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Abstract—This paper mainly deals with the problem of detecting a
target against spherically invariant random vector (SIRV) clutter in the
presence of steering vector mismatches. Assuming that the mismatch
of the steering vector satisfies the conic constraint, the generalized
likelihood ratio test (GLRT) is devised, and the geometry description
is proposed for the derived solution. Additionally, the fully adaptive
GLRT is derived by replacing the exact covariance with fixed point
estimate (FPE). Finally, several numerical results are provided and
discussed.

1. INTRODUCTION

The design of adaptive detection algorithms has been an active field of
research, and many detectors have been proposed. Since the uniformly
most powerful (UMP) test does not exist because of lacking the
prior knowledge of clutter and target, as a consequence, a variety of
different algorithms have been explored in open literatures. Among
them, we mention the famous one-step generalized likelihood ratio test
(GLRT) in [1], and two-step adaptive matched filter (AMF) [2], and
the adaptive normalized matched filter (ANMF) [3], also known as
adaptive cosine coherence (ACE) [4].

The above detection algorithms are based on the exact knowledge
of the signal array steering vector. However, in practical applications,
the detection performance may suffer severe degradation because of
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the actual steering vector not perfectly aligned with the nominal
one. Recently, many works are concerned on the adaptive detection
problem with steering vector mismatches against Gaussian clutter.
In [5], the adaptive robust detection was devised in Gaussian clutter
with unknown covariance matrix in the presence of steering vector
mismatches, and the work was extended by considering the interference
in [6]. In [7], the distributed target was investigated in the presence of
mismatches, and in [8], the test was designed in partially homogeneous
environment. The above results show that the acceptance/rejection
performance is improved greatly by considering the steering vector
mismatches at the design stage.

However, in practical applications, the detection environment,
such as sea clutter, is not well modeled as Gaussian process, and they
are more consistent to some high tails non-Gaussian distributions. The
spherically invariant random vector (SIRV) model has been proved to
describe the real radar measurements well, especially in high resolution
radars or at low grazing angles, which is a family of lots of non-
Gaussian processes, such as Weibull and K-distributions. It can be
described as the product of a temporally and spatially slowly varying
texture component, times a more rapidly varying process, the so-called
speckle, Gaussian distributed due to the local validity of Central Limit
Theorem [9–14].

Motivated by extending the target detection problem with steering
vector mismatches in Gaussian background to that against SIRV
clutter, we consider a general binary hypotheses target detection model
as in [5], the difference is that the test is devised in SIRV clutter.
Since the optimum Neyman-Pearson receiver is not available, the
suboptimum GLRT-based receiver is devised by assuming that the
actual steering vector is constraint within a cone.

To make the derived GLRT-based receiver fully adaptive, we
resort to the secondary data, which is free of signals, sharing the
same covariance matrix with the primary data, to estimate the exact
covariance matrix. The fixed-point estimate (FPE) is adopted [15–
17], since in SIRVs, it is unbiased, consistent and ensures the CFAR
property with respect to both the structure of the covariance matrix
and the clutter power levels.

The rest of the paper is organized as follows. In Section 2, we
present the detection problem and devise the GLRT detector; and in
Section 3, we devise the full adaptive GLRT. Several numerical results
are given and discussed in Section 4. Finally, some conclusions are
provided in Section 5.
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2. PROBLEM FORMULATION AND DETECTOR
DESIGN

We assume that the radar returns are collected form N sensors, and
the problem of detecting a target can be formulated in terms of the
following binary hypotheses test:

{
H0 : z = c
H1 : z = u + c (1)

where z, u and c are the N -dimensional complex vectors sampled
from the sensors, based-band equivalent of the received signals, the
transmitted signals and the clutter, respectively.

In general, the clutter vector is modeled as a SIRV [11], which can
be written as

c = τg (2)

where the texture component τ is a non-negative random variable with
probability density function (pdf) fτ (·) and unit root mean square
value. The speckle component g is a zero-mean complex Gaussian
vector with covariance matrix M, and statistically independent with
texture τ . Thus, the probability density function of c is given by

f (c) =
1

πN det (R)
hN

(
c†R−1c

)
(3)

where R = 2σ2M is the covariance matrix (2σ2 denotes the power
level), (·)† is conjugate transpose, det (·) is the determinant of a square
matrix, and hN (·) is defined as

hN (y) =

∞∫

0

x−2N exp
(
−y

x

)
fτ (x) dx (4)

For example, the most common K distribution clutter satisfies the
above model, in such case, the hN (·) is defined as

hN (y) =
b2N

(
b
√

y
)ν−N

Γ (ν) 2ν−1
KN−ν (b

√
y) (5)

and the characteristic function of τ is

fτ (x) =
2b (bx)2ν−1

Γ (ν) 2ν
exp

(
−b2x2

2

)
, x > 0 (6)
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where b and ν denote respectively the scale and shape parameters, Γ (·)
is the Eulerian gamma function, and Kν (·) is the modified second-
kind Bessel function with order ν. To preserve the covariance matrix,
it usually sets E

[
τ2

]
= 1, then, b =

√
2ν, where E [·] denotes the

statistics expectation.
Applying whitening and rotating transform on the received signal,

the detection problem can be recast as
{

H0 : r = n
H1 : r = p + n (7)

where r = UM−1/2z, n = UM−1/2c = τUM−1/2g, and U is a unitary
transformation such that p = UM−1/2u = αeN , eN = [0, 0, . . . , 1]T

((·)T denotes the transpose) in perfect matching case with u = s, and
α is a complex unknown parameter.

In practical applications, due to the pointing errors, imperfect
array calibration and distorted antenna shape, spatial multipath,
and in-phase and quadrature components errors, the mismatches are
usually occurred, and cause deviations of the actual steering vector
from the nominal direction eN . Moreover, assume that p belongs to
the cone set Γ defined as follows [1].

Definition: Let x =
[
xT

N−1, xN

]T is a N -dimensional complex
vector with last component xN , and the cone set is

Γ=
{
x=

[
xT

N−1, xN

]T∈CN :‖xN−1‖≤γ |xN|
}
=

{
x∈CN :x†Σx≤0

}
(8)

where CN is the N -dimensional complex vector space, ‖·‖ is the
Euclidean norm, |·| is the modulus of a complex number, and Σ =
diag

(
1, . . . , 1,−γ2

)
is an N -dimensional diagonal matrix with tanφ =

γ, φ is the acute angle of the cone.
In general, the Neyman-Pearson test is not available, thus, the

sub-optimal GLRT-based receiver is derived, which is equivalent to
replacing the unknown parameters with their maximum likelihood
estimates (MLEs). Specifically, the GLRT for the problem (1) can
be written as

max
τ,p∈Γ

f(z|H1,τ,p)

max
τ

f(z|H1,τ )
H1
≷
H0

G (9)

where G is the detection threshold, setting according to the probability
of false alarm (Pfa), f (r|H1, τ,p) and f (r|H0, τ) are respectively
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the pdfs of the complex receive signals under H1 and H0 hypotheses.
Previous assumptions imply that

f (z|H1, τ,p) =
1

πN det (τ2M)
exp

{
−(z−u)†M−1 (z−u)

τ2

}

=
1

πN det (τ2M)
exp

{
−(r− p)† (r− p)

τ2

}
(10)

f (z|H0, τ,p) =
1

πN det (τ2M)
exp

{
−z†M−1z

τ2

}

=
1

πN det (τ2M)
exp

{
−r†r

τ2

}
(11)

It is not difficult to obtain that under H0, the MLE of τ2 is

τ̂2 =
r†r
N

(12)

and under H0, it is

τ̂2 =
(r− p)† (r− p)

N
(13)

Substituting the MLEs of the texture component τ under H0 and
H1 hypotheses into (9), and after some algebraic manipulations, the
GLRT-based test (9) can be rewritten as follows.

max
p∈Γ

r†r
(r− p)†(r− p)

=
r†r

min
p∈Γ

(r− p)†(r− p)
H1
≷
H0

G (14)

Performed as in [6], we have

min
p∈Γ

(r− p)†(r− p) =
1

1 + γ2
(‖rN−1‖ − γ|rN |)2 u(r†Σr) (15)

where u (·) is the unit step function, i.e.,

u (x) =
{

1, x ≥ 0
0, x = 0 (16)

The Equation (15) can be explained by the geometry relationship,
the constraint cone is shown in Figure 1. If r†Σr <0, or saying that
the vector r lies within the cone, it is obvious that the minimum value
is achieved at r = p, such that

min
p∈Γ

(r− p)†(r− p) = 0 (17)
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Figure 1. The geometry of the constraint cone.

For r†Σr ≥ 0, the following norm triangle inequality is satisfied
‖r− p‖ = ‖(r−qN )−(p−qN )‖≥|‖r−qN‖ − ‖p− qN‖|

≥ |‖r− qN‖−‖pc − qN‖| (18)
where qN is the projection of r onto eN , p is the vector within the
cone, and pc is the vector on the surface of cone , such that p†cΣpc = 0.
Thus, the possible pc lies in the same plane with r and qN , then, the
minimum value of ‖r− p‖ is obtained, i.e.,

min
p
‖r−p‖2 =(‖rN−1‖−γ|rN |)2 cos2 θc =

1
1 + γ2

(‖rN−1‖−γ|rN |)2 (19)

Considering the condition r†Σr> 0, the solution is the same as
in (6).

Thus, substituting (19) into (14), and after some algebra, the
GLRT can be recast as

r†r
(‖rN−1‖ − γ|rN |)2 u(r†Σr)

H1
≷
H0

G (20)

where G is the suitable modification of the original threshold in (14).
Moreover, (20) can be expressed in terms of the raw data vector,

i.e.,
z†M−1z(√

z†M−1z− |z†M−1s|2
s†M−1s

−γ

√
|z†M−1s|2
s†M−1s

)u(z†M−1/2ΣM−1/2z)
H1
≷
H0

G (21)
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Denote by lNMF the normalized matched filter (NMF),

lNMF =

∣∣z†M−1s
∣∣2

(z†M−1z) (s†M−1s)
(22)

Finally, the GLRT-based test (21) can be recast as

1(√
1− lNMFγ

√
lNMF

)2 u
(
z†M−1/2ΣM−1/2z

) H1
≷
H0

G (23)

Expression (23) highlights that the GLRT only depends on NMF
and γ, linking to mismatched angle φ.

3. ADAPTIVE SCHEMES

In practical applications, the power spectral density of clutter is usually
unknown, a suitable estimation is required in place of the exact
covariance structure M to devise a fully adaptive detector. Assume
the secondary data X = [x1,x2 . . . ,xK ] ∈ CN×K with size K, which
are independent identically distributed vectors with free of the signal
components, sharing the same covariance structure with the primary
data, are available.

There are three common estimation strategies, i.e., sample
covariance matrix (SCM), normalized sampled covariance matrix
(NSCM), and fixed point estimation (FPE) matrix. In general, the
SCM performs well in Gaussian interference, and guarantees the CFAR
property with respect to the covariance matrix. However, in non-
Gaussian clutter, it is no longer ensuring CFAR property with respect
to the power levels. For NSCM, it is biased and not consistent [16],
and is not CFAR with respect to the covariance matrix in SIRVs. As
to FPE, it performs well in SIRVs, and is unbiased, consistent and
ensures the CFAR property with respect to both the structure of the
covariance matrix and the clutter power levels.

Thus, we focus on the FPE method, which is given by

_

MFEP =
N

K

K∑

k=1

xkx
†
k

x†k
_

M
−1

FEPxk

(24)

To solve the FPE of (24), it can be resorted to the recursive operation,
i.e.,

_

MFEP(` + 1) =
N

K

K∑

k=1

xkx
†
k

x†k
_

M
−1

FEP(`)xk

, ` = 0, 1, . . . , LFEP (25)
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and the initial estimate
_

MFEP (0) is given by

_

MFEP (0) =
N

K

K∑

k=1

xkx
†
k

x†kxk

(26)

The recursive error is defined as

ER(`) =

∥∥∥ _

MFEP(` + 1)− _

MFEP(`)
∥∥∥

F∥∥∥ _

MFEP(` + 1)
∥∥∥

F

(27)

where ‖·‖F denotes the Frobenius norm and LFEP denotes the number
of the recursion. In general, the LFEP is less than 5 for ER < 5%.
Therefore, the FPE is also called recursive ML-estimator.

Hence, the two-step adaptive GLRT-based test is given by

1(√
1− l̂NMF − γ

√
l̂NMF

)u

(
z†

_

M
−1/2

Σ
_

M
−1/2

z
)

H1
≷
H0

G1 (28)

where

l̂NMF =

∣∣∣∣z†
_

M
−1

FEPs
∣∣∣∣
2

(
z†

_

M
−1

FEPz
) (

s†
_

M
−1

FEPs
) (29)

and G1 is the suitable modification of the original threshold in (23).

4. PERFORMANCE ASSESSMENT

This section is devoted to the evaluation of the proposed receiver in
terms of the probabilities of detection (Pd) and false alarm (Pfa).
Consider a uniform linear array with N omni-directional elements, and
the nominal steering vector s is given by

s =
1√
N

[1, 1, . . . , 1]T (30)

The actual received steering vector after whitening and rotating is
given

p = A exp {jξ}
(

eN cosφ +
e⊥N∥∥e⊥N

∥∥ sinφ

)
(31)

where A is the amplitude, ξ is the random phase, e⊥N is a complex
vector, orthogonal to eN , with independent identically distributed



Progress In Electromagnetics Research C, Vol. 26, 2012 253

complex Gaussian random components, and φ is the mismatches acute
angle between actual steering vector and nominal vector, such that

cosφ =

∣∣p†eN

∣∣
‖p‖ ‖eN‖ (32)

We assume a clutter-dominated scenario, which is sampled from
K-distribution random vector with exponential correction shape of
covariance structure, such that

M (k, j) = ρ|k−j|, 1 ≤ k, j ≤ N (33)

where ρ is the one-lag correlation coefficient. The signal-to-clutter ratio
(SCR) is defined as

SCR = A2s†M−1s (34)

Since closed-form expressions of detection probability (Pd) and
false alarm probability (Pfa) are not available, we resort to standard
Monte Carlo technologies. To limit the computation burden, we
assume Pfa = 10−3.

In Figure 2, we analyze the impact of the mismatched angle φ
on the detection performance, where Pds of adaptive GLRT and NMF
are plotted versus SCR for Pfa = 10−3, N = 8, K = 32, ν = 0.5,
γ = 0.5, ρ = 0.9, and several values of cosφ. The curves show
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Figure 2. Pd plots v.s. SCR with cosφ = 0.89, 0.85, 0.8, “◦” curves
NMF, “4” curves GLRT, for Pfa = 10−3, N = 8, K = 32, ν = 0.5,
γ = 0.5, ρ = 0.9, and non-fluctuating target.
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Figure 3. Pd plots v.s. SCR with K = 16, 32, 64, “◦” curves NMF,
“4” curves GLRT, for Pfa = 10−3, N = 8, ν = 0.5, γ = 0.5,
cosφ = 0.89, ρ = 0.9, and non-fluctuating target.

that the detection performance is decreased when decreasing cosφ,
in other words, for large φ, the mismatches loss are more serious. At
such case, the adaptive GLRT is prone to reject the signals, although
the SCR is high. Moreover, the adaptive GLRT is consistent with
adaptive NMF in large mismatched angle. In high cosφ, the detection
performance of the NMF is a little better, or the GLRT has better
rejection performance for mismatched signals.

The influence of the size K of the secondary data is analyzed in
Figure 3, where Pds of adaptive GLRT and NMF are plotted versus
SCR for several values of K, together with exact covariance structure.
It is evident that detection performance is increased when increasing
the size K, and the adaptive loss is acceptable. Specifically, the loss
is 2 dB in the case Pd = 0.9 between exact covariance and estimated
covariance with K = 64. Meanwhile, the derived adaptive GLRT is
consistent with adaptive NMF in large size case, however, in the small
size K, the detection performance of NMF is better.

In the sequel we assess the performance of the proposed GLRT in
the presence of fluctuating targets. To this end, we assume that the
amplitude A is distributed as a chi random variable with 2m degrees
of freedom [5],

fA (x) = 2
( m

Ā2

)m x2m−1

Γ (m)
exp

(
− m

Ā2
x2

)
u (x) , m > 0 (35)
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Figure 4. Pd plots v.s. SCR with different fluctuating model, “◦”
curves NMF, “4” curves GLRT, for Pfa = 10−3, N = 8, ν = 0.5,
K = 32, γ = 0.5, cosφ = 0.85, ρ = 0.9 and fluctuating target.

The parameter m rules the depth of the amplitude fluctuation:
the lower the shape parameter m, the wider the fluctuation span.
Notice that model (35) subsumes, as special cases, both the Rayleigh
distribution and non-fluctuating amplitude, for m = 1 or m = +∞,
respectively. In Figure 4, the Pds of adaptive GLRT and NMF are
plotted versus average SCR, i.e.,

SCR = Ā2s†M−1s (36)

The results show that the fluctuation law significantly affects the
detection performance, the larger the m, the better the detection
performance. It is because for the larger value of m, the fluctuation is
more prone to non- fluctuation characteristics.

5. CONCLUSIONS

In this paper, we address the receiver design against SIRV clutter
in the presence of steering vector mismatches with unknown power
spectral density, and the fully adaptive GLRT-based receiver is devised
resorting to the secondary data.

Several numerical simulations are provided, and the results
highlight that the derived GLRT is in accordance with adaptive NMF
in exact covariance case or/and serious mismatched cases. Meanwhile,
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the detection performance also depends on the fluctuating depth
of the target, the deeper the fluctuations, the worse the detection
performance.

Possible future research tracks might concern the assessment of the
mismatched case for polarimetric [18] and colocated MIMO radars [19]
in SIRV clutter.
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