasing diameter until its
maximum value of half of the remanence, when the magnet degenerates
to a needle.
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Figure 3. Magnetic field above the center of a north pole (ψ = 0) on
the surface of a code-wheel versus number of pole-pairs (various loss
factors, t/r = 1/15). With large number of poles the field approaches
half of the remanence. For small number of poles the field magnitude
directly above the center-line of a pole decreases. With growing loss
factor — i.e., smaller magnetized segments — the field magnitude in
the center of the segment increases.

Near the z-axis the field is small of the order rp

lim
r→0

Bdisc
z =

2Brem

π
(r sgn z)p((2z−t)−p−(2z+t)−p)cos

(
δ

2

)
cospψ (13)

with sgn z = z/|z|. Contrarily the field decays only of the order 1/r for
large reading radius. The maximum Bz versus rotational position ψ is
called the amplitude B̂z and occurs at ψ̂z. For lf = 0 the amplitudes
are obtained by differentiating (12a) versus ψ and equating the result to
zero. There is always a relative extreme B̂

(no)
z at ψ = 0, π/p, 2π/p . . .

with

B̂(no)
z =Bdisc

z (ψ=0)=
Brem

π

{
arctan

[
Sh

(
2z+t

r
; p

)]
−arctan

[
Sh

(
2z−t

r
; p

)]}
(14a)

Yet only for moderate and large air-gaps this is equal to the
amplitude (cf. Fig. 2: #1, 2, 3). At very small air-gaps g the Bz-
field exhibits overshoot B̂

(os)
z ≥ B̂

(no)
z as shown in Fig. 2: #4, 5,

at rotational position ψ̂z:
(
cos

(
pψ̂z

))2
= Sh ((g + t)/r; p) Sh (g/r; p).

The overshoot amplitude is
B̂(os)

z = Bdisc
z

(
ψ= ψ̄z

)

=
Brem

π

{
arctan

√
Sh((z+t/2)/r; p)

Sh((z−t/2)/r; p)
− arctan

√
Sh((z−t/2)/r; p)

Sh((z+t/2)/r; p)

}
(14b)
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The required condition for overshoot is Sh ((g + t)/r; p) Sh (g/r; p) ≤ 1,
which by use of (B10) is identical to (g + t)/r ≤ Sh (1/Sh (g/r; p); 1/p).
With (B12) we obtain a limit curve which separates the regime of
overshoot of Bz from the regime of non-overshoot:

t

r
≤ sinh

{−1
p

ln
[
tanh

(p

2
arcsinh

g

r

)]}
− g

r
(15a)

Figure 4 shows this limit curve in the p g/r-p t/r-plane: Although
strictly speaking the limit curve depends on p it converges rapidly for
large p, so that we may use the limit of p →∞ except for p = 1, 2, 3:

pt

r
≤ − ln

(
tanh

pg

2r

)
− pg

r
≈ − ln

pg

2r
− pg

r
(15b)

Thus, overshoot B̂
(os)
z is limited to small t and small g. Even if t

vanishes there is no B̂
(os)
z for pg/r > 0.8814 . . . 1.0 (depending on p, cf.

Fig. 4).
For practically all sensors and most magnetic coupling applications

it holds |z|+t/2 ¿ r so that we can approximate Sh (ζ; p) → sinh p ζ in
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Figure 4. Limit curves (15a) for various p in the (pg/r; pt/r)-plane.
Above the limit curves the Bz (ψ) patterns exhibit no overshoot;
below them there is overshoot. Four discs with specific parameters
(pg/r; pt/r) are denoted by points. The gray point at pg/r = 1
corresponds to p = 1. The black points are for infinitely large p. The
corresponding Bz (ψ) patterns are given as insets. Thin discs with
very small air-gaps are represented by points below the limit curve:
they exhibit overshoot. Thick discs at moderate and large air-gaps
correspond to points above the limit curve: they have sinusoidal Bz (ψ)
patterns. Points on the limit curve have flat peaks: there the second
derivative of Bz (ψ) vanishes. If the points move on the limit curves to
the left this leads to rectangular pulse shapes.
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(12a) and (12b) (cf. (B14)). For zero loss factor the overshoot B̂
(os)
z ≥

B̂
(no)
z occurs at ψ̂z with cos

(
2pψ̂z

)
= cosh (2pz/r)− cosh (pt/r)− 1:

B̂z
∼=

{
B̂

(os)
z . . .[1− sinh (pg/r)]/cosh (pg/r) ≤ tanh (pt/(2r))

B̂
(no)
z . . .[1− sinh (pg/r)]/cosh (pg/r) ≥ tanh (pt/(2r))

(16a)

B̂(os)
z =B̂z

(
ψ= ψ̂z

)
=

Brem

π
arctan

√
2 cosh (pz/r) sinh (pt/(2r))√
cosh (2pz/r)−cosh (pt/r)

(16b)

B̂(no)
z =B̂z (ψ=0)=

Brem

π
arctan

4 cosh (pz/r) sinh (pt/(2r))
2 + cosh (2pz/r)−cosh (pt/r)

(16c)

(16b) grows monotonically versus p , yet (16c) shows a relative
maximum versus p. Similar findings are reported in [30] and this will
become important in Section 10.

Figure 5 compares both amplitudes versus normalized air-gap
p g/r. Unless the air-gap is not extremely small we may also
neglect the cos2-term in the denominator of (12b). For moderate
and large air-gaps we may skip the artcan-evaluation, as long as
10 sinh (p t/(2r)) cosh (pz/r) ¿ cosh (2p z/r) holds.

Finally one obtains a simple exponential decay versus air-gap

Bdisc
z ≈ 2pt

Brem

πr
cos

p δ

2
exp

(−p |z|
r

)
cos (pψ) (17)
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Figure 5. Amplitudes B̂
(no)
z without overshoot (thin lines with

symbols) and B̂
(os)
z with overshoot (thick lines). Pronounced overshoot

is observed for thin discs t ¿ r/p. B̂
(os)
z tends to Brem/2 at vanishing

air-gap.
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Figure 6. Amplitude of magnetic field Bz of a code-wheel versus
magnetic air-gap: comparison of measurement and calculation. The
open circles represent measurements on the encoder seal JT65 from
SNR Roulements (France) with the following data: 44 pole pairs,
t = 1 mm, r1 = 28.75mm, r2 = 32.85mm, the permeable steel
supporting ring is 0.5 mm thick. The field was measured with a
Gaussmeter, which was positioned at a reading radius r = 31.2mm.
This measurement shows that the model of a code disc approximates
the field of a real code wheel with steel back sufficiently accurately.

The exponential decay of the field versus air-gap is known
empirically [1, 2] and theoretically [23] since a long time. With (12)
and (17) it becomes apparent how this exponential law develops from
a multi-pole of order p in the limit |z| ¿ r.

Figure 6 compares measurements with the exact field solution
from (12) and the approximate one of (17): the simplified model
of a disc approximates the axial magnetic field of realistic encoders
accurately enough for most applications. Thereby the code ring under
investigation was mounted on a thin steel support ring, which is highly
permeable. For air-gaps which are smaller than the width of the ring
|z| ≤ w the steel ring can be replaced by an infinite plane, which is
mathematically accounted for by current images [31].

The far field of the disc is obtained by |z| À r.

lim
z→∞Bdisc

z = 2pt
Brem

πz
cos

p δ

2

(
2 |z|
r

)−p

cos (pψ) (18)

It shows that the arrangement is a multipole of order p.
In the limit of t → 0 the Bz-pattern of (12a) becomes

lim
t→0

Bdisc
z =

ptBrem

2π
√

z2 + r2

∑

ψ̄

Ch (z/r; p) cos ψ̄

cos2 ψ̄ + Sh2 (z/r; p)
(19)
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6.2. The Radial Field Component of Multi-polar Discs

For infinitely thin discs (9a) reads

lim
t→0

~nr · ~Bdisc
k,1 =

−Bremt

4πr

|z|√
r2+z2

(−1)k sin (ψ−ψk,1)√
1+(z/r)2−cos (ψ−ψk,1)

(20)

Brem → ∞ while t → 0 so that their product remains constant.
With [32] one can sum up all terms in closed form. This is repeated
for ~αk,3 and finally leads to

lim
t→0

Bdisc
r =

−Bremtp

2πr
√

r2 + z2

∑

ψ̄

|z|Ch (|z|/r; p) cos ψ̄

Sh2 (|z|/r; p) + cos2 ψ̄
(21)

The sum over ψ̄ is like in (12a). (21) is also obtained from (12) in the
limit t → 0 by the relation ∂Br/∂z = ∂Bz/∂r (vanishing curl). Thus
Br- and Bz-fields are related by (19) and (21).

r lim
t→0

Br = − |z| lim
t→0

Bz (22)

At moderate and large z and for lf = 0 the Br-field has its amplitude
at 0◦: Br (ψ = 0) = B̂

(no)
r . For very small z and lf = 0 the Br-

field exhibits an overshoot: Br

(
ψ = ψ̂r

)
= B̂

(os)
r > B̂

(no)
r with

ψ̂r = arccos (Sh (|z|/r; p)). Comparison with Section 6.1 shows that
Bz-field and Br-field have their maxima and overshoot at same angular
positions ψ̂r = ψ̂z and also the same limit curve Sh (|z|/r; p) = 1 applies
(due to (22)). With (B10) the limit curve can also be given explicitly
|z|/r = Sh (1; 1/p). The amplitudes are

lim
t→0

B̂(os)
r =

|z|
r

lim
t→0

B̂(os)
z =

Brempt

πr

|z|√
r2 + z2

1
2

Ch (|z|/r; p)
Sh (|z|/r; p)

(23a)

lim
t→0

B̂(no)
r =

|z|
r

lim
t→0

B̂(no)
z =

Brempt

πr

|z|√
r2 + z2

1
Ch (|z|/r; p)

(23b)

It is interesting to study the z-dependence of (23):

lim
z→0

lim
t→0

B̂(os)
r = Bremt/(2πr) and lim

z→0
lim
t→0

B̂(no)
r = 0 (24)

Starting at z = 0 B̂
(os)
r does not vanish whereas B̂

(no)
r vanishes.

Then, for growing z-distance both amplitudes grow! B̂
(os)
r attains its

maximum at the limit curve |z|/r = Sh (1; 1/p):

lim
t→0

B̂(os)
r ≤ Bremt

πr

p√
2

Sh (1; 1/p)
Ch (1; 1/p)

for 0 < |z| < r Sh (1; 1/p) (25)
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B̂
(no)
r grows even further until a maximum is reached at zmax defined

by the equation

p
|zmax|

r

√
1 + (zmax/r)2

Sh (|zmax|/r; p)
Ch (|zmax|/r; p)

= 1 (26)

The solution is pzmax/r = 1 for p = 1, pzmax/r = 1.11179 for p = 2,
and pzmax/r = 1.19968 for large p. The amplitude is

lim
t→0

B̂(no)
r (z = zmax) = (1.0 . . . 1.32549)

Bremt

2πr
(27)

where the factor 1.0 applies for p = 1, and the factor 1.32549 applies
for large p.

Near the rotation axis B̂
(os)
r is not defined, since it must

hold |z|/r ≤ Sh (1; 1/p). Thus there is no overshoot near the
rotation axis. However B̂

(no)
r is defined there and it diminishes

like (r/|z|)p−1
/√

r2 + z2. At large radial distance the Br-field

diminishes like r−2. Thus for p > 1 there must be a maximum at
intermediate radial distances‡, which can be found by differentiation
∂B̂

(no)
r (r = rmax)

/
∂r = 0. This gives

p
|z|

rmax

√
1 + (z/rmax)

2 Sh (|z|/rmax; p)
Ch (|z|/rmax; p)

= 2 + (z/rmax)
2 (28)

the solution of which is p |z|/rmax = 2.2634 for p = 2 and decreases to
2.0653 for large p.

For p ζ > 1 À ζ it holds Ch (ζ; p) → exp (p ζ)/2. Integration
of (21) over the thickness gives

Bdisc
r → −2Bremp t |z|

π r2
cos

(
πlf
2

)
exp

(−p |z|
r

)
cos pψ (29)

for p (|z| − t/2) > r À |z|+ t/2. In the general case closed integration
of (21) over the thickness is not possible

Bdisc
r =

−Brem

2π

∑

ψ̄

β2∫

β=β1

(
cos ψ̄

)
sinh (β/p) coshβ

(coshβ)2 − (
sin ψ̄

)2 dβ (30)

with β1 = p arcsinh ((|z| − t/2)/r), β2 = p arcsinh ((|z|+ t/2)/r). For
large p one may replace sinh (β/p) → β/p. Then the integral can be
solved and leads to a clumsy expression containing poly-logarithms of

‡ For p = 1 the amplitude B̂
(no)
r does not vanish at r = 0: it has its maximum there and

it decreases monotonically versus radial distance.
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complex valued arguments. It is more pragmatic to develop coshβ into
powers of exp (−β).

Bdisc
r

∼= Brem

pπ

∑

ψ̄

∞∑

m=0

(−1)m cos
(
(2m+1) ψ̄

)

2m + 1
exp (− (2m+1)β)|β2

β1
(31)

6.3. The Azimuthal Field Component of Multi-polar Discs

The procedure for the radial component also applies for the azimuthal
component. With [33] one gets

lim
t→0

Bdisc
ψ =

ptBrem

2πr

∑

ψ̄

Sh (z/r; p) sin ψ̄

cos2 ψ̄ + Sh2 (z/r; p)
(32)

The same result is obtained from (19) by use of ∂Bz/∂ψ = r∂Bψ/∂z
(vanishing curl). For finite thickness (32) may be integrated

Bdisc
ψ (r, ψ, z) =

1
t

t/2∫

z′=−t/2

lim
t→0

Bdisc
ψ

(
r, ψ, z − z′

)
dz′. (33)

The integration does not seem to be possible in a rigorous analytical
way. With (B12) and β1, β2 like in (30) it gives

Bdisc
ψ =

Brem

2π

∑

ψ̄

β2∫

β=β1

sin ψ̄ cosh (β/p) sinh β

(sinhβ)2 +
(
cos ψ̄

)2 dβ (34)

For large p we may approximate cosh (β/p) → 1, which gives

Bdisc
ψ

∼= −Brem

2π

∑

ψ̄

arctan
coshβ

sin ψ̄

∣∣∣∣
β2

β1

(35)

(35) and (12) do not fulfill ∂Bz/∂ψ = r∂Bψ/∂z in a strict sense,
because (35) is only an approximation for large p. It is interesting to
note that Bψ is the only field component without overshoot at small
air-gaps.

7. THE FIELD OF A STRAIGHT, VERTICALLY
MAGNETIZED MULTI-POLAR STRIP

7.1. The Vertical Field Component of Multi-polar Strips

For large reading radius r À λ one may neglect the curvature of the
polarized segments by r → ∞, while the period λ = 2π r/p remains
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constant in (12). This implies p → ∞. In addition, the angular
coordinate ψ is replaced by a linear coordinate x = rψ. With (B14)
and (B15), (12) reads

Bstrip
z =

Brem

2π



arctan


 2 cos

(
2πx
λ − πlf

2

)
sinh

(
πt
λ

)
cosh

(
2πz
λ

)

cos2
(

2πx
λ − πlf

2

)
+sinh2

(
2πz
λ

)− sinh2
(

πt
λ

)


+

arctan


 2 cos

(
2πx
λ + πlf

2

)
sinh

(
πt
λ

)
cosh

(
2πz
λ

)

cos2
(

2πx
λ + πlf

2

)
+ sinh2

(
2πz
λ

)− sinh2
(

πt
λ

)





 . (36)

At large air-gaps (36) can be approximated by

Bstrip
z

∼= 4Brem

π
sinh

(
πt

λ

)
cos

(
πlf
2

)
exp

(−2π |z|
λ

)
cos

(
2πx

λ

)
(37)

Note that the vertically polarized strip is assumed to be infinitely wide
w = r2 − r1 → (∞− 0). Hence, the model is a 2D approximation
with ∂/∂y = 0 for all field components. Equations (36) and (37) are
in agreement with [21].

7.2. The Horizontal Field Component of Multi-Polar Strips

For large radius and large number of pole pairs (32) is

lim
r→∞ lim

t→0
~nψ · ~Bdisc =

tBrem

λ
sinh

2π |z|
λ

∑

ψ̄

sin
(
ψ̄

)

cosh2 (2πz/λ)−sin2
(
ψ̄

) (38)

Integration over the thickness gives

Bstrip
x = lim

r→∞~nψ · ~Baxial disc =
Brem

4π

×ln
{

cosh (π (t− 2 |z|) /λ) + sin (π (2x/λ− lf /2))
cosh (π (t− 2 |z|) /λ)− sin (π (2x/λ− lf /2))

× cosh (π (t + 2 |z|) /λ)− sin (π (2x/λ− lf /2))
cosh (π (t + 2 |z|) /λ) + sin (π (2x/λ− lf /2))

× cosh(π (t−2 |z|) /λ)+sin(π (2x/λ+lf /2))
cosh(π (t−2 |z|) /λ)−sin (π (2x/λ+lf /2))

× cosh(π (t+2 |z|) /λ)−sin (π (2x/λ+lf /2))
cosh(π (t+2 |z|) /λ)+sin (π (2x/λ+lf /2))

}
(39)

which is in agreement with [21]. For moderate and large air-gaps (39)
may be approximated by

Bstrip
x

∼= 4Brem

π
sinh

(
πt

λ

)
cos

(
lf

π

2

)
exp

(
−2π

|z|
λ

)
sin

(
2π

x

λ

)
(40)
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For arbitrary air-gap and zero loss factor the amplitude of (39) is given
at x = λ/4 (no overshoot in Bψ).

Bstrip
x

(
x =

λ

4

)
=

Brem

π
ln

tanh (π (|z|+ t/2) /λ)
tanh (π (|z| − t/2) /λ)

(41)

For large |z| (41) goes to (40) while for vanishing air-gap |z| → t/2 the
amplitude of the field diverges logarithmically

Bstrip
x

(
x =

λ

4
, |z| → t

2

)
=
−Brem

π
ln

(
π
|z| − t/2

λ

)
. (42)

This is in contrast to the z- and r-components, which remain finite
even at zero air-gap (cf. (14b) and Fig. 5).

7.3. The Transverse Field Component of Multi-polar Strips

In the limit r → ∞ and p → ∞ with p/r = 2π/λ the transverse
component in (30) vanishes with the order 1/r.

Bstrip
y =

−Bremλ

4π2r

∑

ψ̄

2π(|z|+t/2)/λ∫

β=2π(|z|−t/2)/λ

(
cos ψ̄

)
β coshβ

(coshβ)2 − (
sin ψ̄

)2 dβ (43)

7.4. Comparison of Vertical and Horizontal Components

Since the curl of the B-field vanishes in free space, vertical and
horizontal field components are not independent. With (36) and (39)
we can prove

∂Bx/∂z = ∂Bz/∂x (44a)

The divergence of the field also vanishes in free space. This links the
x- and z-components to the y-component:

∂By/∂y = −∂Bx/∂x− ∂Bz/∂z (44b)

With (36) and (39) we get

∂By/∂y = 0 (44c)

Also the higher order derivatives ∂nBstrip
y

/
∂yn vanish according

to (44b). Hence, within the framework of our 2D-model the By-field
is zero. In reality the By-field vanishes only in the center plane y = 0
and in fact it is a significant problem for magneto-resistive sensors.
Therefore we extend the theory in Sections 9 and 10 to finite widths
w of multi-polar strips.
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Figure 7. Comparison of vertical and horizontal field components
near the limit curve (15a) (i.e., for small yet not very small air-gaps).
Both strips are 2mm thick, each pole extends 6.55 mm (= λ/2) in x-
direction. Test points are 1 mm above the strips. No non-magnetic
gap between neighboring north and south poles (lf = 0).

All components fade out exponentially at large air-gaps: They
drop by a factor of expπ = 23.1 if the air-gap increases from λ to 2λ.
At large air-gap the amplitudes of both components Bx, By are equally
strong (as long as w →∞ still holds).

Bstrip
z (x = 0, z) = Bstrip

x (x = λ/4, z) for z large. (45)

With the x- and z-components in quadrature and with identical
amplitudes this inherently implies the exponential decay versus z:
Bstrip

x = f(z) sin (2πx/λ) and Bstrip
z = f(z) cos (2πx/λ) in (44a) gives

a differential equation with the solution f(z) ∝ exp (−2πz/λ).
Near the limit curve (15a) (i.e., at small but not very small air-

gaps) Fig. 7 shows both field components: Bz is similar to a rectangular
waveform whereas Bx resembles a triangular shape. Hence, Bz is
steeper at its zero crossings.

At very small air-gaps the horizontal field component has larger
spikes than the vertical one due to its poles.

As shown in Fig. 7 the two orthogonal components are in
quadrature: Bx assumes extreme values at the zeroes of Bz and vice
versa. This may be used in speed sensors [34].

With (37) and (40) one can investigate the effect of a steel-back on
the magnetic field of a code wheel in the case of large air-gaps. First
we introduce z = g + t/2. Due to the method of images one takes
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account for the steel back simply by replacing t with 2t. This leads to

Bstrip
x (with steel back)

Bstrip
x (without steel back)

∼= 1 + exp
−2πt

λ
(46)

Thus, only for thin code wheels the steel back doubles the magnetic
field. For common thicknesses t/λ = 0.2 the steel back increases the
field only by 28%.

8. EFFECTS OF FINITE WIDTH ON THE VERTICAL
FIELD COMPONENT OF MULTI-POLAR STRIPS

In Section 6.1 closed-form equations for the axial field component of
discs were given. However, in typical code wheel applications the
geometry is far from a disc, so that the question arises, in how far
the field of a code ring differs from the one of a disc. To this end let
us consider a simple geometry with a minimum number of parameters:
r → ∞ so that the disc transforms to a linear strip, neglect the loss
factor lf → 0 and the thickness of the strip t → 0, and replace the
resulting sheet magnetization by a current flowing at its boundaries
M × t → I as shown in Fig. 8.

 

Figure 8. Definition of geometry for a linear strip of finite width
w, vanishing loss factor lf and vanishing thickness t. The strip is
composed of rectangular sections of length λ/2 in x-direction and
width w in y-direction; within the rectangle the infinitely thin layer is
magnetized in positive z-direction for even k and negative z-direction
for odd k — k beeing the index of the segment. The magnetization
M within each segment can be replaced by a current I = M × t on its
circumference, as shown.

(19) gives the field at y = 0 if the width of the strip is infinite

Bstrip
z → 2µ0I

λ

cos (πξ) cosh (πζ)
cos2 (πξ) + sinh2 (πζ)

(47a)
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Figure 9. For small width w, i.e., small slimness s, the field decreases
slightly steeper than for infinitely wide strips. Yet the difference is
negligible for common applications of wheel speed sensing with ζ < 3.
s = 1.84 is the slimness of a typical code wheel.

with the normalized coordinates ξ = 2x/λ and ζ = 2z/λ. The primitive
interval is spanned by −1 ≤ ξ ≤ 1. On the other hand the law of Biot-
Savart gives for the z-component of the field originating from the k-th
rectangular current loop

B(k)
z =(−1)k µ0I

2πλ
s





0.5−ξ−k√
(0.5−ξ−k)2+ζ2+(s/2)2

[
1

(0.5−ξ − k)2+ζ2
+

1

ζ2+(s/2)2

]

+
0.5 + ξ + k√

(0.5 + ξ + k)2 + ζ2 + (s/2)2

[
1

(0.5 + ξ + k)2 + ζ2
+

1

ζ2 + (s/2)2

]

 (47b)

with the slimness of the strip s = 2w/λ. The total field is obtained by
a summation over all k: −∞ ≤ k ≤ ∞. Fig. 9 compares the amplitude
of the vertical field Bz versus air-gap for s = ∞ and s = 1.84 (which is
the slimness of a typical encoder ring JT65, cf. Fig. 6). The difference
is small at small air gaps. At larger air gaps the narrow strip has
smaller field than the infinitely wide strip: at ζ = 1 the difference is
5%, at ζ = 2 it is 20%, and at ζ = 10 it is 60%.

9. THE TRANSVERSE FIELD OF MULTI-POLAR
STRIPS

In Sections 7.3 and 7.4 we saw that our two-dimensional model is not
able to describe the magnetic field component parallel to the width of
the multi-polar strip. Nevertheless, for magneto-resistive sensors this
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component is of considerable interest. So we derive it from the vector
potential of a magnetic dipole [35]:

d3 ~Ap =
Brem (~r′)

4π
~nz × ~r − ~r′

|~r − ~r′|3 dx′dy′dz′ (48)

With ~B = ~∇× ~Ap we get

d3By (~r) =
3Brem (~r′)

4π

(y − y′) (z − z′) dx′dy′dz′
(
(x− x′)2 + (y − y′)2 + (z − z′)2

)5/2
(49)

Integration over −w/2 < y′ < w/2 and −t/2 < z′ < t/2 is simple
since Brem (~r′) is only a function of x′. We develop the periodic
magnetization pattern into a Fourier series

Brem

(
~r′

)
=

∞∑
n=0

(−1)n 4Brem

π (2n + 1)
cos

(
π

(
n+

1

2

)
lf

)
cos

(
2π (2n+1)

x′

λ

)
(50)

The final integration over −∞ < x′ < ∞ gives

By =
2Brem

π2

∞∑

n=0

(−1)n

2n + 1
cos

(
π

(
n +

1
2

)
lf

)
cos

(
2π (2n + 1)

x

λ

)

× K0

(π

λ
(2n + 1)

√
η2 + ζ2

)∣∣∣
2y+w

η=2y−w

∣∣∣∣
2z+t

ζ=2z−t

(51)

with the modified Bessel function K0. A closed form summation over
index n seems not to be possible, but luckily K0 falls off drastically for
large arguments. If we use only the lowest order term n = 0 the error

is less than 1% for
√

(2 |y| − w)2 + (2 |z| − t)2
/

λ > 0.66 and it is less

than 0.1% for
√

(2 |y| − w)2 + (2 |z| − t)2
/

λ > 1.02. Therefore the

solution (51) with n = 0 is a good approximation for test points not
too close to the edges y = ±w/2, z = ±t/2 of the strip (cf. Fig. 10).

For small y we may expand (51) into a Taylor series in y and for

large
√

w2 + (2 |z| − t)2
/

λ we may use the asymptotic expansion for

the Bessel functions [36], which gives

By ≈ 8Brem

π

wy√
2λ

cos
(π

2
lf

)
cos

(
2π

x

λ

)

×





exp
(
−π

λ

√
w2 + (2z − t)2

)

(
w2 + (2z − t)2

)3/4
−

exp
(
−π

λ

√
w2 + (2z + t)2

)

(
w2 + (2z + t)2

)3/4





(52a)
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For most sensor applications one of the two terms in (52a) dominates
so that we obtain a short approximation for small y

By ≈ 8Brem

π

wysgn (z)√
2λ

cos
(π

2
lf

)
cos

(
2π

x

λ

) (
w2+(2 |z|−t)2

)−3/4

× exp
(
−π

λ

√
w2+(2 |z|−t)2

)
(52b)

For y close ±w/2 to and z close to ±t/2 there is again a single dominant
term in (51) which gives

By ≈ 2Brem

π2

∞∑

n=0

(−1)n sgn (yz)
2n+1

cos
(
π

(
n+

1
2

)
lf
)

cos
(
2π(2n+1)

x

λ

)

×K0

(
π

λ
(2n + 1)

√
(2 |y| − w)2 + (2 |z| − t)2

)
(53a)

Near the edges of the strip the field diverges logarithmically

lim
2|y|→w ∧ 2|z|→t

By =
−Brem

π2
sgn (yz) cos

(π

2
lf

)

× cos
(
2π

x

λ

)
ln

((
2 |y|−w

λ

)2

+
(

2 |z|−t

λ

)2
)

(53b)

For test points not too close to the edges of the multi-polar strip we
may again use the asymptotic expansion for the Bessel functions for
large arguments to get

By≈sgn (yz)
√

2λ
Brem

π2
cos

(π

2
lf

)
cos

(
2π

x

λ

)exp

(
−π
λ

√
(2 |y|− w)2+(2 |z|−t)2

)

(
(2 |y|−w)2+(2 |z|−t)2

)1/4
(54)

The By-field is in phase with the Bz-field and in quadrature to the
Bx-field. Therefore the projection of the B-vector into the xy-plane
rotates on an ellipse with long axis in x and short axis in y directions.
The By-field is zero in the symmetry plane y = 0. It increases linearly
in y for small y, and it decreases exponentially for large widths of
the multi-polar strip. Therefore it is good practice to use wide strips
(w = 12 . . . 15 mm) for magneto-resistive sensors.

Since the curl of the magnetic field vanishes in free space we get
∂Bx/∂y = ∂By/∂x and ∂Bz/∂y = ∂By/∂z. Therefore we obtain the
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y-dependence of Bx- and Bz-fields by integration

Bx (x, y, z) = −
∞∫

y′=y

∂By (x, y′, z)
∂x

dy′, (55a)

Bz (x, y, z) = −
∞∫

y′=y

∂By (x, y′, z)
∂z

dy′ (55b)

Inserting (51) into (55a) and (55b) gives accurate 3D-formulae for the
fields of pole-strips with finite width w. A Taylor series expansion for
small y shows that the Bx- and Bz-fields depend parabolically on y yet
only the Bz- component may have a vanishing curvature:

∂2Bx

∂y2

∣∣∣∣
y=0

=
∂2By

∂x∂y

∣∣∣∣
y=0

= 16Brem
w

λ2

∞∑

n=0

(−1)n (2n + 1) cos
(

π

(
n +

1
2

)
lf

)

× sin
(
2π (2n+1)

x

λ

)
K1

(π

λ
(2n+1)

√
w2+ζ2

)/√
w2+ζ2

∣∣∣
2z+t

ζ=2z−t
(56a)
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Figure 10. By-field of a multipolar strip: Comparison of analytical
solution (51) (n = 0 term only) with finite-element simulations (FEM)
shows good agreement for all air-gaps g and all y-positions even beyond
the edge of the strip. Strip data: remanence = 500 mT, coercivity
Hcb = 355 kA/m, λ = 4 mm, w = 6.6mm, t = 2.4mm, with steelback.
The maximum By-field is given at the edge of the strip y = w/2.
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This curvature is always negative — there is no real zero for it.

∂2Bz

∂y2

∣∣∣∣
y=0

=
∂2By

∂y∂z

∣∣∣∣
y=0

= 16Brem
w

λ2

∞∑

n=0

(−1)n (2n + 1) cos
(

π

(
n +

1
2

)
lf

)

× cos
(
2π (2n+1)

x

λ

)
ζK2

(π

λ
(2n+1)

√
w2+ζ2

)/(
w2+ζ2

)∣∣∣
2z+t

ζ=2z−t
(56b)

In the n = 0-approximation this function has a zero: e.g., for z =
3.0mm, w = 14 mm, t = 2mm, and λ = 11.78mm. Therefore sensor
systems which detect the Bz-component can be made more robust
against position tolerances. This is an advantage of Hall plates over
magneto-resistors in true power-on sensors.

Inserting (51) into (55a) and (55b) and developing for t2 + w2 ¿
y2 + z2 gives the three-dimensional fields at large distance,

Bx

By

Bz

}
∼= Bremtw

πλ3/2
cos

(π

2
lf

) exp
(
−2π

λ

√
y2 + z2

)

(y2 + z2)5/4





z
[
λ + 4π

√
y2 + z2

]
sin (2πx/λ)

yz

[
4π + 4λ√

y2+z2
+ 5λ2

4π(y2+z2)

]
cos

(
2π x

λ

)
[
λ
(
z2 − 2y2

)/√
y2 + z2 + 4πz2

]
cos (2πx/λ)

(57)

For |y| ¿ |z| one gets a simple far-field approximation

Bx

By

Bz




∼= 4Bremtw

λ3/2
√
|z| cos

(π

2
lf

)
exp

(−2π |z|
λ

) 



sin (2πx/λ)
(y/z) cos (2πx/λ)
cos (2πx/λ)

(58)

So the 3D-fields of (58) decrease by an extra factor w
/√

λz in contrast
to (37). With the data of Fig. 9 this gives 0.41 for ζ = 10, which agrees
well with the reported −60%.

10. TORQUES BETWEEN MULTI-POLAR DISCS

Torques transmitted in permanent magnetic couplings are subject of
recent research [37–42]. The force density of a magnetic field onto
some magnetization pointing in z-direction is ~f = M ~∇Bz. In the case
of discs or rings we are interested in the tangential component of the
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nabla operator: (1/r) ∂/∂ψ. The torque is obtained by integration of
radial distance times force density over the volume of the ring

T =
∫

rfψdV = 2p
Brem

µ0

r2∫

r=r1

ψ0+π(1−lf )/(2p)∫

ψ=ψ0−π(1−lf )/(2p)

g+3t/2∫

z=g+t/2

r
1
r

∂Bz

∂ψ
rdrdψdz

=
2pBrem

µ0

r2∫

r=r1

g+3t/2∫

z=g+t/2

Bz

(
r, ψ̄, z

)
rdrdz

∣∣ψ0+π(1−lf )/(2p)

ψ̄=ψ0−π(1−lf )/(2p)
(59)

where ψ0 specifies the angular shift between both pole rings. We
assume that they have identical shape and rotation axis. In axial
direction they are a distance g apart. For the sake of convenience they
are supposed to have no steel-back. Br and Bz are related due to the
fact that the curl vanishes

Bz

(
r, ψ̄, z

)
=

r∫

r̄=0

∂Br

(
r̄, ψ̄, z

)

∂z
dr̄ (60)

(60) does not need an additive constant because Bz vanishes at r = 0
due to (13). Inserting (60) into (59) with lf = 0 gives

T =
2pBrem

µ0

r2∫

r′=r1

r′∫

r̄=0

r′Br

(
r̄, ψ̄, z̄

)
dr̄dr′

∣∣ψ0+π/(2p)

ψ̄=ψ0−π/(2p)

∣∣∣
g+3t/2

z̄=g+t/2
(61)

Let r1 go to zero. Reversing the sequence of integration and carrying
out the inner integral gives

T =
2pBrem

µ0

r2∫

r̄=0

(
r2
2 − r̄2

)
Br (r̄, ψ0 + π/(2p), z̄) dr̄|g+3t/2

z̄=g+t/2 (62)

In the following we use (62) to derive a criterion for maximum torque
in the limit of thin discs. From (62) we get

lim
t→0

T =
2ptBrem

µ0

r2∫

r=0

(
r2
2 − r2

) ∂ lim
t→0

Br (r, ψ0 + π/(2p), g)

∂z
dr (63)

Replacing ∂Br/∂z = ∂Bz/∂r in the first term of the integrand that is
multiplied by r2

2 and using (22) for the term that is multiplied by r2

gives

lim
t→0

T =2pt
Brem

µ0



r2

2 lim
t→0

Bz

(
r, ψ0+

π

2p
, g

)∣∣∣∣
r2

r=0

+
∂

∂z
z

r2∫

r=0

rlim
t→0

Bz

(
r, ψ0+

π

2p
, z

)
dr

∣∣∣∣
z=g



 (64)



Progress In Electromagnetics Research B, Vol. 38, 2012 95

With (19) we get

lim
t→0

Bz

(
r, ψ0+

π

2p
, z

)
=
−ptBrem

π
√

r2+z2

sin (pψ0) cosh (p arcsinh (z/r))

[sinh (p arcsinh (z/r))]2+[sin (p ψ0)]
2 (65)

If we ignore overshoot the maximum torque is at pψ0 = π/2. There
the integral in (64) can be transformed into

−zt
Brem

π

∞∫

β=parcsinh(z/r2)

1
(sinh(β/p))2

dβ

coshβ
(66)

An exact analytical solution of (66) seems not possible. Yet, if we
replace sinh (β/p) → β/p we get a good approximation: numerical
investigation shows that the error is largest for large p arcsinh (z/r2)
and small p. For p arcsinh (z/r2) < 2 and p ≥ 5 the error is less than
10%, for p ≥ 9 less than 3.3%, and for p ≥ 16 less than 1%. With

1/coshβ ∼= 2 (exp (−β)− exp (−3β) + exp (−5β)∓ . . .) (67)
the integral of (66) can be developed into a series

2p2ztBrem

π

∞∑

m=0

(−1)m+1

{exp
[
− (2m + 1)p arcsinh(z/r2)

]

p arcsinh(z/r2)

−(2m + 1)Γ
(

0, (2m + 1)p arcsinh
z

r2

)}
(68)

Γ (a, x) =
∫ ∞

x ta−1 exp (−t) dt is the upper incomplete gamma
function. Inserting this into (64) and skipping terms that vanish at
large p gives

lim
t→0

T̂ (no)∼=(2Bremp t)2

µ0π

{
r2

cosh(pg/r2)
− 2pg

∞∑
m=0

(−1)m(2m+1)Γ

(
0, (2m+1)

pg

r2

)}
(69)

The index T̂ (no) reminds us that we considered the non-overshoot
regime only. (69) agrees up to 0.5% with a finite element simulation for
p = 10, t = 5 mm, g = 5 mm, r2 = 150mm (where we used an effective
air-gap geff = g + t in (69)). The torque amplitude T̂ (no) increases
versus r2 and it decreases versus g, yet it is non-monotonic versus p.
Differentiating (69) against p and equating for zero gives an equation
for the single parameter pg/r2 that can be solved numerically: the
optimum number of poles for maximum torque transmission is

p g/r2
∼= 1.51812 (70)

For r < r2 this implies pz/r > 1.51812 so that during the integration
of (64) the Bz-field has no overshoot, because overshoot occurs only
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at pz/r < arcsinh (1) = 0.8814. It means that the optimum disc has
such a small diameter that even at its perimeter no overshoot of the
Bz-field occurs.

Inserting (70) into (69) gives the maximum obtainable torque

lim
t→0

T̂ (no)
max

∼= 0.409028× B2
remt2r3

2

µ0g2
(71)

It goes up with the cube of the diameter and the square of the thickness
and down with the square of the gap.

Our reflections assumed a field generating disc with r2 → ∞, so
that we ignored the effects of equivalent sheet currents in azimuthal
direction (4b). They have only negligible effect on the torque, because
they alter the Br-field only close to r = r2. According to (62) the
Br-field is multiplied by r2

2 − r̄2 before integration, and this strongly
dampens the error near r̄ = r2. Therefore our theory applies to discs
with z ¿ r2, yet not to slim rings with r2 − r1 in the order of z.

In the foregoing we focused on large p so that we still need
to consider what happens at small p. It is straightforward to set
p = 1, 2, 3, . . . in (66) and perform the integration in closed form (for
p < 7) or numerically. Fig. 11 compares these results with (69): The
p = 1 curve is different from all others: it has no relative extremum.
For p > 5 the curves are nearly identical.

Figure 11 shows that for small pg/r2 the torque rises whereas for
large pg/r2 the torque decreases. This was found experimentally and
numerically in [43–46] — here we have proven it analytically.

So far we have excluded overshoot in the Bz-field. This is
admissible for pz/r2 > arcsinh (1) ∼= 0.8814 but for smaller values
could there be a torque larger than that given by (71)? Given the size
of the discs and the gap between them what is the optimum number of
pole pairs? With p ∼= 1.51812×r2/g the torque is maximum in the non-
overshoot regime of Bz. Reducing p down to p ∼= 0.8814×r2/z there is
still no overshoot of Bz and so the torque reduces (by 21.4% according
to (69)). Further reduction of p reduces the torque at ψ0 = π/(2p),
but starts to add torque left and right of this angle ψ0. Thus, even
though Bz exhibits overshoot, the torque does not yet show overshoot.
Since Bz- and Br-overshoot is strongest at the perimeter of the disc it
is damped much by the factor r2

2 − r̄2 in (62). Only at very small p
a significant portion of the disc exhibits Bz-overshoot and this finally
leads to an overshoot in the torque function T (ψ0). It can be found by
solving ∂2T

/
∂ψ2

0 = 0 at ψ0 = π/(2p). This can be done in a rigorous
way (i.e., for arbitrary g/r2 and p) by differentiating (64) twice against



Progress In Electromagnetics Research B, Vol. 38, 2012 97

ψ0. One ends up with an implicit equation for g/r2 as a function of p:
∞∫

β=p arcsinh(g/r2)

(
1− 2

(coshβ)2

)
dβ

[sinh (β/p)]2 coshβ
= 0 (72)

The result is pg/r2 = 0.6601 for p = 1, pg/r2 = 0.5853 for p = 2, . . .
and 0.5555 for large p. This gives a limit curve for the torque: for
larger pg/r2 the torque has no overshoot, for smaller pg/r2 the torque
exhibits overshoot. So, although the Bz-field shows an overshoot at
pz/r2

∼= 0.8814 it still takes much lower pg/r2 ≤ 0.5555 for overshoot in
the torque. A look at Fig. 11 shows that at such low p-values the torque
is only about half of its maximum at pg/r2

∼= 1.51812. For the following
it is important to be aware that (69) gives the correct torque amplitude
for pg/r2 ≥ 0.5555. With this in mind we can prove rigorously that
even in the regime of torque overshoot (i.e., for pg/r2 < 0.5555) this
overshoot cannot exceed the value of (71), which is therefore the global
maximum.
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Figure 11. Normalized torque amplitudes for thin discs t → 0.
Comparison of solution (69) for large p with specific solutions for
p = 1, 2, . . . 5. The maximum torque is given at pg/r2 = 1.52. The
region of overshoot in Bz (pz/r2 < 0.88) is larger than the region of
overshoot in torque (pg/r2 < 0.56). Torque amplitudes are below the
line labeled with Equation (76).
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So we have to prove the following hypothesis

0.409028 >
µ0g

2

B2
remt2r3

2

lim
t→0

|T | for 0 < pg/r2 < 0.5555 (73)

Inserting (19) into (59) gives an integral that cannot be solved in closed
form. So we manipulate it in such a way, that its values increases and
that we can solve it. If we can finally show that even this increased
value satisfies (73), the proof is complete. With g/r = sinhβ and
|sin (pψ0)| = σ we get

µ0g
2

B2
remt2r3

2

lim
t→0

|T |= 4
π

(
pg

r2

)3
∞∫

β=pg/r2

1
(p sinh (β/p))2

σ coshβ

σ2+(sinhβ)2
dβ (74)

This integral may be split in two parts. The first part is for small β,
where we use p sinh (β/p) > β and the hyperbolic functions are bound
by polynomials,

arcsinh(1)∫

β=pg/r2

1

(p sinh (β/p))2
σ cosh β

σ2 + (sinh β)2
dβ<

arcsinh1∫

β=pg/r2

σ

β2

1 + 2133β2
/
4000

σ2 + (1135β/1000)2
dβ (75a)

The integration gives a lengthy expression. The second part of
the integral in (74) is for β > arcsinh (1), which is equivalent to
p sinh (β/p) > arcsinh (1). The integrand may be expanded into powers
of exp (−β) like in (67) and integrated term by term. The resulting
infinite sum is found to be identical to the arctan-function.

∞∫

β=arcsinh(1)

1
(p sinh (β/p))2

σ coshβ

σ2 + (sinhβ)2
dβ <

arctanσ

(arcsinh1)2
(75b)

Inserting (75a) and (75b) into (74) gives an upper limit for the torque

lim
t→0

|T | µ0g
2

B2
remt2r3

2

<
4
π

(
pg

r2

)3 {
arctanσ

(arcsinh1)2
− 1/arcsinh1

σ
+

r2

pgσ

+
(

2133
4540

− 227
200σ2

)(
arctan

227arcsinh1
200σ

− arctan
227pg

200σr2

)}
(76)

The right hand side of (76) is largest at σ = |sin (pψ0)| = 1. There it
is a monotonic function of pg/r2 and attains a value of 0.409028 for
pg/r2 = 0.61409. In the required range 0 < pg/r2 < 0.5555 it assumes
values between 0 and 0.3336 and therefore (73) holds, q.e.d.. This is
also shown in Fig. 11.
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11. CONCLUSION

The magnetic field of axially magnetized multi-pole rings was
calculated analytically for single poles. In the limit of vanishing
inner and infinite outer diameter the ring degenerates to a disc.
This simplified model offers the advantage to describe the magnetic
field without elliptic integrals. This allows us to calculate the axial
component in closed form by summing up the contributions of all
poles. The resulting formulae are a good approximation to the field of
real encoders, as is proven by measurement (Fig. 6) and calculation
(Fig. 9). Equation (12) can be used to describe code-wheels with high
number of alternating poles as well as magnetic gears and permanent
magnet motors with only a few, large alternating poles.

In the limit of large reading radius the disc degenerates to a linear
strip of infinite width. Both vertical and horizontal field components
of this 2D-model were given in closed form by (28a) and (29b). For
small air-gaps the vertical field is pulse shaped while the horizontal field
has a triangular waveform. For moderate and large air-gap the field
is sinusoidal. This is described by (28b) and (29c) with amplitudes
decaying exponentially versus air-gap. Vertical and horizontal field
components are phase shifted by 90 degrees and their amplitudes are
identical (34). With higher pole count the field increases at the surface
of the encoder while it falls off more drastically versus air-gap. The
transverse field component By is the key to derive the other field
components in a strict 3D-theory (Section 9). This theory is applied
to optimize pole-strips in such a way that the vertical field component
Bz has a flat plateau versus transverse position y (50). With these
equations it is possible to study the influence of assembly tolerances
on wheel speed sensors.

The transmitted torque of axially magnetized couplings is
maximized by avoiding overshoot in the fields and in the torque
function. The optimum number of pole-pairs is 1.5 times the radius of
the discs divided by the gap between both discs (70). This holds also
for arbitrarily thick discs as will be shown in a follow-up paper.

APPENDIX A.

Here is a derivation of (11) because it is not given in tables on finite
sums (like e.g., [47]). Let ζ = i sinα, α a complex number and i the
imaginary unit, then the LHS of (11) reads
2p−1∑

k=0

(−1)k

{
arctan

i sinα

sin (y−πk/p)
+arctan

i sinα cot (y−πk/p)
cosα

}
. (A1)
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With the identity arctan iz = 1/(2i) ln [(1− z)/(1 + z)] one gets

1

2i

2p−1∑

k=0

(−1)kln

{
sin(y−πk/p)−sinα

sin(y−πk/p)+sinα
× cosαsin(y−πk/p)− sinαcos(y−πk/p)

cosαsin(y−πk/p)+sinαcos(y−πk/p)

}
, (A2)

which — by use of the addition theorems for sine and cosine functions
— can be rewritten as

2p−1∑

k=0

(−1)k

2i
ln

(
sin ((y − α− πk/p)/2) cos ((y + α− πk/p)/2)
sin ((y + α− πk/p)/2) cos ((y − α− πk/p)/2)

×sin ((y − α− πk/p)/2) cos ((y − α− πk/p)/2)
sin ((y + α− πk/p)/2) cos ((y + α− πk/p))

)
(A3)

Canceling common terms in nominator and denominator gives

2
1
2i

2p−1∑

k=0

(−1)k ln
sin ((y − α− πk/p)/2)
sin ((y + α− πk/p)/2)

. (A4)

This sum can be split up into two parts, one containing only even
indices k = 2l with 0 ≤ l ≤ p − 1 and the other only odd indices
k = 2l + 1 with 0 ≤ l ≤ p− 1.

1
i

ln





p−1∏
k=0

sin
(α−y

2 + πk/p
)
sin

(
−y+α−π/p

2 + πk/p
)

p−1∏
k=0

sin
(−y+α

2 + πk/p
)
sin

(
α−y+π/p

2 + πk/p
)





(A5)

By use of the identity sin px = 2p−1
p−1∏
k=0

sin (x + πk/p) given in [48]

(A5) transforms to

2
1
2i

ln
{

sin ((y − α) p/2)
sin ((y + α) p/2)

× cos ((y + α) p/2)
cos ((y − α) p/2)

}
(A6)

which can be rewritten as inverse tangent
= 2 arctan {isin (pα)/sin (py)} , (A7)

The argument can be manipulated as

i sin (pα) = i sin(p arcsin (−iζ) = i sin
(
pi ln

(√
1 + ζ2 − ζ

))

= isin
(
i ln

(√
1+ζ2−ζ

)p)
= i2 sinhln

(√
1+ζ2−ζ

)p

=
[(

ζ+
√

1+ζ2
)p
−

(
ζ+

√
1 + ζ2

)−p
]/

2=Sh (ζ; p) (A8)

which finally renders the result at the RHS of (11). From this equation
many similar ones can be derived by substitution or differentiation.
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APPENDIX B.

We define the functions

Sh (ζ; p) =
(
ωp − ω−p

)/
2 and Ch (ζ; p) =

(
ωp + ω−p

)/
2 (B1)

with ω = ζ +
√

1 + ζ2, ζ and p being real numbers. Since ω > 0
it is clear that Ch (ζ; p) > 0 holds. Sh (ζ; p) = −Sh (−ζ; p) is an
odd function. Hence Sh (0; p) = 0. Ch (ζ; p) = Ch (−ζ; p) is an even
function with Ch (0; p) = 1. The first derivatives are

∂ Sh (ζ; p)
∂ζ

=
pCh (ζ; p)√

1 + ζ2
, (B2)

∂ Ch (ζ; p)
∂ζ

=
p Sh (ζ; p)√

1 + ζ2
(B3)

The first derivative of Sh (ζ; p) is positive — therefore Sh (ζ; p) is
strictly monotonically rising. Analogously Ch (ζ; p) is monotonic for
ζ ≥ 0. MacLaurin expansions are

Sh(ζ; p) ∼= p ζ + p
(
p2 − 1

)
ζ3/6 and Ch(ζ; p) ∼= 1 + p2ζ2/2 (B4)

The asymptotic approximations for large arguments are

Ch (ζ; p) ∼= 2p−1ζp and Sh (ζ; p) ∼= 2p−1ζp (B5)

Both functions are related via

[Ch (ζ; p)]2 − [Sh (ζ; p)]2 = 1 (B6)

Addition theorems are obtained by use of the definition (B1)

Sh (ζ; p1 + p2) = Sh (ζ; p1)Ch (ζ; p2) + Ch (ζ; p1) Sh (ζ; p2) (B7)
Ch (ζ; p1 + p2) = Ch (ζ; p1)Ch (ζ; p2) + Sh (ζ; p1) Sh (ζ; p2) (B8)

For p1 = p − 1, p2 = 1, Sh (ζ; 1) = ζ, Ch (ζ; 1) =
√

1 + ζ2 (B7) and
(B8) lead to

√
1 + ζ2Sh (ζ; p) = Sh (ζ; p− 1) + ζCh (ζ; p) (B9)

The inversions of the functions are given by

Sh (ζ; p) = η ⇔ ζ = Sh (η; 1/p) (B10)

Ch (ζ; p) = η ⇔ |ζ| = Sh
(√

η2 − 1; 1/p
)

(B11)

If we replace in (B1) ζ → sinh ζ it follows ω → exp ζ and thus
Sh (sinh ζ; p) = sinh (pζ). In other words

Sh (ζ; p) = sinh (parcsinhζ) = Sh (sinh p; arcsinhζ) (B12)
Ch (ζ; p) = cosh (parcsinhζ) = Ch (sinh p; arcsinhζ) (B13)
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Thus for small ζ it holds
Sh (ζ; p) ∼= sinh

(
p

(
ζ − ζ3

/
6 + 3ζ5

/
40

)) → sinh (pζ) (B14)

Ch (ζ; p) ∼= cosh
(
p

(
ζ − ζ3

/
6 + 3ζ5

/
40

)) → cosh (pζ) (B15)
This explains the similarity with the hyperbolic functions. For ζ <
p−1/3/4 the difference between Ch (ζ; p) and cosh (p ζ) is smaller than
0.26% and the difference between Sh (ζ; p) and sinh (p ζ) is smaller than
1%.
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